1902

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.11 NOVEMBER 2021

| PAPER Special Section on Next-generation Security Applications and Practice

CoLaFUZE: Coverage-Guided and Layout-Aware Fuzzing for

Android Drivers

Tianshi MU', Member, Huabing ZHANG ™, Jian WANG'®, and Huijuan LI'Y, Nonmembers

SUMMARY With the commercialization of 5G mobile phones, An-
droid drivers are increasing rapidly to utilize a large quantity of newly
emerging feature-rich hardware. Most of these drivers are developed by
third-party vendors and lack proper vulnerabilities review, posing a num-
ber of new potential risks to security and privacy. However, the complex-
ity and diversity of Android drivers make the traditional analysis methods
inefficient. For example, the driver-specific argument formats make tradi-
tional syscall fuzzers difficult to generate valid inputs, the pointer-heavy
code makes static analysis results incomplete, and pointer casting hides the
actual type. Triggering code deep in Android drivers remains challenging.
We present CoLaFUZE, a coverage-guided and layout-aware fuzzing tool
for automatically generating valid inputs and exploring the driver code. Co-
LaFUZE employs a kernel module to capture the data copy operation and
redirect it to the fuzzing engine, ensuring that the correct size of the re-
quired data is transferred to the driver. CoLaFUZE leverages dynamic anal-
ysis and symbolic execution to recover the driver interfaces and generates
valid inputs for the interfaces. Furthermore, the seed mutation module of
CoLaFUZE leverages coverage information to achieve better seed quality
and expose bugs deep in the driver. We evaluate CoLaFUZE on 5 modern
Android mobile phones from the top vendors, including Google, Xiaomi,
Samsung, Sony, and Huawei. The results show that CoLaFUZE can ex-
plore more code coverage compared with the state-of-the-art fuzzer, and
CoLaFUZE successfully found 11 vulnerabilities in the testing devices.
key words: driver fuzzing, structure layout, interface recovery

1. Introduction

Mobile phones have become our gateways to the connected
world. If criminals took control of this device, they could
gain enormous power of destruction. Therefore, in order to
ensure the safety and reliability of smartphones, researchers
have made great efforts. This security is achieved by us-
ing a complex application sandbox, which utilizes many at-
tack mitigation techniques for userspace applications, and
by regarding security as the most important indicator during
the development process. However, the kernel has become
one of the weaknesses of the security of mobile phones.
Userspace applications have available protection measures,
but the modern operating system kernel is relatively vul-
nerable even if existing protection measures are applied.
Therefore, as vulnerabilities in userspace applications be-
come more difficult to discover and exploit, attackers begin

Manuscript received February 7, 2021.
Manuscript revised May 11, 2021.
Manuscript publicized July 28, 2021.
"The authors are with the Digital Grid Research Institute,
China Southern Power Grid, China.
a) E-mail: muts@csg.cn
b) E-mail: zhanghuabing@csg.cn
c) E-mail: wangjian3@csg.cn
d) E-mail: lihjl @csg.cn
DOI: 10.1587/transinf.2021NGP0005

to pay attention to kernel vulnerabilities.

The kernel is mainly composed of two types of codes:
core kernel code and device driver code. The core ker-
nel code is accessed through the system calls (syscall), al-
lowing users to read and write files (open and write sys-
tem calls), send and receive messages (send and recv sys-
tem calls) and manage programs (execve, fork, wait system
calls), etc. The driver code on the Android system is usually
accessed through the IOCTL interface. This interface is a
specific system call that allows the device driver to process
the input data.

According to Google’s data report, 85% of the Android
kernel vulnerabilities are located in driver module codes
and developed by third-party device vendors [1]. With the
ever-increasing number of mobile phones and the impor-
tance of their security, methods for automatically discover-
ing these bugs before attackers exploit them are crucial. Al-
though the interaction with syscalls follows a unified func-
tion prototype, the interaction rules with IOCTL depend on
the associated device driver. Specifically, the IOCTL inter-
face contains a set of valid commands and corresponding
structured parameters. The commands and data structures
are determined by the driver developer. This custom, vari-
able, and complex structure brings security risks and makes
these codes difficult to analyze. To be effective, any auto-
matic analysis and interaction of these devices must pro-
vide the command identifiers and data structures expected
by IOCTL.

Thanks to the open source nature of Android [2]-[7],
existing approaches have been proposed by analyzing the
kernel code. Such as DIFUZE [8] has proposed recover-
ing data structures of IOCTL statically. However, DIFUZE
can not handle dynamically generated device names or allo-
cated objects. Furthermore, it lacks coverage information
to guide mutations. Charm [9] ports the Android drivers
to a x86_64 workstation and accesses the physical device
through USB. However, it requires developers to spend days
and weeks porting the driver code. EASIER [10] enables
off-device analysis by creating an ex-vivo dynamic driver
analysis framework for Android devices without porting nor
emulation. Nevertheless, only part of the drivers can be ini-
tialized in the framework, and false positives cause trouble.
Exploring Android driver bugs remains a challenging prob-
lem.

To address this problem, we present CoLaFUZE, a
technique to enable coverage-guided and structure-layout-
aware fuzzing. CoLaFUZE performs an automated dynamic

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers

MU et al.: COLAFUZE: COVERAGE-GUIDED AND LAYOUT-AWARE FUZZING FOR ANDROID DRIVERS

analysis of kernel code to recover the device names and
symbolic execution to recover the specific IOCTL com-
mands, used to trigger the execution of the driver code. Co-
LaFUZE recovers structure layout by handling data copy
operations on the runtime. The fuzzing engine generates the
required size of data and puts them in the desired location,
matching the structure layout. Furthermore, the fuzzing en-
gine leverages the coverage information to guide seed mu-
tation.

In summary, this paper has made 3 separate contribu-
tions:

Layout-aware driver fuzzing. We provide a novel
method to redirect the data copy operations, forward
data flow and recover structure layout during fuzzing.
Coverage-guided driver fuzzing. We present a way
to feedback the kernel KCOV information to userspace
fuzzing engine, enabling the fuzzing engine to mutate
seeds effectively.

CoLaFUZE prototype. We introduce a framework to
recover driver IOCTL interfaces dynamically and de-
velop a fuzzing tool to explore driver code bugs. We
conducted experiments, analyzed 5 mobile phones and
found 11 unique vulnerabilities.

2. Technical Background

In this section, we give a brief introduction of device drivers,
the IOCTL system call, kernel-userspace data copy opera-
tions and code coverage of fuzzing.

2.1 IOCTL System Call

POSIX (Portable Operating System Interface) [11] is a set
of standard operating system interfaces based on the Unix
operating system. It establishes an interface standard for
the interaction between userspace applications and device
drivers, including the IOCTL system call. Through the
TIOCTL system call, the userspace program can issue differ-
ent operation requests to the driver and transmit and receive
formatted information in the form of a structure.
Generally, the prototype IOCTL system call is

int ioctl(int fd, unsigned long request, ...).

The first argument is a file id of an opened device file,
and the second is a request field, a set of command values
set by the driver. Each command corresponds to a unique
feature of the driver. The third parameter is a pointer, which
usually points to a structure defined by the driver developer,
and the structure may change when the command value is
different. The structure may refer to other structures in a
field, causing nested structures. The diversity of IOCTL
system call parameters brings developers the possibility of
implementing rich functions, and at the same time brings
security challenges, attracting many researchers to test and
analyze it [12]-[15].

1903

2.2 Kernel-Userspace Data Copy Operation

A parameter pointer must be provided when the IOCTL
system call is initiated. By copying data to and from
the structure pointed to by the parameter, the driver ex-
changes data with the userspace program. The kernel pro-
vides copy_from_user()/copy-to_user() functions, which ac-
cept the source pointer, destination pointer and the number
of bytes. The driver must use these functions to ensure the
safe copying of data. These functions first perform a secu-
rity check to ensure that the source address and destination
address pointers are in a legal address space.

2.3 Code Coverage

KCOV is a kind of kernel code coverage information used
coverage-guided fuzzing [16]. Userspace programs can ob-
tain kernel coverage data through the “kcov” debugfs file.
Coverage collection is based on task granularity, so the
userspace program can capture the coverage of a single sys-
tem call it initiates. KCOV collects more or less stable cov-
erage instead of collecting as much coverage as possible. To
achieve this goal, it discards the coverage of soft/hard inter-
rupts and disables the detection of certain uncertain parts of
the kernel (such as schedulers, locks). In short, KCOV is
stable and suitable for system call fuzzing.

2.4 12C Driver Example

We take the 12C driver as an example to show how CoLa-
FUZE automatically recovers the reference relation of these
structures and performs layout-aware fuzzing.

I12C is a slow two-wire protocol (variable speed, up
to 400 kHz), with a high-speed extension (3.4 MHz). It
provides an inexpensive bus for connecting many types of
devices with infrequent or low bandwidth communications
needs. 12C is widely used with Android systems.

The driver code is presented in Listing 1 (the structure
definitions), 2 (the function used to duplicate memory re-
gion from userspace), 3 (part of the IOCTL handler func-
tion). As shown in Listing 3, function i2c_ioctl_rdwr first

struct i2c_msg — an I2C transaction segment
struct i2c_msg {

__ul6 addr; /+ slave address

_-ul6 flags;

_-ul6 len; /+ msg length

__u8 =buf; pointer to msg data

)i

R - NV RSO C R

9 [/« This is the structure as used in the I2C_RDWR
10 * ioctl call

11 struct i2c_rdwr_ioctl_data {

12 struct i2c_msg __user s*msgs;

13 [+ pointers to i2c_msgs

14 _-u32 nmsgs; /+ number of i2c_msgs

15 };

Listing 1 The structure definitions used by function i2c_ioctl_rdwr

1904

1 void *memdup_user(const void __user =xsrc, size_t
2 len)

3 |

4 void =p;

5

6 p = kmalloc_track_caller (len, GFP.KERNEL) ;

7 it (1p)

8 return ERR_PTR(-ENOMEM) ;

9

10 if (copy-from_user(p, src, len)) f{

11 kfree(p);

12 return ERR_PTR(-EFAULT) ;

13 }

14

15 return p;

16 }
Listing 2 The function to duplicate memory region from userspace

1 static noinline int i2cdev_ioctl_rdwr (
2 struct i2c._client =client, unsigned long arg)
3 |

4 struct i2c_rdwr_ioctl_data rdwr_arg;

5 struct i2c_msg xrdwr_pa;

6 u8 __user sxdata_ptrs;

7 int i, res;

8
9

if (copy-from_user(&rdwr_arg,

10 (struct i2c_.rdwr_ioctl_data __user =x)arg,
11 sizeof (rdwr_arg)))

12 return —EFAULT;

13

14 /+* Put an arbitrary limit on the number of

15 * messages that can be sent at once x/

16 if (rdwr_arg.nmsgs > I2C_RDWR_IOCTL.MAX_MSGS)
17 return —EINVAL;

18

19 rdwr_pa = memdup_user(rdwr_arg.msgs,

20 rdwr_arg .nmsgs * sizeof (struct i2c_.msg));
21 if (IS_LERR(rdwr_pa))

22 return PTR_ERR(rdwr_pa);

23

24 data_ptrs = kmalloc(rdwr_arg.nmsgs =

25 sizeof (u8 __user =), GFP_.KERNEL) ;

26 if (data_ptrs == NULL) {

27 kfree (rdwr_pa);

28 return -ENOMEM;

29 }

30

31 res = 0;

32 for (i = 0; i < rdwr_arg.nmsgs; i++) {

33 /% Limit the size of the message to a sane
34 * amount x/

35 if (rdwr_pa[i].len > 8192) {

36 res = —EINVAL;

37 break;

38 }

39

40 data_ptrs[i] = (u8 __user =x)rdwr_pa[i].buf;
41 rdwr_pa[i].buf = memdup_user(data_ptrs[i],
2 rdwr_pal[i].len);

43 if (IS.ERR(rdwr_pa[i].buf)) {

44 res = PTR.ERR(rdwr_pa[i].buf);

45 break ;

46 }

47

Listing 3 The handler function of the 2C_RDWR IOCTL call

copies the data from userspace to a local variable rdwr_arg, a
i2c_rdwr_ioctl_data struct (lines 9-11). Then it invokes func-
tion memdup_user to copy data to the buffer rdwr_arg.msgs
with the size of a multiplication result (lines 19-20). Af-
ter it allocates memory space, it enters a loop for fetching
data from userspace (lines 41-42). Notice that, the size of
the second and third data copy operations are both dynamic,
which is beyond the ability of the static method.

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.11 NOVEMBER 2021

Interface Recovery Device Fuzzing

| Recovery Agent I | User-mode Age nt |
Kernel
Source Device Recovery Module ’:ﬂ Copy Forwarder

IQ@I}Q@

Fig.1 The CoLaFUZE approach diagram.

3. Overview

We now provide a high-level overview of the design of Co-
LaFUZE and its practical application to exploring bugs in
Android drivers through IOCTL fuzzing. CoLaFUZE re-
quires the kernel code of the mobile phones, released by the
vendors according to the GNU General Public License.

As shown in Fig. 1, the workflow of CoLaFUZE com-
poses of two stages: interface recovery and device fuzzing.
At the interface recovery stage, CoLaFUZE first uses its
device recovery module and recovery agent to obtain the
device file names and handler functions to be fuzzed from
the kernel space on the fly. Then, CoLaFUZE leverages
the constant solver to perform symbolic execution on the
obtained handler source code and restores the predefined
IOCTL command values.

During the device fuzzing stage, CoLaFUZE uses the
copy forwarder to forward the data copy operations from
userspace of the driver to the fuzzing engine. Thus the
fuzzing data to IOCTL system call is passed through the
copy operations, instead of the third argument, enabling Co-
LaFUZE to feed the driver with the required amount of data,
even if the structure definition is unknown. Then, by com-
paring the source address of data copy operations, the struc-
ture layout can be determined. Also, coverage data can be
obtained and analyzed for seed selection and mutation with
the KCOV module. All the components make CoLaFUZE a
coverage-guided and layout-aware fuzzing framework.

4. Interface Recovery
4.1 Recovery Module and Agent

Linux treats everything as files including hardware devices.
All hardware files are present in the device folder (/dev) as
file-like device nodes which point to different parts of the
system (a device driver). Userspace applications can use
these device nodes to interface with the system hardware.

The first argument of IOCTL is a file descriptor corre-
sponding to an opened file in the device folder. According
to the file descriptor, the IOCTL system call routes the argu-
ments to the drivers.

As shown in Algorithm 1, the recovery module first
acquires a kernel struct fd according to the provided file de-
scriptor. The field file of struct fd is another kernel struct
file. By accessing the field fop in struct file, the corre-

MU et al.: COLAFUZE: COVERAGE-GUIDED AND LAYOUT-AWARE FUZZING FOR ANDROID DRIVERS

sponding struct file_operations is obtained, and then the un-
locked_ioctl function pointer is obtained.

The recovery module is loaded in kernel space, and the
handler address information needs to be transferred to the
userspace. A recovery agent is needed to get the address of
the IOCTL handler to userspace. As shown in Algorithm 2,
firstly, the recovery agent opens the files in the device folder
(/dev) and gets the address of the unlocked_ioctl by calling
the recovery module. Then it searches the address in the
kernel symbol table to get the function name. At last, the
function name is added to an ioctl list. The interactions be-
tween the recovery module and the recovery agnet is shown
in Fig. 2.

With the recovery module and agent, the recovery
agent gets a map from a file name in the device folder (/dev)
to a handler function name (identified in /proc/kallsyms) on
the runtime without analyzing the kernel source code, which
improves the degree of automation of the proposed method.

4.2 Command Value Solver

The second argument of IOCTL is a device-dependent re-
quest code. Recovering IOCTL commands is necessary
since they are usually hard to guess by the fuzzer. Re-
covering the command values is a typical value-set analy-

Algorithm 1 Algorithm of recovery module in kernel

Input: fd: a file descriptor
Output: addr: address of unlocked_ioctl
: struct fd f = fdget(fd) //fdget is a kernel function
: struct file * filp = f.file
: if filp AND filp->f_op then
return filp->f_op->unlocked_ioctl
end if
: return null

U AW~

Algorithm 2 Algorithm of recovery agent in userspace

Input: None

Output: ioctl_list: array of IOCTL function names
1: for all f in dir(/dev) do
2 fd = open(f)
3 addr = recover_module(fd)

4: name = search addr in /proc/kallsyms

5

6:

put name in ioctl_list
end for

Recovery Agent Recovery Module

open

/dev/name struct file
fop
struct
file_operations
search
kallsyms

Fig.2 The interactions between the recovery module and the recovery
agent.

1905

sis [17] problem, which can be done in multiple approaches
like symbolic execution, range analysis, parsing debug in-
formation and pattern matching. We develop a command
value solver based on angr [18], a platform-agnostic binary
analysis framework for program instrumentation, symbolic
execution, control-flow analysis, data-dependency analysis,
value-set analysis (VSA), etc. We notice that the command
value is only used in the device driver code to determine
which operation to take. We extend angr by replacing ker-
nel functions like printk, copy_from_user, copy_to_user, with
custom symbolic implementations. Specifically, we replace
memory allocation functions with custom symbolic memory
allocator. The existing approach to recover IOCTL com-
mand values is based on the common convention of having
a large switch statement inside IOCTL handlers. However,
many drivers use a function table to check the command
value like the drm device driver’. With our command value
solver based on angr, we can do symbolic execution on the
kernel driver module and recover the command value set.

We do not recover the third argument structure defini-
tion for 2 reasons:

1. Statically recovered definitions are not complete, for
pointer casting is frequently used in kernel code, the
variable may be cast to another type on the runtime,
and dynamically allocated objects and arrays are unde-
termined in source code;

2. For structure definitions are various, statically recover-
ing structure must handle various code style of driver
vendors and must be updated when new code is re-
leased, require tools like clang, gcc and a large amount
of time.

As aresult, we make use of code coverage and structure
layout to facilitate seed generation and mutation. Now that
the first two arguments are obtained and used to trigger the
dynamic execution of the driver IOCTL handler in question.

5. Device Fuzzing

The device fuzzing consists of three components: the
fuzzing engine, the user-mode agent and the data copy for-
warder. The fuzzing engine runs in userspace on the anal-
ysis host, which generates inputs, processes the coverage
data and mutates new inputs. The user-mode agent runs in
userspace on the target Android mobile phone, which syn-
chronizes and gathers new inputs from the fuzzing engine
and interacts with the target kernel. The data copy for-
warder is loaded in the Android kernel in the setup stage
and forwards the data copy operation from the driver to the
user-mode agent. The user-mode agent and the data copy
forwarder establish a data path between the fuzzing engine
and the kernel driver. The KCOV module of the kernel is
enabled when the Android system boots.

Figure 3 demonstrates the actions and communica-

Thttps://elixir.bootlin.com/linux/v4.1/source/drivers/ gpu/drm/
drm_ioctl.c

1906

Host Userspace Android Kernel

Android Userspace
L

L
T 1T - n 1
Copy-intercepting Driver Module KCOV

Fuzzing Engine User-mode Agent Module

Initiate o[loctl call

Request Data Copy Request
Generate Data
ForwardData |

LI

Copy to Driver

loctl End

Fetch Coverage Data [Ij

Fig.3 The interactions during a fuzzing round.

Process Coverage|
Data

tion during a fuzzing run. The fuzzing engine first ini-
tiates a request to the user-mode agent with a recov-
ered file name, a recovered command value and a random
value. When receiving parameters, the user-mode agent
launches an IOCTL system call and triggers the handler
function in the kernel driver code. The driver code checks
the command value and tries to fetch the data by calling
copy_from_user_forwarder, implemented in the data copy
forwarder module. The user-mode agent forwards the re-
quest to the fuzzing engine. The fuzzing engine generates
the fuzzing data according to the request size and passes it
to the user-mode agent. The user-mode agent forwards the
data to the data copy forwarder. Then the kernel driver gets
the data to be handled and continues to execute. When the
IOCTL system call returns, the user-mode agent will get the
coverage data from ‘kcov‘ debugfs offered by KCOV and
pass it to the fuzzing engine. The fuzzing engine will pro-
cess the coverage information and determine if the seed is
interesting.

5.1 Fuzzing Engine

The fuzzing engine is the core control component, which
manages the seed queue, recovers the structure layout, pro-
cesses coverage information, schedules the tasks, generates
and mutates seeds. We implemented the fuzzing engine
based on the algorithms proposed by AFL [19]. Unlike the
AFL bitmap, we use KCOV coverage data from the kernel
KCOV module to decide which inputs triggered interesting
behaviors.

Another important feature of the fuzzing engine is that
it recovers the layout of structures dynamically and uses it to
guide the layout-aware seed generation on request. We no-
tice that the Linux kernel provides a family of functions like
copy_from_user to copy data between userspace and kernel
space. A kernel module can not access userspace memory
directly but copy the required memory through this family
of functions. The data copy forwarder forwards this family
of functions to the user-mode agent and again to the fuzzing
engine. In this way, a data channel between the fuzzing en-
gine and the kernel driver in question is established.

At the beginning of a fuzzing run, the fuzzing engine
issues an IOCTL system call with arg set to arbitrary values.

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.11 NOVEMBER 2021

When a data copy operation is forwarded to the fuzzing en-
gine, it generates the desired size of memory dynamically. If
multiple copy operations are received during one fuzz run,
the fuzzing engine is aware that the driver may need a nested
structure to handle the current command. The fuzzing en-
gine then searches the source address of the following copy
operations in previously generated data to identify the struc-
ture pointer offset.

Take the i2c driver as an example. The first field of
struct i2c_rdwr_ioctl_data is a pointer to type struct i2c_msg,
and the second is a 32-bit unsigned type and the number of
i2c_msgs. The field len is a 2-byte unsigned number, in-
dicating the message length. The buf is an unsigned char
pointer, which points to the message data. The structure
layout is shown in Listing 1. To recover this structure
layout, the fuzzing engine first initiates an IOCTL system
call request and sets the file name parameter to /dev/i2c-
0, the command value to 0x80024001 (I2C_RDWR), and
argp to 0x40000000 (a random value). Then the driver
enters function i2cdev_ioctl_rdwr. At line 9 of Listing 3,
the driver tries to copy data from argp (0x40000000) in
userspace. Then the fuzzing engine receives a data re-
quest to copy the 16-byte (sizeof rdwr_arg) data at address
0x40000000. The fuzzing engine dynamically generates a
16-byte (size of rdwr_arg) data array and returns it to the
user-mode agent. The function i2cdev_ioctl_rdwr contin-
ues to line 19 and invokes function memdup_user to du-
plicate memory from userspace. The fuzzing engine re-
ceives data requests to copy x-byte (nmsgs * sizeof i2c_msg)
data. The fuzzing engine dynamically generates a x-byte
(nmsgs * sizeof i2c_msg) data array and returns it to the
user-mode agent. The function i2cdev_ioctl_rdwr contin-
ues to line 41 and invokes function memdup_user to dupli-
cate memory from userspace. Also, the fuzzing engine re-
ceives data requests one by one, requesting to copy n-byte
(rdwr_pa[i].len) data. The fuzzing engine dynamically gen-
erates an n-byte (rdwr_pal[i].len) data array and returns it to
the user-mode agent. Finally, the function i2cdev _ioctl_rdwr
continues to the end and returns. The fuzzing engine records
the generated data and source address of each copy opera-
tion. By comparing the source in the generated data, the
fuzzing engine figures out the nesting relation of the data
structure as shown in the Listing 1.

Note that our approach is insensitive to how the length
was computed or whether it depends on other user input.
Such dependencies can pose a problem to static analysis,
but not for our dynamic recovery method. The fuzzing en-
gine continues this algorithm recursively, which allows it to
allocate the right amount of memory and deal with nested
pointers.

5.2 User-Mode Agent

As the fuzzing engine runs on the host and the driver runs
in the Android kernel. This user-mode agent is required to
facilitate the fuzzing process. In principle, the user-mode
agent must synchronize and forward new inputs from the

MU et al.: COLAFUZE: COVERAGE-GUIDED AND LAYOUT-AWARE FUZZING FOR ANDROID DRIVERS

Algorithm 3 Algorithm of data copy forwarder in kernel
Input: destination fo; source from; size n
Output: size of copied: n

1: submit_to_uma(from, n) // to user-mode agent

2: new_from = wait_uma() // wait user-mod agent for data

3: return copy-_from_user(to, new_from, n)

fuzzing engine to the Android kernel and fetch the KCOV
information of the target Android kernel to the fuzzing
engine. This component connects to the fuzzing engine
through a network provided by adb forwarded socket con-
nections. The actions and messages take place in the socket
connection during the fuzzing run.

On the other side, it synchronizes with the data copy
forwarder through a proc entry in proc file system, for the
proc file system acts as an interface to internal data struc-
tures in the kernel and can be used to obtain information
about the system and to change certain kernel parameters at
runtime (sysctl).

5.3 Data Copy Forwarder

The traditional driver fuzzing method needs to generate
complete input when initiating the IOCTL system call.
However, due to the dynamic characteristics of the driver
module, the data requirements may be the result of dynamic
calculations. The data copy forwarder contains a wrapper
of the function copy_from_user, to forward the data copy
operations to the user-mode agent. On the other side, the
forwarder transmits the data to the driver module, when the
required data from the user-mode agent is ready.

As shown in Algorithm 3, the data copy forwarder sub-
mits the required source address and size to the user-mode
agent and waits for a new source address. The user-mode
agent forwards the request to the fuzzing engine, puts the
fuzzing data in the target location and then informs the data
copy forwarder. When the data is ready, the data copy for-
warder calls the build-in copy_from_user to complete the
data copy operation.

6. Evaluation

In this section, we answer the following three questions:
1) whether the interface recovery method can effectively
recover the driver IOCTL arguments; 2) whether the
fuzzing framework can improve the fuzzing performance;
3) whether CoLaFUZE can detect new vulnerabilities in An-
droid device drivers.

6.1 Interface Recovery Evaluation

The experiments were taken on a machine running Ubuntu
18.04 with an Intel Xeon Gold 6128 processor and 64 GB
DDR4 RAM. The devices we used to evaluate our interface
recovery method is listed in Table 1, including products of
Google, Samsung, Huawei, Sony and Xiaomi.

1907

Table1 Android devices used for evaluation. We choose products of the
top mobile phone vendors and chipset vendors across the world.

Android Kernel Chipset
Pixel 4 9 4.14.114 Snapdragon 670
Samsung A51 10 4.14.113 Exynos 980
Honor 20 10 4.14.116 Kirin 710F
Xperia 10 9 4.14.16 Snapdragon 630
Mi Play 9 4.9.77 MediaTek P35

The IOCTL handlers are recovered by the kernel recov-
ery module of CoLaFUZE, which runs in kernel space and
extracts the kernel address of handlers. The valid results re-
covered is shown in Table 2. In total, 504 IOCTL handlers
are identified by CoLaFUZE in the testing mobile phone,
corresponding to the number of running drivers. The com-
mand value solver of CoLaFUZE extracts the commands by
angr, and the number of recovered command values is pos-
itively correlated with the number of IOCTL handlers. For
the device names are dynamically extracted by traversing
the device folder (/dev), hundreds of block and character
devices are gathered. We then remove the devices without
IOCTL handlers, which can only be operated by reading or
writing. In total, 512 valid device names are selected out.

To show the effectiveness of the proposed interface re-
covery method, we compare the recovery result of CoLa-
FUZE against the result of DIFUZE, an interface-aware ker-
nel fuzzing tool. We run the open source version of DI-
FUZE' from github on the kernel code of the mobile phones.
As DIFUZE is not actively maintained, it can not fully sup-
port these new devices. We developed patches and extended
them by adjusting compiler flags, adding new driver file
patches, new structures used to register an IOCTL handler
and so on. After the porting work, we use DIFUZE to re-
cover the interfaces from the code of testing devices.

We found that, even if DIFUZE successfully recov-
ered the correct interface information, the recovered inter-
face may be useless. The dynamically running kernel on the
mobile phone does not actually activate the driver module
in the source code. In other words, the driver module is re-
dundant. It is mainly because some vendors of smartphones
released the code that works, but not the tidiest one. This
causes problems to the static method DIFUZE, but not to
the dynamic method CoLaFUZE.

The recovered interface is valid only if it is recovered
correctly and does be activated on the testing mobile phones.
Compared with DIFUZE, CoLaFUZE recovers more valid
interfaces, especially on the aspect of device name recovery.
As the device names could be dynamically generated instead
of hard-coded in the source. DIFUZE recovers less than
65.8% of the total device names recovered by CoLaFUZE.

We evaluate the interface recovery results by manually
extracting a random sampling of IOCTL interfaces and com-
pare them with the recovered results. The picked drivers
contain 64 IOCTL handlers and 623 commands, of which
CoLaFUZE recovers all 64 handlers and 94.06% (586) cor-
rect commands.

Thttps://github.com/ucsb-seclab/difuze

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.11 NOVEMBER 2021

1908
Table 2 Valid interfaces recovered on the testing mobile phones by CoLaFUZE and DIFUZE
Valid results of CoLaFUZE Valid results of DIFUZE
IOCTL handlers Commands Device Names | IOCTL handlers Commands Device Names
Pixel 4 125 589 161 105 424 147
Samsung AS51 102 276 97 73 372 69
Honor 20 91 281 78 69 216 31
Xperia 10 91 533 81 76 311 44
Mi Play 95 475 95 77 334 46
Total 504 2154 512 400 1657 337

6.2 Fuzzing Performance

To determine how well CoLaFUZE can improve fuzzing
performance like execution speed, code coverage and the
ability to trigger bugs, we carry on a comparative eval-
uation of CoLaFUZE, the latest kernel fuzzers including
syzkaller [20] and DIFUZE. To find out the effects of using
coverage information on the ability to explore new paths,
we test CoLaFUZE with and without the KCOV module.
We use LaFUZE as the layout-aware fuzzing (CoLaFUZE
without coverage module). Also, we test CoLaFUZE by
disabling the data copy forwarder module, identified by Co-
FUZE, to show the effects of structure layout information.
Specifically, we run the following 5 types of fuzzers:

o Syzkaller. Syzkaller is an unsupervised coverage-
guided kernel fuzzer. We only enable syzkaller to use
IOCTL and system calls it depends on. The interfaces
of common Linux devices are already listed in the de-
scription files of syzkaller but no third-party devices.

o DIFUZE. DIFUZE is an interface aware fuzzing tool.
It recovers the interface information, including data
structure definitions by data-flow analysis, type prop-
agation, constraints checking and definition extracting
methods. On the fuzzing stage, it employs a fuzzer
named MangoFuzz based on Peach.

e LaFUZE. In this configuration, we enable the data
copy forwarder and the user-mode agent to perform
layout-aware fuzzing. In this situation, when a data
copy request is received, the correct size of data is gen-
erated and transferred to the driver.

e CoFUZE. This configuration enables the KCOV mod-
ule of the target kernel and disables the data copy for-
warder module. The fuzzing engine can obtain the cov-
erage information, generate and mutate seeds accord-
ingly.

e CoLaFUZE. Here, CoLaFUZE integrates all the mod-
ules in this paper. It performs coverage-guided and
layout-aware fuzzing to validate the improvement of
code coverage and the ability of bug finding.

We evaluated these fuzzers on real Android products
listed in Table 1. We search and download the kernel source
code from the official site of each vendor. Then we port
the recovery and the data copy forwarder module, enable
the KCOV and KASAN kernel module, and build the ker-
nel image using AOSP tools [21]. To flash the generated
boot image onto the physical device, the bootloader should

x104

B Driver code
| W Rest part of Kernel

w
w»

w
=)

29231 28471

|

ColLaFUZE DIFUZE

24920

LaFUZE

N
wn

23077

CoFUZE

20953

|

Syzkaller

Number of Basic Blocks Covered
- = N
o & o

o
wn

=
S)

Fig.4 The coverage results of fuzzers on Samsung S10 for 24 hours.

be unlocked [22]. The user-mode agent is running as root
for some driver files can only be opened with root permis-
sions. To compare the overall performance of these fuzzers
and ensure comparable results, we run each fuzzer on Sam-
sung S10 for 24 hours with a single process suggested in
[23]. The coverage of the device drivers and the rest of the
kernel of each fuzzer is shown in Fig.4. We can see that,
for lacking interface information, syzkaller can not perform
effective fuzzing on drivers of mobile phones, and it cov-
ers the least basic blocks. For no third-party devices are
included in the description files of syzkaller, it fails to trig-
ger the hidden handlers. We believe that if the recovered
interfaces are added to the specifications of syzkaller, the
fuzzer could cover much more basic blocks. Also, the re-
sults show that CoLaFUZE achieves the most code cover-
age in the driver. CoLaFUZE outperforms CoFUZE due to
the availability of structure layout needed for seed genera-
tion and outperforms LaFUZE due to the benefit from cov-
erage information for seed mutation. For example, a valid
input for i2cdev_ioctl_rdwr in Listing 3 requires the fileds to
be valid pointers. For no layout informatioin available, Co-
FUZE my generate invalid address values in field data_ptrs
and trigger error at line 8 in Listing 2 and line 43 in Listing
3.

Compared with CoLaFUZE, DIFUZE covers less basic
blocks. We analyzed the blocks covered by CoLaFUZE but
not DIFUZE and found cases that DIFUZE fails to handle.
For example, a length field specifies a dynamic size array
for data input, and a statement casts the integer to a pointer.
However, DIFUZE does not recognize the relationships be-
tween the fields of structures, can not figure out the dynam-
ically changing request and fails to trigger code behind. On

MU et al.: COLAFUZE: COVERAGE-GUIDED AND LAYOUT-AWARE FUZZING FOR ANDROID DRIVERS

Table 3

1909

The bugs found by different fuzzers per mobile phone. For each mobile phone, every fuzzer

was running in 24 hours. To avoid frequently crashing and rebooting, we would blacklist the interface

if it caused too many crashes.

Syzkaller DIFUZE LaFUZE CoFUZE CoLaFUZE Total Unique
Google Pixel 4 0 0 0 0 1 1
Galaxy S10 0 0 0 0 0 0
Honor 20 0 2 2 1 2 2
Xperia XZ3 1 3 2 1 4 4
Mi Play 1 2 2 3 4 4
Total 2 7 6 5 11 11

the other hand, DIFUZE is a generation-based fuzzer, and
it generates input seeds according to the statically recovered
templates, without a coverage-guided mutation stage. For
example, in Listing A-1 the type cmdqU32Ptr_t is defined
as unsigned long long, DIFUZE recovers the struct cmdg-
CommandStruct and treats the field prop_addr as a number.
DIFUZE generates random numbers instead of valid point-
ers at this field, causing the function to return at line 20.

6.3 Detected Vulnerabilities

Hundreds of crashes were triaged during fuzzing. The crash
logs, input seeds and system calls are analyzed, manually
triggered and filtered. The overall result of each fuzzer is
shown in Table 3.

The default configuration of syzkaller contains only the
common part of valid interfaces, which has been fully ana-
lyzed and verified. Without vendor-customized interface in-
formation, the syzkaller fuzzer finally triggered 2 bugs. This
shows that blindly fuzzing the driver interface is not effec-
tive because the vendor testers may have already performed
similar testing work.

CoFUZE uses the recovered interfaces by our recov-
ery module to trigger target IOCTL handler execution and
mutate inputs of the third argument. CoFUZE successfully
found 5 bugs in the testing mobile phones, showing that with
valid commands, the fuzzer can trigger more code execu-
tion. As no structure information and reference relations are
provided, CoFUZE can only generate and mutate the bytes
array of input at the beginning of each fuzzing run.

LaFUZE uses the recovered interfaces by our recov-
ery module to trigger target IOCTL handler execution and
generate inputs to copy_from_user requests. LaFUZE suc-
cessfully identified 6 bugs in the mobile phones. The result
suggests that layout information can effectively help to ex-
plore the driver code.

‘When we combine CoFUZE and LaFUZE, CoLaFUZE
is able to find 11 bugs, making it the most one. Compared
with DIFUZE, CoLaFUZE detects 4 more bugs. We man-
ually analyzed these bugs and found that DIFUZE fails to
generate valid pointers or data buffers. In one bug driver,
an integer field is cast to userspace pointer, but DIFUZE re-
gards this field as an integer. The generated pointer data is
not valid, making the driver not able to obtain the data to
process. In another bug driver, the array size is dynamically
dependent on the value previously provided as in Listing 1.
In each run, when DIFUZE generates a new input, the size

of the second data array is specified in one field of the first
struct, and DIFUZE should generate the correct size of the
data array corresponding to the field. However, DIFUZE
always failed to satisfy the size constraint, for the size is
different in each fuzzing round. In Appendix, We present a
case study of bugs triggered in Mi Play, which has been re-
ported and confirmed, to show the necessity of the proposed
methods and the reason why DIFUZE failed to find.

For the kernel source code may not be the latest, we are
in the process of responsibly disclosing these vulnerabilities
to corresponding vendors and checking whether the bugs are
previously known, silently fixed or still present in the most
recent kernel version.

6.4 Limitations

The method proposed in this paper has three main limita-
tions. First, because of the necessity to recompile and re-
flash the kernel, the engineer needs to make efforts to pre-
pare the devices ready for fuzzing. This work can not be
eliminated for the production version of Android does not
contain debugging features or vulnerability sanitizers. Sec-
ond, if a buggy driver is causing the kernel to crash fre-
quently, the fuzzer must wait until the kernel reboots, de-
creasing the fuzzing efficiency. Finally, an early bug could
also prevent the fuzzer from reaching deeper bugs in the
same interface. Each time the fuzzer select the bug com-
mand, the early bug will be hit, and the phone will reboot.
Even if there is a deeper bug after the early bug, the deeper
one will never be reached.

7. Related Work

As an effective dynamic analysis technique, fuzzing has
been widely applied to kernel and device drivers.

DIFUZE [8] deals with the problem of interface re-
covery by leveraging static analysis to compose correctly-
structured input. Such a static approach can only deal with
the hard-coded names and commands but failed to handle
the dynamically generated arguments. Also, it is not able to
extract complex relationships between fields of structures in
the interface. Often in complex driver code, one field of a
structure relates to another: for example, a length field could
specify a buffer size. Our approach successfully recognizes
the relationships, which provide valuable information dur-
ing the fuzzing stage.

1910

EASIER [10] creates an ex-vivo dynamic driver anal-
ysis framework for Android devices by developing an eva-
sion kernel that enables driver initialization. It evades hard-
ware and kernel dependencies instead of precisely emulat-
ing the features. The upside of evasion is that it enables
dynamic analysis without the actual devices. The downside
is that it is imprecise and is blamed for producing a signifi-
cant amount of false positives that troubles the researchers.
Only part of driver modules can be successfully initialized
in the evasion kernel, limiting the scope of appliance.

Charm [9] proposes a remote device driver execution
method that enables the device driver to execute in a virtual
machine on a workstation to facilitating dynamic analysis of
device drivers of mobile phones. It uses the actual mobile
phone device only for servicing the low-level and infrequent
I/O operations through a low-latency and customized USB
channel. A drawback of Charm is that it requires porting
every driver in question to a specific version of the kernel.
The time needed to port the driver for an expert is from days
to weeks.

Many existing works make various contributions to dif-
ferent stages of kernel fuzzing. Agamotto [24] improved
the kernel driver fuzzing performance by dynamically cre-
ating multiple checkpoints and skipping parts of test cases
using the checkpoints. USBFuzz[25] leverages an emula-
tion USB device to fuzz the USB drivers of modern oper-
ating systems. POTUS [26] also aims to find vulnerabili-
ties in USB device drivers using fault injection, concurrency
fuzzing, and symbolic execution. FIZZER [27] tries to ex-
plore the error handling code in device drivers using soft-
ware fault injection. Unicorefuzz [28] is an emulation-based
fuzzing approach and uses CPU emulation to fuzz device
drivers and kernel components with coverage-based feed-
back. IMF [29] inferred a model for the system in question
to facilitate input generation. It extracts the model by in-
specting API sequences by actual applications running on
the system. Krace [30] aims to explore data race bugs in the
kernel file system by capturing the exploration progress in
the concurrency dimension and precisely data race detect-
ing. Muzz[31] hunts for bugs in multithreaded programs
using thread-aware instrumentations to obtain runtime feed-
back to accentuate execution states caused by thread inter-
leavings and preserves more valuable seeds that expose bugs
under a multithreading context. Razzer [32] employs a static
analysis and a deterministic thread interleaving technique to
find race bugs in kernel efficiently. JANUS [33] employs
two techniques to find bugs efficiently: mutating metadata
on a large image and emitting image-directed file operations.
PeriScope [34] focuses on the hardware-OS boundary and
leverages fine-grained analysis of device-driver interactions.

Static analysis is also used by many existing methods to
identify bugs in source code or binaries of kernel or device
drivers. IDEA [35] is a static analysis tool for finding bugs
in Apple driver binaries that is able to effectively recover
C++ classes, resolve indirect calls on the Apple platform
and find the unique paradigms through which Apple drivers
interact with userspace programs. DR. CHECKER [36] per-

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.11 NOVEMBER 2021

formed flow-sensitive, context-sensitive and field-sensitive
taint analyses on the Linux driver source code and identified
driver bugs. Moonshine [37] leverages lightweight static
analysis for efficiently detecting dependencies across differ-
ent system calls and generates good seeds for OS fuzzing
according to the OS kernel state created by the previously
executed system calls.

8. Conclusion

This Android driver interface exposes the kernels and de-
vice drivers to attacks by malicious programs. The main
challenge to kernel driver fuzzing is how to generate valid
inputs, how to handle the dependency in data fields and
how to mutate the inputs. This paper proposes a coverage-
guided and layout-aware kernel driver fuzzing framework
CoLaFUZE to facilitate the generation of the seed, kernel-
userspace data copy, and seeds mutation. We show that the
proposed methods can recover the device file names, solve
the command values, forward the data request and detect
vulnerabilities effectively and efficiently. We carry out a
comparative evaluation on different configurations of Co-
LaFUZE with state-of-the-art fuzzers on 5 modern Android
mobile phones and show that CoLaFUZE makes a signifi-
cant improvement in code coverage and successfully detects
11 vulnerabilities.

References

[1] J.V. Stoep, “Android: protecting the kernel,” Linux Security Sum-
mit, 2016.

[2] Copyright Google Inc., Android Sources. http://android.googlesource.
com/kernel, accessed Jan. 21. 2021.

[3] Copyright Huawei Inc., Open Source Release Center. https://
consumer.huawei.com/en/opensource/, accessed Jan. 21. 2021.

[4] Copyright Samsung Inc., Samsung Open Source. http://opensource.
samsung.com, accessed Jan. 21. 2021.

[5] Copyright Sony Inc., Open Source Archives - Open De-
vices - Sony Developer World. https://developer.sony.com/develop/
open-devices/downloads/open-source-archives/, accessed Jan. 21.
2021.

[6] Copyright Xiaomi Inc., Xiaomi Phone Kerenl OpenSource. https://
github.com/MiCode/Xiaomi_Kernel_OpenSource, accessed Jan. 21.
2021.

[7] Copyright Amazon Inc., Source Code Notice. https://www.amazon.
com/gp/help/customer/display.html, accessed Jan. 21. 2021.

[8] J. Corina, A. Machiry, C. Salls, S. Yan, H. Shuang, C. Kruegel, and
G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,” ACM
Sigsac Conference, pp.2123-2138, Oct. 2017.

[9] S.M.S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A.A. Sani, and
Z. Qian, “Charm: Facilitating dynamic analysis of device drivers
of mobile systems,” 27th USENIX Security Symposium (USENIX
Security 18), Baltimore, MD, pp.291-307, USENIX Association,
Aug. 2018.

[10] I. Pustogarov, Q. Wu, and D. Lie, “Ex-vivo dynamic analysis frame-
work for android device drivers,” 2020 IEEE Symposium on Secu-
rity and Privacy (SP), pp.1088-1105, 2020.

[11] “Information technology - Portable Operating System Interface
(POSIX) Base Specifications, Issue 7,” standard, ISO Org., Sept.
2009.

[12] Cr4sh, IOCTL Fuzzer - Windows kernel drivers fuzzer., 2011. https:
//github.com/Cr4sh/ioctlfuzzer, accessed Jan. 21. 2021.

http://dx.doi.org/10.1145/3133956.3134069
http://dx.doi.org/10.1145/3133956.3134069
http://dx.doi.org/10.1145/3133956.3134069
http://dx.doi.org/10.1109/SP40000.2020.00094
http://dx.doi.org/10.1109/SP40000.2020.00094
http://dx.doi.org/10.1109/SP40000.2020.00094

MU et al.: COLAFUZE: COVERAGE-GUIDED AND LAYOUT-AWARE FUZZING FOR ANDROID DRIVERS

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Xst3nZ, IOCTLDbf is just a small tool (Proof of Concept) that can
be used to search vulnerabilities in Windows kernel drivers., 2012.
https://code.google.com/archive/p/ioctlbf/, accessed Jan. 21. 2021.
C.S. Lejay, Fuzzing IOCTLs with angr. https://thunderco.re/project/
security/2016/07/18/fuzzing-ioctls/, accessed Jan. 21. 2021.
debasishm89, A mutation based user mode (ring3) dumb in-memory
Win-dows Kernel (IOCTL) Fuzzer, 2014. http://developer.android.
com/tools/help/monkey.html, accessed Jan. 21. 2021.

The kernel development community, kcov: code coverage
for fuzzing. https://www.kernel.org/doc/html/latest/dev-tools/kcov.
html, accessed Jan. 21. 2021.

W.H. Harrison, “Compiler analysis of the value ranges for vari-
ables,” IEEE Trans. Softw. Eng., vol.SE-3, no.3, pp.243-250, May
19717.

F. Wang and Y. Shoshitaishvili, “Angr - the next generation of binary
analysis,” 2017 IEEE Cybersecurity Development (SecDev), pp.8—
9,2017.

M. Zalewski, American Fuzzy Lop. http://lcamtuf.coredump.cx/afl,
Accessed: Jan. 21, 2021.

Copyright Google Inc., Syzkaller - linux syscall fuzzer, 2017. https:
//github.com/google/syzkaller, accessed Jan. 21. 2021.

Copyright Google Inc., Android Flash Tool, 2021. https://flash.
android.com, accessed Jan. 21. 2021.

Copyright Google Inc., AOSP - Locking/Unlocking the Bootloader,
2021. https://source.android.com/devices/bootloader/locking -
unlocking, accessed Jan. 21. 2021.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” Proc. 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 18, pp.2123-2138, Associa-
tion for Computing Machinery, New York, NY, USA,Oct. 2018.

D. Song, F. Hetzelt, J. Kim, B.B. Kang, J.P. Seifert, and M. Franz,
“Agamotto: Accelerating kernel driver fuzzing with lightweight
virtual machine checkpoints,” 29th USENIX Security Symposium
(USENIX Security 20), pp.2541-2557, USENIX Association, Aug.
2020.

H. Peng and M. Payer, “USBfuzz: A framework for fuzzing USB
drivers by device emulation,” 29th USENIX Security Symposium
(USENIX Security 20), pp.2559-2575, USENIX Association, Aug.
2020.

J. Patrick-Evans, L. Cavallaro, and J. Kinder, “POTUS: Probing off-
the-shelf USB drivers with symbolic fault injection,” 11th USENIX
Workshop on Offensive Technologies (WOOT 17), Vancouver, BC,
USENIX Association, Aug. 2017.

Z. Jiang, J. Bai, J. Lawall, and S. Hu, “Fuzzing error handling code
in device drivers based on software fault injection,” 2019 IEEE 30th
Int. Symp. Software Reliability Engineering (ISSRE), pp.128-138,
2019.

D. Maier, B. Radtke, and B. Harren, “Unicorefuzz: On the viabil-
ity of emulation for kernelspace fuzzing,” 13th USENIX Workshop
on Offensive Technologies (WOOT 19), Santa Clara, CA, USENIX
Association, Aug. 2019.

H.S. Han and K.C. Sang, “IMF: Inferred model-based fuzzer,” ACM
Sigsac Conference, pp.2345-2358, Oct. 2017.

M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzzing
for kernel file systems,” 2020 IEEE Symposium on Security and Pri-
vacy (SP), pp.1643-1660, 2020.

H. Chen, S. Guo, Y. Xue, Y. Sui, C. Zhang, Y. Li, H. Wang, and Y.
Liu, “MUZZ: Thread-aware grey-box fuzzing for effective bug hunt-
ing in multithreaded programs,” 29th USENIX Security Symposium
(USENIX Security 20), pp.2325-2342, USENIX Association, Aug.
2020.

D.R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” 2019 IEEE Symposium
on Security and Privacy (SP), pp.754-768, 2019.

W. Xu, H. Moon, S. Kashyap, P.N. Tseng, and T. Kim, “Fuzzing file
systems via two-dimensional input space exploration,” 2019 IEEE
Symposium on Security and Privacy (SP), pp.818-834, 2019.

1911

[34] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G.
Vigna, C. Kruegel, J. Seifert, and M. Franz, “Periscope: An effec-
tive probing and fuzzing framework for the hardware-os boundary,”
26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, Feb. 24-27, 2019, The
Internet Society, 2019.

[35] X. Bai, L. Xing, M. Zheng, and F. Qu, “iDEA: Static analysis on
the security of apple kernel drivers,” Proc. 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS °20,
pp.1185-1202, Association for Computing Machinery, New York,
NY, USA, Oct. 2020.

[36] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “DR. CHECKER: A soundy analysis for linux kernel
drivers,” 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, pp.1007-1024, USENIX Association, Aug.
2017.

[37] S. Pailoor, A. Aday, and S. Jana, “Moonshine: Optimizing os fuzzer
seed selection with trace distillation,” Proc. 27th USENIX Confer-
ence on Security Symposium, SEC’18, USA, p.729-743, USENIX
Association, Aug. 2018.

Appendix: Case Study

We walk through an example of a bug that was triggered
only with the proposed framework. The relevant source is
shown in Listings A- 1 and A- 2.

The example is CVE-2020-0069, a bug of Medi-
aTek command queue driver triggered in Mi Play during
the experiments. The handler cmdq-ioctl of the driver
invokes function cmdq_driver_ioctl_exec_command when
cmd is specified as CMDQ_IOCTL_EXEC_.COMMAND.
At lines 8-9 in Listing A-2, the user data is copied into
a struct cmdqCommandStruct command. At line 14, it
invokes cmdq_driver_copy_handle_prop_from_user to copy
user data from command.prop_addr with pointer casting.
Notice that the field prop-addr of struct cmdqCommand-
Struct is cmdqU32Ptr_t, an unsigned long long type de-
fined at line 2 of Listing A-1. CoLFUZE forwards
this copy operation to the fuzzing engine and fetches
new inputs on the fly., The data is transferred into
cmdq_driver_process_command_request and be parsed as a
sequence of CMDAQ instructions. The bug is triggered when
parsing a CMDQ_CODE_WRITE (0x04) instruction, for the
target address is not sanitized properly, causing an out of
bounds write bug.

However, DIFUZE fails to trigger this bug. DIFUZE
recovers struct cmdqCommandStruct and regards the field
prop-addr as a number instead of a userspace pointer, for

/* defined in cmdq-def.h =/
#define c¢cmdqU32Ptr_t unsigned long long
struct cmdqCommandStruct {

/+ Previous fields. =x/

[+ task property x/

uint32_t prop-size;

cmdqU32Ptr_t prop-addr;

/+* Other fields. =/

e Y T

0}

Listing A-1 The structure definition used by driver CMDQ

http://dx.doi.org/10.1109/TSE.1977.231133
http://dx.doi.org/10.1109/TSE.1977.231133
http://dx.doi.org/10.1109/TSE.1977.231133
http://dx.doi.org/10.1109/SecDev.2017.14
http://dx.doi.org/10.1109/SecDev.2017.14
http://dx.doi.org/10.1109/SecDev.2017.14
http://dx.doi.org/10.1145/3243734.3243804
http://dx.doi.org/10.1145/3243734.3243804
http://dx.doi.org/10.1145/3243734.3243804
http://dx.doi.org/10.1145/3243734.3243804
http://dx.doi.org/10.1109/ISSRE.2019.00022
http://dx.doi.org/10.1109/ISSRE.2019.00022
http://dx.doi.org/10.1109/ISSRE.2019.00022
http://dx.doi.org/10.1109/ISSRE.2019.00022
http://dx.doi.org/10.1145/3133956.3134103
http://dx.doi.org/10.1145/3133956.3134103
http://dx.doi.org/10.1109/SP40000.2020.00078
http://dx.doi.org/10.1109/SP40000.2020.00078
http://dx.doi.org/10.1109/SP40000.2020.00078
http://dx.doi.org/10.1109/SP.2019.00017
http://dx.doi.org/10.1109/SP.2019.00017
http://dx.doi.org/10.1109/SP.2019.00017
http://dx.doi.org/10.1109/SP.2019.00035
http://dx.doi.org/10.1109/SP.2019.00035
http://dx.doi.org/10.1109/SP.2019.00035
http://dx.doi.org/10.1145/3372297.3423357
http://dx.doi.org/10.1145/3372297.3423357
http://dx.doi.org/10.1145/3372297.3423357
http://dx.doi.org/10.1145/3372297.3423357
http://dx.doi.org/10.1145/3372297.3423357

1912

1
2
3
4
5
6
7
8
9

11

static s32 cmdq_driver_ioctl_exec_.command (struct file

{

/

#pf, unsigned long param)

struct cmdqCommandStruct command;
struct task_private desc_private = {0};
s32 status;

if (copy-from_user(&command, (void x)param,
sizeof (struct cmdqCommandStruct)))
return —-EFAULT;

/+ Some command checking code here*/

status = cmdq-driver_.copy-handle_prop_-from_user (
(void %)CMDQ-U32_PTR(command. prop-addr),
command . prop._size ,
(void %)CMDQ-U32_PTR(&command. prop_-addr));

if (status < 0) {
CMDQERR(”copy prop-addr failed , err=%d\n”,

status);

return status;

}

/# insert private_data for resource reclaim x/

desc_private.node_private_data = pf->private_data;

command. privateData =

(cmdqU32Ptr_t) (unsigned long)&desc_private;

status =
cmdq._driver_process_.command_request(&command) ;

Listing A-2 The function to execute user-provided program instructions
of driver CMDQ

the type cmdqU32Ptr_t is defined as unsigned long long. DI-
FUZE fails to generate a valid pointer at field prop_addr, and
the function always returns at line 20. Thus, thanks to the
dynamic forwarding module, this bug is finally reached.

Tianshi Mu was born in 1980. He re-
ceived the M.S. degree in communication and
information system in 2005. He is now the di-
rector of IEEE PES power system communica-
tion and network security technical committee.
Currently, He is engaged in application security,
data security and other directions of forward-
looking security technology research, as well as
the construction of enterprise-level security plat-
form in Digital Grid Research Institute, CSG.

Huabing Zhang was born in 1988. He
is currently a senior engineer and director of
the Cyber Security Company of CSG Digital
Grid Research Institute. His main research in-
terests include network security situation aware-
ness and security automation.

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.11 NOVEMBER 2021

Jian Wang was born in 1978. He is cur-
rently a deputy director with Digital Grid Se-
curity R&D Center of Digital Grid Research
Institute Cyber Security Branch, Guangzhou,
China. His main research interests include wire-
less communication, network security and com-
puter security.

Huijuan Li was born in 1983. She received
the M.S degree in pattern recognition and intel-
ligent systems from the South China University
of Technology in 2008. Her main research inter-
ests include computer and information technol-
ogy and network security.

