
2
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

PAPER Special Section on Empirical Software Engineering

Balanced, Unbalances, and One-Sided Distributed Teams - An
Empirical View on Global Software Engineering Education

Daniel Moritz MARUTSCHKE†a), Member, Victor V. KRYSSANOV††b),
and Patricia BROCKMANN†††c), Nonmembers

SUMMARY Global software engineering education faces unique chal-
lenges to reflect as close as possible real-world distributed team develop-
ment in various forms. The complex nature of planning, collaborating, and
upholding partnerships present administrative difficulties on top of bud-
getary constrains. These lead to limited opportunities for students to gain
international experiences and for researchers to propagate educational and
practical insights. This paper presents an empirical view on three differ-
ent course structures conducted by the same research and educational team
over a four-year time span. The courses were managed in Japan and Ger-
many, facing cultural challenges, time-zone differences, language barriers,
heterogeneous and homogeneous team structures, amongst others. Three
semesters were carried out before and one during the Covid-19 pandemic.
Implications for a recent focus on online education for software engineer-
ing education and future directions are discussed. As administrational and
institutional differences typically do not guarantee the same number of stu-
dents on all sides, distributed teams can be 1. balanced, where the number
of students on one side is less than double the other, 2. unbalanced, where
the number of students on one side is significantly larger than double the
other, or 3. one-sided, where one side lacks students altogether. An ap-
proach for each of these three course structures is presented and discussed.
Empirical analyses and reoccurring patterns in global software engineer-
ing education are reported. In the most recent three global software en-
gineering classes, students were surveyed at the beginning and the end of
the semester. The questionnaires ask students to rank how impactful they
perceive factors related to global software development such as cultural
aspects, team structure, language, and interaction. Results of the shift in
mean perception are compared and discussed for each of the three team
structures.
key words: global software engineering, online education, cultural dimen-
sions, distributed development, project based

1. Introduction

In today’s software development landscape, projects are of-
ten conducted by international teams distributed in different
countries around the world. In Global Software Engineer-
ing (GSE), interconnectedness and tools to facilitate asyn-
chronous working have driven this trend. Differences in ex-
pertise, but also diverging wages are factors that lead to team

Manuscript received February 26, 2021.
Manuscript revised July 14, 2021.
Manuscript publicized September 30, 2021.
†The author is with the Ritsumeikan University College of

Global Liberal Arts, Ibaraki-shi, 567–8570 Japan.
††The author is with the Ritsumeikan University College of In-

formation Science and Engineering, Kusatsu-shi, 525–8577 Japan.
†††The author is with the Nuremberg Institute of Technology,

Keßlerplatz 12, 90489 Nuremberg, Germany.
a) E-mail: moritz@fc.ritsumei.ac.jp
b) E-mail: kvvictor@is.ritsumei.ac.jp
c) E-mail: patricia.brockmann@th-nuernberg.de

DOI: 10.1587/transinf.2021MPP0002

members in different countries being assigned specific roles.
Roles based on location then result in offshoring projects.
Requirements engineering tasks are often assigned to an on-
site group with direct access to customers, whereas devel-
opment tasks can be outsourced to geographically distant
groups residing in other countries. Main influencing factors
for offshoring IT has been examined by Agrawal et al. [1].
The trend of offshoring is discussed and they found that
American organizations plan to increase these activities in
the future. Agrawal et al. recommend an inclusion of off-
shoring activities in IT curricula.

Culture, and its difference between distributed software
development teams, can be a major source for misunder-
standing. Hofstede et al. has written extensively about dif-
ferences in cultural dimension, such as power distance, in-
dividualism vs. collectivism, uncertainty avoidance, long-
term vs. short-term orientation, indulgence vs. restraint, and
assertiveness vs. cooperation (the latter referred by Hofstede
as masculinity vs. femininity) [2].

Hall and Hall published work that introduced the con-
cept of high-context and low-context cultures [3]. West-
ern cultures have tendencies towards low-context culture,
whereas Asian cultures tend to be high-context. In low-
context cultures, such as in Germany, communication is
conducted more direct and verbose. Words explicitly written
and spoken are to be taken literally. In high-context cultures,
such as Japan, non-verbal cues including gestures, body lan-
guage, and interpersonal relationships have to be taken into
consideration and can be more important than written or
spoken words.

Unique circumstances for the instructors of GSE edu-
cation have to be expected for every new course. One factor
that can widely vary is the number of students enrolled on
each side. While some aspects can be compensated, careful
planning at the beginning of a project is necessary to ensure
adequate learning outcomes [4], [5].

The benefit of empirical studies that emphasize the
pedagogical challenges and values are formulated by Carver
et al. in cost and benefit analyses with strategies to fully uti-
lize these studies [6].

This paper reflects on three different team structures of
global software engineering education over a period of four
years between a Japanese and German university. An em-
pirical analysis of lessons learned and best practices are pre-
sented for these team structures: balanced, where the num-
ber of students either in Germany and Japan is not more than

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



MARUTSCHKE et al.: BALANCED, UNBALANCES, AND ONE-SIDED DISTRIBUTED TEAMS - AN EMPIRICAL VIEW ON GSE EDUCATION
3

double their counterpart, unbalanced, where the number of
students on one side is more than double their counterpart,
and one-sided, where there were no students on one side.

The rest of the paper is structured in five parts. The
following Sect. 2 covers previous works. Section 3 de-
scribes the framework, in which the global software en-
gineering education was conducted with detailing learn-
ing goals (Sect. 3.1), CDIO (Conceive-Design-Implement-
Operate) guidelines (Sect. 3.2), and project-based course
structure (Sect. 3.3). An empirical analysis of three differ-
ent types of team structures are provided in Sect. 5, with the
balanced team structure in Sect. 5.1, the unbalanced team
structure in Sect. 5.2, and the one-sided team structure in
Sect. 5.3. Results of the three team structures, reoccurring
experiences, and student surveys and insights gathered from
their perceived importance of GSE factors are reported in
Sect. 6. The paper concludes in Sect. 7 and lays out future
implications.

2. Related Work

Global software engineering education posed many difficul-
ties and has been the research focus for a number of authors.
Beecham et al. have written a comprehensive literature re-
view on 82 articles to identify major challenges in GSE
education [7]. Many of these challenges are also faced in
real-world projects, where others are unique to teaching dis-
tributed software development: global distance, teamwork,
soft issues, stakeholder roles, infrastructure, the develop-
ment process, curriculum, and pedagogy. Schneider et al.
reviewed 330 papers to map out strategies and solutions for
GSE in the industry [8].

A study by Paasivaara et al. discusses the experience
with a cooperative course taught by universities in Finland
and Canada, where students had the opportunity to work
with single-site and cross-site teams [9]. Here, no signif-
icant differences were found between the two team struc-
tures. Their suggestion is the use of Scrum bridging the
gaps in team differences.

When older and younger students are mixed in self-
organizing teams, older students preferred to divide project
tasks based on architecture and to form co-located groups.
Younger students on the other hand tended to form cross-
site teams on their perceived abilities, leading to an im-
proved project performance. Bosnić and Čavrak laid out
their findings, underlining the importance of teaching stu-
dents to work in cross-site teams [10]. Further investigations
by Bosnić et al. focused on analyzing the impact of diversity
on three aspects of distributed course organization: institu-
tions, teaching, and projects. As one of their recommen-
dations is to develop a common baseline vie MoUs (Mem-
orandum of Understanding) to deal with institutional dif-
ferences, such as number of credit points, grading, course
structure, and others. They also issue a caution for the
teaching side, that instructors would have to expect varying
circumstances that would need different approaches every
year [4]. With this, they acknowledge that inter-university

cooperative courses must often expect and accept the fact
that a different number of students would take GSE courses
each year. Where the number is not equal, they experienced
low project success and had to re-run project proposals and
were not able to adequately support many of the learning
goals.

Different instruction methods were classified by Clear
and Beecham with their continuum model of GSE educa-
tion [11]. Fully immersive courses, often based on project-
based learning, are classified as the most demanding on both
the instructors and students. Well implemented distributed
courses that involve two ore more universities’ collaboration
are placed towards the top of the continuum. Other classes
with lower efforts, such as case studies, exercises, role-play,
and simulations can be conducted as single courses in the
classroom.

Hoda et al. stressed the importance of learning to deal
with diverse languages, concepts of time, and assumptions
about culture [12]. How the nature of time can be perceived
differently is described by Hall with the M-time—time as a
series of distinct, monochromatic units—and P-time—time
as fluid and polychromatic [3]. Hoda et el. define seven di-
mensions of socio-cultural distance, causing the most signif-
icant changes in their course: language differences, concept
of time, attitude towards grades, assumptions about national
culture, differences in autonomy, influence of the course lec-
turer, and work habits.

3. Educational Framework of Global Software Engi-
neering

How knowledge and experience are managed in GSE ed-
ucation require careful considerations. Learning goals and
learning environment have to match for a successful out-
come [7], [8].

This paper’s research is motivated by (global) soft-
ware engineering education generally lagging behind soft-
ware development practices. Global software engineering
education is still uncommon in higher education, as it re-
quires more work from all sides, traditional class structures
are largely irrelevant, and most attempts fail. The research
objective is to investigate preferred formal class organiza-
tions for global software engineering education.

Students have to understand key problems in dis-
tributed software system development. They have to han-
dle tools for distributed collaboration, such as cloud plat-
forms, video conferencing software, agile tools, such as Jira.
Technical knowledge must be experienced, such as univer-
sally understood concepts (UML, state-diagram, flow-chart,
etc.), good programming practices, and modern practices of
software engineering. Management methods for distributed
project groups and distributed agile methods have to be
worked with. On an intercultural level, communication with
project members from different countries must be faced. All
has to be operated in an ethical scheme to foster team com-
munication, information exchange, and respect.



4
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

3.1 Learning Goals

There are two learning objectives for global software engi-
neering: 1. increasing knowledge about technical skills re-
lated to GSE and 2. honing non-technical skills related to
intercultural collaboration.

As described by Colomo-Palacios et al., students of
GSE education should learn a number of technical skills:
requirements engineering, engineering design (UML, state-
diagram, etc.), software construction, testing maintenance,
configuration management, quality management, tools and
methods, and software engineering process models, such as
phase-based or agile development models [13]. While these
build a strong foundation for software engineering, chang-
ing industry needs have to be accommodated in regular cur-
ricula updates. Technical skills are a necessary foundation
for a career in software engineering, Joseph et al. claim that
these skills alone are not sufficient for success in an IT ca-
reer [14]. Thus, even with covering technical skills, the need
for software engineering, and especially for global software
engineering are not met. A balanced strategy is needed to
put into action a merged approach of technical and non-
technical skills.

Identifying non-technical skills may depend on the cul-
tures involved and the environment a project is being orga-
nized. Several authors have conducted studies on this topic
to determine the skills that students should master for global
software engineering. The importance of controlling geo-
graphical distance, collaboration and learning to work to-
gether as a distributed team, and coordinating distributed
software development processes are stressed by Beecham
et al. and Clear et al. [5], [7]. A shift from acquiring knowl-
edge to the mastery of skills might be necessary in an in-
creasingly globalized working landscape and for sustainable
development. Damasevicius et al. affirm this from a long-
term view on learning [15].

3.2 CDIO Guidelines

To have a guided approach to software engineering, the GSE
course is structured following the Conceive, Design, Imple-
ment, and Operate (CDIO) stages [16]–[18]. To be able to
cover all aspects of a real-world development scenario, an
overlap of around 12 weeks with the collaborating universi-
ties is necessary. To adopt these stages effectively, the over-
lapping weeks are divided into design phase and prototype
phase. This helps students to finish either with a woking pro-
totype or a concept demonstration. Topics that are covered
include: software lifecycle and its models; quality manage-
ment, process improvement techniques in virtual teams and
distributed projects; modern practices and future trends in
software development; socio-technical systems, outsourcing
and global software development; advanced techniques of
requirement elicitation; software project management, mod-
ern approaches to management, risks and risk management
in software development projects; advanced techniques of

software development, i.e., software reuse, reference archi-
tecture, open source software; software testing and valida-
tion, modern approaches to software testing and certifica-
tion; software product documentation, software document-
ing tools, Unified Modeling Language (UML).

The importance of requirements engineering and val-
idation are stressed by Crawley et al. [19]. Where re-
quirements engineering and updating specifications are done
throughout the semester, the validation is done during the
students final presentation or final written report.

3.3 Project-Based Learning

The role of student-centric teaching has been growing in
engineering education. With the need to resemble scenar-
ios that are close to experiences in the industry, concepts
like problem-based and project-based learning resurfaced in
software engineering education. Although the two terms
are often used interchangeably, there are significant differ-
ences. Savery frames Project-Based Learning as being ex-
ternally defined as the desired end product, rather than the
Problem-Based Learning, which allows the students to de-
fine project specifications intrinsically. As software engi-
neering project descriptions and constraints are usually de-
fined by the customer, the GSE classes were taught using
Project-Based Learning. The use of this format has been
reported to be highly effective in teaching global software
engineering [7], [8], [20]–[23].

The learning success of using a project-based learn-
ing environment for GSE education depends on well im-
plemented guidelines by instructors. A disciplined plan-
ning phase of instructors from all sides is required, as well
as a high degree of guidance and oversight throughout the
project.

Students were typically assigned to work on a concrete
project for a real-world customer. The four projects that are
described in this paper were a customer loyalty system for
an Irish pub, an e-voting system prototype, a university lab-
oratory scheduling and management system, and an elevator
scheduling and optimization system. While the frameworks
for each were provided by the instructors, specifications and
requirements had to be identified, defined, and analyzed by
the students.

4. Research Method

Factors that students evaluated by their perceived influence
on global software engineering in 2017/18 are listed below.
The questionnaire was handed out after the semester project
had concluded. The following seven factors for the ques-
tionnaire are based on the extensive research of Hofstede
et al. [2].

Initial factors: Geographical distance, Time zone dif-
ference, Language differences, Proficiency in shared lan-
guage, Cultural differences, Familiarity between teams,
Trust between teams.

Based on the instructors’ previous research and com-



MARUTSCHKE et al.: BALANCED, UNBALANCES, AND ONE-SIDED DISTRIBUTED TEAMS - AN EMPIRICAL VIEW ON GSE EDUCATION
5

bined experiences of more than 20 years in teaching global
software engineering, factors added to the list from 2018/19
onward are as follows.

Added factors: Transparency and accountability, Com-
munication between teams, Software and hardware tools,
Leadership.

All 11 factors were surveyed with an ex-ante (before
the semester) and ex-post (after the semester) questionnaire.

The questionnaire style in 2017/18 and 2018/19 was
adopted from previous research on the German side and
asked students to rank factors by their importance (from one
to seven in the former and from one to 11 in the latter).
This lead to occasional confusion or unusable results, as a
rank was misunderstood as a scale, resulting in duplicate or
skipped ranks. In 2019/20 and 2020/21, the questionnaire
was redesigned with a five-step Likert scale for each factor,
ranging from not impactful to very impactful.

The ex-ante and ex-post approaches enable to also ob-
serve a shift in perception from expectations before the
project and an experience report after completion.

The process model follows the software reuse develop-
ment, where students assembled working prototypes mainly
from existing components. For reference, other popular
software life cycle models like the waterfall model, evolu-
tionary development, and formal system development are
covered in theory.

5. Empirical Analysis of Team Structures

The global software engineering course taught at the
Nuremberg Institute of Technology in Germany and at
Ritsumeikan University in Japan has been successfully con-
ducted for four years. Within this period, three different
course structures emerged out of necessity due to varying
number of students on both side. The first two years were
experienced in a balanced way, where the number of stu-
dents was similar on each sides. In 2019/20, the numbers
were highly unbalanced with 28 students in Germany and
4 students in Japan. In 2020/21, there was again a large
number of students in Germany, but no students in Japan,
resulting in a one-sided team structure. Table 1 shows the
numbers for each year and the resulting team structure. It
is to note that students in Germany tend to be more ho-
mogeneous (mostly German) and the students in Japan het-
erogeneous (from Asian countries, typically China, Korea,
Vietnam, and Japan) as part of international master’s pro-
gram. Students are part of the Information Science and En-
gineering department in Japan and the Computer Science
department in Germany.

During the years 2017/18 to 2019/20 with students
enrolled in both universities, one instructor in Japan gave
weekly mini-lectures, participated by all members in Ger-
many and Japan. The rest of the 90-minute class was used
for communications between team members, with instruc-
tors on both sides observing, giving support and standing
by for questions. In 2020/21, the lesson time was used to
communicate with the customer, whose role the instructor

Table 1 Number of students by year and resulting team structure.

2017/18 2018/19 2019/20 2020/21
Germany 7 9 28 20
Japan 7 5 4 0
Structure Balanced Balanced Unbalanced One-sided

in Japan took over. A second instructor in Japan joined on a
voluntary basis and kept lesson minutes (protocol) and gath-
ered insights from the Japanese and German side regarding
the GSE projects.

Through the four years, all students in Germany and
Japan successfully finished the course. One student had to
withdraw during the Covid-19 pandemic.

In the years except for 2019/20, students met weekly
with the client during class (see Sects. 5.1 and 5.3). All cus-
tomers thus far were located in Japan. In 2019/20, only stu-
dents in Japan had access to the clients (university profes-
sors leading a laboratory), as they were assigned the role of
the requirements engineering office (see Sect. 5.2). Students
would meet at least once a week with clients, in some cases
more than once after consulting with the development team
in Germany.

The GSE courses were conducted in the winter
semesters (fall semester in Japan) of 2017/18 to 2020/21.
This section describes the different projects, their character-
istics, and the empirical findings from the different experi-
ences.

5.1 Balanced Team Structure

In 2017/18, students were assigned to develop a prototype
of a loyalty system for an Irish pub operating in Japan.
Two competing teams opted for different approached to this
task. One team took a future-oriented route and developed
a prototype programmed in Python based on the Microsoft
Azure’s platform. The other team chose the reliability of
proven technology and demonstrated a simple, reliable, and
low cost barcode-based system running on smart-phones.
Difficulties in the beginning arose from communicating with
the client and correctly understanding her needs and wishes.
One obstacle was identified as a lack of dialogue on a non-
technical plane. Another was the difficulty in understanding,
i.e., translating the client’s propositions into the technical
domain. It was challenging for students to take lectures on
cultural dimensions seriously, as they might feel more com-
fortable with problems they can assert some control over [2].

The following year 2018/19, students developed a con-
cept for an e-voting system. Two cross-site teams were
formed, each composed of two/three members from Japan
and five/four members from Germany, respectively. Each
team worked on developing their own prototype solution,
which was presented to an independent customer at the end
of the semester. One team developed a low-cost proto-
type which was based on a combination of analog mail,
a personal ID card and asymmetric cryptography for user
authentication. The second group developed a prototype
based on innovative blockchain technology. Students ini-



6
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

tially had quite a bit of difficulty communicating with their
remote counterparts in the other country. Challenges which
could be anticipated, such as time differences between Japan
and Germany, were handled quite well. Language difficul-
ties, although also expected, were not so easily overcome.
Switching from verbal communication to text chats greatly
improved understanding between team members in differ-
ence countries.

5.2 Unbalanced Team Structure

In 2019/20, a scheduling and management system for a
Japanese university laboratory was prototyped. The num-
ber of students was seven times higher in Germany than
in Japan, which made a separation into evenly spread-out
teams unfeasible. Instead, students in Japan were assigned
the role of a requirements engineering office (team) that
consulted with four different development teams in Ger-
many. To even out the responsibility, each of the students
in Japan was made accountable for a team in Germany.
German students initially expressed their unhappiness to as-
sume the “inferior” role, as they were confronted with their
own stereotypes that Germany, as an industrialized country,
should assume the role of the requirements engineers. This
sentiment was reported similarly by Vallon et al., where the
Indian team would have preferred to play the role of the de-
velopers rather than the customers [24].

5.3 One-Sided Team Structure

The latest project in 2020/21 was the development of an ele-
vator optimization platform that allowed to adapt to different
circumstances, such as capacity of a building, time of day,
elevator count, and a Covid-19-mode. Goals were defined as
minimizing waiting time, minimizing the number of occu-
pants, all without disproportionately increasing the energy
consumption.

As the course lacked the minimum number of students
on the Japanese side, the instructors faced a one-sided team
structure with 20 students on the German side and zero in
Japan. Instructors in Japan took over the role of the cus-
tomer, with three teams in Germany.

6. Results

(1) Balanced team structure:

In terms of the teaching experiences, these two did not pro-
vide significant insights. Balanced team structures are most
common and there are many theoretical frameworks to de-
pend on as well as ample empirical research. Each new
project, however, comes with its unique dynamics and in-
structors have to adjust lecturing and advising students ac-
cordingly.

(2) Unbalanced team structure:

Early on, students realized that both the German and

Japanese sides worked with different contextual back-
grounds. This became apparent when students in Japan re-
ferred to elements commonly known about Japanese univer-
sities’ laboratory environments, i.e., students being assigned
to a laboratory with one leading professor and other instruc-
tors. Regular seminars, meetings, and students’ responsibil-
ity to study at their designated desks were factors to consider
in the prototype.

A unique aspect noticeable was the competitiveness of
different teams leading to secrecy between German teams.

A successful GSE class could be realized by assign-
ing the side with a smaller student number the role of a re-
quirements engineering team and divide the larger side into
teams with 7 ± 2 students. Research shows a correlation
between team size and productivity and suggest more than
three members for increased performance with teams larger
than nine diminishing in productivity [25], [26].

(3) One-sided team structure:

Due to the Covid-19 pandemic, students in Germany were
forced to participate remotely. This seemed to have ad-
vantageous effects on organization and productivity. This
could be a consideration for future GSE classes. Even with
face-to-face classes, artificially imposed restrictions to on-
line participation could have similar positive effects. On the
other hand, students were already used to online learning en-
vironment from the summer semester. Without this routine
and the accompanying technological advances, this format
would have been difficult.

In this class, students with experience in software de-
velopment and agile developments, such as Scrum from
work. Four to five students were the main drivers and took
decisive leadership to help and compensate for weaker par-
ticipants. Students were also more homogeneous, which
removed language difficulties between on-site teams. Stu-
dents formed three teams with different objective to con-
tribute to the final product: Controller, Simulation, and Traf-
fic Generation. The elevator optimization solution was im-
plemented by using genetic algorithm, simulated annealing,
and greedy algorithm with the option for the user to compare
and choose.

One effect that could be observed was that presenta-
tions lacked a structured science and engineering style for-
mat. This could be explained by the lack of a team in Japan.
The laboratory and seminar style in Japanese universities
train students in consistent engineering presentations.

6.1 Reoccurring Experiences

There are certain themes that the instructors of the German-
Japanese GSE courses could observe over the years. Dy-
namics of group forming was mostly independent of the cul-
ture and project could be observed on each side where teams
had to work together. According to Tuckman, teams work
through four stages: forming, storming, norming, and per-
forming [27]. Students are initially unsure of the team’s and
project’s purpose and they need to form their team identity.



MARUTSCHKE et al.: BALANCED, UNBALANCES, AND ONE-SIDED DISTRIBUTED TEAMS - AN EMPIRICAL VIEW ON GSE EDUCATION
7

In the storming phase, members tend to establish their per-
ceived role, which can lead to conflicts. With time, teams ar-
range themselves when members resolve conflicts and find
their roles. In the last stage, productivity is visible by most
students working together towards a common goal. In the
case of the four GSE courses, teams took typically three to
four joint weeks to realize that only persistent work leads to
an adequate result and students significantly intensified their
efforts. The German teams usually work very task-oriented
from the beginning of a project. A very direct communi-
cation style can be viewed as impolite by collectivist East
Asian societies [2]. To mend the rift in team harmony, team
building time was necessary in the beginning phase.

Taking team dynamics into account, constructive but
decisive criticism around the middle of the semester as well
as at the end of the semester seemed to not only boost the
project outcome, but also increase the involvement of stu-
dents otherwise operating in the background. Prolonged
break periods should also be taken into account. In the case
of the winter semester, the Christmas and winter break can
pose a hazard for performance decline.

Pitfalls of previous projects are discussed with students
at the beginning of the semester. Many of the same issues,
however, present themselves during the semester, which
were found to be a good way for students to connect the
theoretical lecture with actually facing a problem.

A peculiar reoccurrence was seen in the first three
years, where in the first third of the semester, students on
each side voiced concern about the respective distributed
team’s English proficiency. The instructors consult at this
stage with the students to point out ways to bridge language
discrepancies by incorporating universal technical language
and diagrams.

With an individualistic low-context culture in Germany
and a collectivist high-context culture in Japan, the power
distance between professors and students had different im-
pact on students. A low power distance in Germany and
a high power distance in Japan had to be compensated by
the respective instructor. With this experience, students ex-
pressed the opinion at the end of the semester, that the dis-
tributed, project-based class more closely reflected a real-
world scenario.

The scenarios described in this paper and according to
Bosnič’s findings, instructors need to be prepared to find
flexible solutions to unforeseen problems [4]. While the dif-
ferent team structures covered in this research can be applied
as a framework solution, a multitude of minor changes need
to be addressed with each project. The group dynamic of
students also requires individual attention, as does the in-
evitable evolution of this dynamic throughout the semester.

Different institutions follow slightly different semester
and academic year schedules. For a successful outcome
of global software engineering education, an overlap of 12
weeks has been proven to be adequate. An in-person meet-
ing of instructors or the introduction via a dependable con-
tact greatly solidifies trust in the establishment of a GSE
collaboration. Planning for a new (but based on continued

Table 2 Participation rate of the ex-ante and ex-post questionnaires.

2018/19 2019/20 2020/21
Germany before 9 25 9
Germany after 9 20 8
Japan before 5 4 Na
Japan after 5 4 Na

Fig. 1 Scatter plot of the shifts from before to after the GSE project in
the 2018/19 semester.

collaboration) GSE class should be planned towards the end
of the previous semester.

6.2 Survey Results

Students were surveyed using anonymous questionnaires to
better understand their observation and experience of GSE
related factors.

The participation rate is detailed in Table 2, contrasting
the number of students before the start of the project and af-
ter completion in Germany and Japan. Figures 1–3 visualize
the perceptual shift of students from before starting the GSE
project to after completion. Values are the differences of
the means of the ex-ante and ex-post questionnaire results.
Quadrant 1 indicates factors that have risen in importance
for both the German as well as the Japanese side. Quad-
rant 2 shows an increase on the German side, but a decrease
on the Japanese side. Quadrant 3 points to a perceptual de-
crease of factors for both German and Japan-based students.
Quadrant 4 indicates an increase on the Japanese side, but a
decrease on the German side.

Nine students from Germany and five students from
Japan participated in both the ex-ante and ex-post question-
naires of 2018/19. Results are shown in Fig. 1. Due to a
ranking of the factors, numerical values ranged from 1 to
11. The biggest absolute change on the German side was
for software and hardware tools. Students were enthusias-
tic about tools in the beginning of the semester and hoped
to overcome geographic or language barriers with these.
On the Japanese side, the largest two factors were famil-
iarity between teams, which experienced the largest posi-
tive change, and leadership, which dropped in importance
the most. The biggest joint increase could be observed in
cultural differences and geographic distance. Students ex-
pressed the opinion that working in a cross-site teams de-



8
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Fig. 2 Scatter plot of the shifts from before to after the GSE project in
the 2019/20 semester.

creased the amount of communication necessary. Students
communicated synchronous during lecture hours and asyn-
chronously during the week. Adverse effects could be no-
ticed by students during the semester and are factors to look
out for. Students typically reported that they valued expe-
riencing cultural differences as a better learning experience
than instructor-based lectures.

In 2019/20, 25 students filled out the ex-ante question-
naire, but this number dropped to 20 students for the ex-post
questionnaire. All four students in Japan took both question-
naires. Results are shown in Fig. 2. The questionnaires had
been changed to incorporate a five-point Likert scale with
1: not impactful to 5: very impactful. While no factor fell
into quadrant 1 (positive for German and Japan-based stu-
dents), the largest common decrease could be noted in soft-
ware and hardware tools and trust between teams. The hope
for reliance on technical tools is a common thread, where
students realize there is no shortcut for joint work. While
trust between teams is known to be an important factor in
software development, the decrease could point to a suc-
cessful, yet stressful project. For the students in Japan, com-
munication between teams and leadership was deemed more
important in retrospect, with a slight to negligible decrease
on the German side. Proficiency in shared language had a
significant increase for German students, where there was
no shift on the Japanese side. Two factors had the German
and Japanese side shift in opposite directions: cultural dif-
ferences and language differences. German students viewed
this more impactful at the end of the semester, students in
Japan perceived it significantly less important. This indi-
cates the homogeneous teams in Germany with less day-
to-day language challenges and more homogeneous teams
in Japan, with regular encounter with cultural and language
barriers. The discrepancy between Fig. 1 and Fig. 2 could
be explained by the different team structures or heterogene-
ity in participants and needs further investigation.

The number of participants in both the before and af-
ter questionnaire was lower, with nine in the beginning and
eight in the end of the semester 2020/21. As all forms of
contact was done remotely, the lower psychological pres-
sure of physical attendance is a likely explanation for this.
Results are shown in Fig. 3. The results are numerically

Fig. 3 Shift from before to after the GSE project in the 2020/21 semester
visualized.

comparable with the previous year and for that reason kept
in similar graphical form. Interpretations for the concept
of teams, however, should be viewed according to the one-
sided team structure. Students formed three collaborating
development teams, which operated remotely (distributed),
but in the same timezone and cultural context. Other GSE
factors can be viewed as related to communication with the
customer in Japan. Trust between teams, communication
between teams, and familiarity between teams were con-
sidered more impactful after the completion of the project,
which denotes increased cohesion and performance of the
teams at the end of the semester. The difference in lan-
guage had a positive shift in importance, but the proficiency
in shared language experienced a drop. Using a non-native
language to work on projects influenced the GSE collabora-
tion more than originally imagined, whereas the actual pro-
ficiency was deemed less important than expected. The use
of presentations and demonstrations could explain this dy-
namic.

7. Conclusions

A number of conclusions can be drawn from the empir-
ical reports of three different distributed team structures.
Virtual, collaborative courses distributed in two countries
with varying structures are a realistic alternative to teach
global software engineering. However, instructors have to
be prepared to find flexible solutions to unanticipated com-
plications. Long-term collaborations with distributed teams
should be planned with institutional rules of partnering uni-
versities in advance. Students should have adequate time
throughout the semester to work on a project with their
cross-site partners. At least 12 weeks that overlap with 90
minutes each week give students the necessary conditions to
collaborate on large projects in a meaningful way. Differing
credit points at each institution can be compensated by al-
lowing the local instructor at each university to follow their
grading criteria and assign grades to their own students.

A project-based approach in combination with a well
organized curriculum is necessary for successful global
software engineering education. Constant guidance and
feedback to students by the instructors keep distributed



MARUTSCHKE et al.: BALANCED, UNBALANCES, AND ONE-SIDED DISTRIBUTED TEAMS - AN EMPIRICAL VIEW ON GSE EDUCATION
9

projects on track. Regular emphasis on universally under-
stood concepts, such as good programming practices, UML,
flowcharts, diagrams, and others keep students on track for
a project.

Cultural differences, such as high or low power dis-
tance have to be taken into consideration, especially when
projects include students from individualistic and collec-
tivist cultures. To make trust a conscious subject matter,
team building and trust exercises can be implemented in the
beginning of the semester. This can help to keep the perfor-
mance on a high level.

The communication between instructors is a key com-
ponent for successful long-term collaborations. Regular
meetings both virtual and, if possible in person, build a
trust-based foundation. During this GSE collaboration, the
authors found that various challenges were confidently han-
dled thanks to the mutual trust that has been established over
the years. Trust between the authors also made it possible to
risk untried solutions.

The latest GSE class was conducted during the winter
semester of 2020/21 during the Covid-19 pandemic. De-
spite the lockdown-imposed limitations, the outcome of this
project was on a very high level and a few separate obser-
vations and possible implications for future distributed soft-
ware development can be reported. Further research is nec-
essary to investigate if overall performance can be enhanced
by artificially imposing remote work. Although this theoret-
ical framework is not new, this was the first real-world trial.
A hybrid architecture should also be investigated, to see the
impact of physical teams, virtual teams, and their balance of
each other.

Reoccurring pattern could be observed in each GSE
class, independent from the course structure. Anticipating
the stages in team forming, cultural differences, necessary
intervention, and others can strengthen the foundation for
successful global software engineering. At the same time,
the knowledge of these patterns reduces stress and frustra-
tion for the students and instructors.

References

[1] V.K. Agrawal, V.K. Agrawal, A.R. Taylor, and S. Seshadri, “Off-
shoring it services: Influencing factors,” Journal of Management
Policy and Practice, vol.20, no.3, Sept. 2019.

[2] G. Hofstede, G.J. Hofstede, and M. Minkov, Cultures and Organiza-
tions: Software of the Mind, 3rd Edition, McGraw-Hill, 2010.

[3] E. Hall and M. Hall, Hidden Differences: Doing Business with the
Japanese, Anchor Press/Doubleday, 1987.

[4] I. Bosnić, F. Ciccozzi, I. Crnković, I. Čavrak, E.D. Nitto, R.
Mirandola, and M. Žagar, “Managing diversity in distributed soft-
ware development education—a longitudinal case study,” ACM
Trans. Comput. Educ., vol.19, no.2, Jan. 2019.

[5] T. Clear, S. Beecham, J. Barr, M. Daniels, R. McDermott, M.
Oudshoorn, A. Savickaite, and J. Noll, “Challenges and Recommen-
dations for the Design and Conduct of Global Software Engineering
Courses: A Systematic Review,” Proceedings of the 2015 ITiCSE on
Working Group Reports, NY, pp.1–39, ACM, 2015.

[6] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using
students in empirical studies in software engineering education,”
Proceedings. 5th International Workshop on Enterprise Network-

ing and Computing in Healthcare Industry (IEEE Cat. no.03EX717),
pp.239–249, 2003.

[7] S. Beecham, T. Clear, J. Barr, M. Daniels, M. Oudshoorn, and
J. Noll, “Preparing Tomorrow’s Software Engineers for Work in a
Global Environment,” IEEE Softw., vol.34, no.1, pp.9–12, 2017.

[8] S. Schneider, R. Torkar, and T. Gorschek, “Solutions in global
software engineering: A systematic literature review,” International
Journal of Information Management, vol.33, no.1, pp.119–132, Feb.
2013.

[9] M. Paasivara, K. Blincoe, C. Laasenius, D. Damien, J. Sheoran,
F. Harrison, P. Chhabra, A. Yussuf, and V. Isotao, “Learning
Global Agile Software Engineering Using Same-Site and Cross-Site
Teams,” Proceedings of 37th International Conference on Software
Engineering (ICSE 15), pp.285–294, IEEE, 2015.

[10] I. Bosnić and I. Čavrak, “Project work division in agile distributed
student teams-who develops what?,” ACM/IEEE 14th International
Conference on Global Software Engineering, 2019.

[11] T. Clear and S. Beecham, “Global software engineering education
practice continuum,” Special Issue of the ACM Transactions on
Computing Education., vol.19, no.2, pp.1–8, Jan. 2019.

[12] R. Hoda, M.A. Babar, Y. Shastri, and H. Yaqoob, “Socio-Cultural
Challenges in Global Software Engineering Education,” IEEE Trans.
Educ., vol.60, no.3, pp.173–182, 2017.

[13] R. Colomo-Palacios, E. Tovar-Caro, Á. Garcı́a-Crespo, and J.M.
Gómez-Berbı́s, “Identifying technical competences of it profession-
als: The case of software engineers,” International Journal of Hu-
man Capital and Information Technology Professionals, vol.1, no.1,
pp.31–43, 2010.

[14] D. Joseph, S. Ang, R.H.L. Chang, and S.A. Slaughter, “Practical
intelligence in it: Assessing soft skills of it professionals,” Commun.
ACM, vol.53, no.2, pp.149–154, Feb. 2010.

[15] R. Damaševičius, R. Maskeliūnas, and T. Blažauskas, “Faster
pedagogical framework for steam education based on educational
robotics,” International Journal of Engineering and Technology,
vol.7, no.2.28, pp.138–142, SPC, 2018.

[16] T. Ding, “Construction and exploration of university software engi-
neering teaching system based on cdio educational concept,” Fron-
tiers in Educational Research, vol.3, no.9, pp.44–48, 2020.

[17] G. Rechistov and A. Plotkin, “Computer engineering educational
projects of MIPT-intel laboratory in the context of CDIO,” Pro-
ceedings of the 10th International CDIO Conference, Universitat
Polit‘ecnica de Catalunya, pp.1–10, June 16–19 2014.

[18] E.F. Crawley and D.R.B. Malmqvist, William A. Lucas, “The cdio
syllabus v2.0 an updated statement of goals for engineering educa-
tion,” Proceedings of the 7th International CDIO Conference, Tech-
nical University of Denmark, Copenhagen, pp.47–83, June 20–23
2011.

[19] E.F. Crawley, J. Malmqvist, S. Östlund, D.R. Brodeur, and K.
Edström, Rethinking Engineering Education: The CDIO Approach,
Springer Nature Switzerland AG, 2020.

[20] D. Jiang and J. Lin, “Project-Based Learning with Step-Up Method
—Take CDIO Abilities Cultivation in Computer Specialty for Ex-
ample,” Proceedings of the 8th International CDIO Conference,
Queensland University of Technology, pp.1–7, 2012.

[21] A.N. Rodrigues and S.C. dos Santos, “A Framework for Applying
Problem-Based Learning to Computing Education,” Proceedings of
Frontiers in Education Conference (FIE 2016), IEEE, 2016.

[22] J.M. Olivares-Ceja, B.G. Sanchez, P. Brockmann, A. Kress, and
J. Staufer, “Project-Based Learning in an International Classroom
to Teach Global Software Engineering,” Proceedings of Interna-
tional Conference on Education and New Learning Technologies
(EDULEARN17), pp.6263–6273, IATED, 2017.

[23] A.-K. Peters, W. Hussain, A. Cajander, T. Clear, and M. Daniels,
“Preparing the Global Software Engineer,” Proceedings of 10th In-
ternational Conference on Global Software Engineering (ICGSE
2015), pp.61–70, IEEE, 2015.

[24] R. Vallon, P. Spiesberger, M. Zoffi, C. Zrelski, C. Dräger, and T.

http://dx.doi.org/10.33423/jmpp.v20i3.2227
http://dx.doi.org/10.1177/002194368902600107
http://dx.doi.org/10.1145/3218310
http://dx.doi.org/10.1145/2858796.2858797
http://dx.doi.org/10.1109/metric.2003.1232471
http://dx.doi.org/10.1109/metric.2003.1232471
http://dx.doi.org/10.1109/ms.2017.16
http://dx.doi.org/10.1016/j.ijinfomgt.2012.06.002
http://dx.doi.org/10.1109/icse.2015.157
http://dx.doi.org/10.1109/icgse.2019.00037
http://dx.doi.org/10.1109/te.2016.2624742
http://dx.doi.org/10.4018/jhcitp.2010091103
http://dx.doi.org/10.1145/1646353.1646391
http://dx.doi.org/10.14419/ijet.v7i2.28.12897
http://www.cdio.org/node/6086
http://www.cdio.org/knowledge-library/documents/project-based-learning-step-method-take-cdio-abilities-cultivation-compu
http://dx.doi.org/10.1109/fie.2016.7757385
http://dx.doi.org/10.21125/edulearn.2017.2420
http://dx.doi.org/10.1109/icgse.2015.20
http://dx.doi.org/10.1109/iceed.2018.8626985


10
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Grechenig, “Teaching global software engineering in a remote cus-
tomer environment,” 2018 IEEE 10th International Conference on
Engineering Education (ICEED), pp.63–68, Nov. 2018.

[25] D. Rodrı́guez, M.A. Sicilia, E. Garcı́a, and R. Harrison, “Empir-
ical findings on team size and productivity in software develop-
ment,” Journal of Systems and Software, vol.85, no.3, pp.562–570,
2012. Novel approaches in the design and implementation of sys-
tems/software architecture.

[26] M. Heričko, A. Živkovič, and I. Rozman, “An approach to optimiz-
ing software development team size,” Information Processing Let-
ters, vol.108, no.3, pp.101–106, 2008.

[27] B.W. Tuckman, “Developmental sequence in small groups,” Psycho-
logical Bulletin, vol.63, no.6, pp.384–399, 1965.

Daniel Moritz Marutschke received his
M.Eng. (2010) in Human Information Science
at Ritsumeikan University and his Ph.D (2014)
in Human Communication and Information Sci-
ence at Kobe University in Japan. He worked as
a lecturer (2014–2019) at the College of Infor-
mation Science and Engineering at Ritsumeikan
University and is currently an associate profes-
sor (since 2019) at the College of Global Liberal
Arts at Ritsumeikan University.

Victor V. Kryssanov received his Ph.D
(1994) from the Russian Academy of Sciences
and his M.S. (1991) from the Far-Eastern Fed-
eral University, Russia. He currently serves as
Professor (since 2009) at the College of Infor-
mation Science and Engineering, Ritsumeikan
University, Japan. Before joining Ritsumeikan
University in 2004, V. Kryssanov was a JSTA
researcher at Kyoto University in 2001–2004, a
JSPS research associate at Kobe University in
1998–2001, and a NEDO guest researcher at

TRI of JSPMI, Tokyo, in 1996–1998. He also worked at the Far-Eastern
Federal University, Russia, in 1991–1995.

Patricia Brockmann received her B.S. de-
gree in Information Systems from the Univer-
sity of Colorado in the U.S.A. She completed
her Diplom (M. Sc.) and doctorate in Informa-
tion Systems at the University of Regensburg in
Germany. Since 1998 she has been a full profes-
sor in the Computer Science Department at the
Nuremberg Institute of Technology in Germany.

http://dx.doi.org/10.1109/iceed.2018.8626985
http://dx.doi.org/10.1016/j.jss.2011.09.009
http://dx.doi.org/10.1016/j.ipl.2008.04.014
http://dx.doi.org/10.1037/h0022100

