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Multi-Scale Correspondence Learning for Person Image Generation

Shi-Long SHEN†a), Ai-Guo WU†b), and Yong XU††c), Nonmembers

SUMMARY A generative model is presented for two types of person
image generation in this paper. First, this model is applied to pose-guided
person image generation, i.e., converting the pose of a source person im-
age to the target pose while preserving the texture of that source person
image. Second, this model is also used for clothing-guided person image
generation, i.e., changing the clothing texture of a source person image to
the desired clothing texture. The core idea of the proposed model is to
establish the multi-scale correspondence, which can effectively address the
misalignment introduced by transferring pose, thereby preserving richer in-
formation on appearance. Specifically, the proposed model consists of two
stages: 1) It first generates the target semantic map imposed on the target
pose to provide more accurate guidance during the generation process. 2)
After obtaining the multi-scale feature map by the encoder, the multi-scale
correspondence is established, which is useful for a fine-grained genera-
tion. Experimental results show the proposed method is superior to state-
of-the-art methods in pose-guided person image generation and show its
effectiveness in clothing-guided person image generation.
key words: generative models, generative adversarial networks, person
image generation

1. Introduction

Person image generation is regarded as one of the most dif-
ficult problems in image analysis and has important appli-
cations in movie making, virtual reality, and data enhance-
ment. Pose-guided person image generation, which aims
to generate photo-realistic person images based on arbitrary
poses, is an important task of this topic. On this challenging
task, promising performance has been achieved in some ex-
isting methods such as [1]–[9]. For example, a conditional
Generative Adversarial Network (GAN) model was recently
proposed in [9], which established the correspondence be-
tween the input and the exemplar in the feature space to
transfer the style from a semantically corresponding region
of the exemplar.

Although a meaningful exploration was performed in
[9], visual artifacts can be still observed in the generated
person images. This may be due to the following reasons:
First, only pose keypoints were used as the condition input
to synthesize the person images in [9]. However, keypoint-
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based pose representation is too sparse to accurately repre-
sent the correct pose. Second, the problem of misalignment
was solved in [9] by establishing the correspondence on a
specific scale, and the accurate transfer of information on
appearance was achieved. However, a single-scale corre-
spondence may not be able to capture all necessary infor-
mation for a fine-grained generation. Moreover, there is a
limitation in the method of [9], for person image genera-
tion, the method can only be applied to pose-guided person
image generation. Actually, not only pose but clothing tex-
ture can be used to guide the generation process. This task
can be called clothing-guided person image generation.

Based on these observations, a generative model is pro-
posed in this paper, which consists of two stages: 1) A pose-
guided semantic map generator generates the semantic map
guided by the target pose, which allows the model to gen-
erate more spatially coherent images. 2) Two pathways are
used to get multi-scale features, one for pose encoding and
the other for appearance encoding. For the latter, compo-
nent attributes such as upper cloth, pant, which are sepa-
rated from the source person image via its semantic map,
are used as input to the appearance encoder. After that, the
multi-scale correspondence is established in multi-scale cor-
respondence learning (MSC) blocks based on multi-scale
features. Finally, the texture renderer equipped with a set
of spatially variant de-normalization blocks is used to pro-
gressively render the output by using the details from the
warp image feature which is obtained based on the multi-
scale correspondence.

Experiments are carried out on DeepFashion dataset
[10]. Experimental results show that the proposed model
can achieve a better result in pose-guided person image gen-
eration. Moreover, the proposed method can also imple-
ment clothing-guided person image generation, as shown
in Fig. 1. The main contributions in this paper are mainly
as follows: 1) The multi-scale correspondence between the
target pose representation and the source image is estab-
lished, which can effectively address the misalignment in-
troduced by transferring pose to preserve richer informa-
tion on appearance. 2) Pose-guided person image genera-
tion and clothing-guided person image generation are imple-
mented by using a unified model. 3) The experiment results
show that the proposed method is superior to state-of-the-art
methods in pose-guided person image generation, and veri-
fies its effectiveness in clothing-guided person image gener-
ation.

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 The proposed method can generate person images in different
target poses (left) and transfer upper clothing textures to a person image
(right).

2. Related Work

Generative Adversarial Networks (GAN). A GAN [11],
consisting of generator and discriminator, has been widely
used in the image generation area because of its ability to
generate realistic images in adversarial training methods.
DCGAN [12] combined convolutional neural network and
GAN to generate realistic images through an unsupervised
method. In practical applications, conditional images need
to be generated. For this end, the so-called CGAN was pro-
posed in [13].

Image to image translation. Image to image transla-
tion aims to transfer an image from one domain to another
while preserving the original image structure. A typical im-
age translation model is Pix2Pix [14]. Pix2Pix used the con-
ditional Generative Adversarial Networks and took the L1

loss function as the optimization goal. In addition, in the
Pix2Pix model, the concept of PatchGAN was proposed. In
this network, a discriminator was utilized to distinguish the
authenticity of each image block instead of the authenticity
of the entire image. In this design, it is assumeed that the
image blocks that are far apart in the image are independent
of each other, and the parameters are reduced in the dis-
criminator. However, due to the complexity of human pose
transformation and texture, it is not suitable to simply ap-
ply the image translation model to the task of person image
generation.

Person image generation. One of the difficulties in
the task of person image generation lies in how to correctly
represent the pose. Keypoint-based pose representation is
often used in existing work. Ma et al. firstly applied deep
learning to the person image generation task in [1]. In the
method of [1], a two-stage network was used to generate
images with specific pose from coarse to fine. In order to
alleviate the problem of deformation in person image gen-
eration, a U-net with a deformable skip connection was in-
troduced in [5]. Moreover, PATN in [8] introduced the at-
tention mechanism into the generator to solve the problem
of deformation in a progressive generation method. Zhang
et al. [9] calculated the correspondence between the source
image and the target image in the feature space to trans-
fer the appearance information to correspondence position.

However, keypoint-based pose representation is too sparse
to accurately represent the correct pose, and the generated
image suffers from artifacts due to misalignment caused by
transferring pose.

The aforementioned methods mainly focus on generat-
ing person images based on the input image and target poses.
Actually, clothing texture can be also used to guide the pro-
cess of generation. Inspired by [2], in this paper, the seman-
tic map is used to decouple the source image before obtain-
ing the multi-scale source image features, which allows the
proposed method to use a unified model to implement pose-
guided person image generation and clothing-guided person
image generation.

3. Method Description

In this paper, the task is to achieve person image synthe-
sis. Different from previous pose-guided person image gen-
eration methods, clothing-guided person image generation
also needs to be considered in the task. To complete this
difficult task, the network architecture is divided into two
stages: In stage 1, a pose-guided semantic map generator
is used to generate the predicted target semantic map. In
stage 2, a conditional GAN, consisting of generator and dis-
criminator, is used to generate the output. Specially, during
training, given inputs: the target pose Pt, the target semantic
map S t, the source semantic map Ms and the source image
Is, the pose encoder and the appearance encoder are first
used to map the pose representation and the decomposed
source image to multi-scale feature, respectively. Then,
multi-scale correspondence between the target pose repre-
sentation and the source image can be established in MSC
Blocks based on multi-scale pose feature and multi-scale ap-
pearance feature, and the warped source image feature can
be obtained according to the multi-scale correspondence.
Finally, the texture renderer generates the final image based
on the warped source image feature and target pose feature.
The network training process is shown in Algorithm 1. In
the following, firstly, a pose-guided semantic map generator
is presented. Then, the generator and discriminator are dis-
cussed in detail, respectively. Finally, the objective function
used in the present network is described in detail.

3.1 A Pose-Guided Semantic Map Generator

A semantic map can provide more correct pose represen-
tation than keypoint-based pose representation during the
person image generation process, which has been proven in
[15], [16]. In this paper, a semantic map is also adopted
as an additional structural constraint. As shown in Fig. 2
(left), the source image Is, the source semantic map Ms and
the target pose Pt are used as the inputs of pose-guided se-
mantic map generator Gparsing, which uses a Unet-based net-
work structure, and the predicted target semantic map Ŝ t =

Gparsing(Is,Ms, Pt) is generated by minimizing the pixel-wise
L1 loss between S t and Ŝ t. Note that if the keypoint-based
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Algorithm 1 Network training process
Require:

The source image Is, the source pose Ps, the source semantic map Ms,
the target pose Pt, the target semantic map S t. Parameters of the pose-
guided semantic map generator θparsing. Parameters of the generator θG.
Parameters of the discriminator θD. Total number of iterative training
in stage 1 N1. Total number of iterative training in stage 2 N2.

Ensure:
The updated parameters for the pose-guided semantic map generator,
the generator and the discriminator.
stage 1:

1: for epoch=1 to N1 do
2: Forward propagation: Ŝ t = Gparsing(Is,Ms, Ps);
3: Calculate the loss function: L1;
4: Calculate the gradient: gθparsing ← ∇θparsing [L1];
5: upadte Gparsing:

θparsing ← θparsing − Adams(θparsing, gθparsing );
6: end for

stage 2:
7: for epoch=1 to N2 do
8: Forward propagation for the generator: Ig = G(Pt, S t,Ms, Is);
9: Calculate the loss function for the generator: Ladv, Lfea, Lrec, Lper,

Lcon, Lcor, The total loss function of the generator LG is the sum of
the above loss functions;

10: Calculate the gradient: gθG ← ∇θG [LG];
11: update G: θG ← θG − Adams(θG, gθG );
12: Forward propagation for the discriminator: D(It, Ig);
13: Calculate the loss function for the discriminator: LD;
14: Calculate the gradient: gθD ← ∇θD [LD];
15: update D: θD :← θD − Adams(θD, gθD );
16: end for

Fig. 2 Left: pose-guided semantic map generator. Right: details of MSC
block in the proposed generator.

pose representation is directly used as the input of the gen-
erator, the correspondence between the target pose and the
source image cannot be established accurately. This prob-
lem is addressded in a coarse-to-fine way by predicting the
target semantic map firstly. Predicting a target semantic map
can not only provide effective structural constraints in the
generation process but also be helpful to establish the accu-
rate correspondence between the target pose and the source
image.

3.2 Generator

Figure 3 shows the architecture of the generator. During
training, the inputs of the generator are the target pose Pt,
the target semantic map S t, the source semantic map Ms and
the source image Is, and the output is the synthesized image
Ig = G(Pt, S t,Ms, Is) with the texture of Is and the pose of
It. At test time, S t is replaced with Ŝ t as input of network
since S t is not available. The target image can be treated as a
deformed version of the source image, which means that the

pixels on the target image can find the corresponding pixels
on the source image. To find the correspondence, the gen-
erator encodes the target pose representation and the source
image into multi-scale codes by two encoders, called the
pose encoder and the appearance encoder. Then, the multi-
scale correspondence between the target pose and the source
image can be established in MSC blocks. Finally, the tex-
ture renderer generates the final result based on the warped
source image feature and target pose feature.

Pose encoding and appearance encoding. The pose
encoder taking the target pose Pt and the target semantic
map S t as inputs, is used to map the target pose representa-
tion into multi-scale codes. Note that the target pose repre-
sentation is composed of keypoint-based target pose repre-
sentation and target semantic map.

The appearance encoder takes the source semantic map
Ms and the source image Is as inputs. To implement the task
of clothing-guided person image generation, the source se-
mantic map Ms is used to extract correspondence attributes
Ii
s of Is by

Ii
s = Is � Mi

s (1)

where � denotes element-wise product, Mi
s denotes the

channel i of Ms. After that, Ii
s, i = 1 . . .K are concatenated

in channel-wise and are used as the input of the appearance
encoder. In this way, the proposed model can extract the
desired clothing attributes from different source images and
combine them to implement clothing-guided person image
generation.

MSC blocks. Multi-scale correspondence learning
blocks (MSC blocks), consisting of multi-MSC block as
shown in Fig. 2 (right), are used to establish the multi-scale
correspondence between the target pose represtation and the
source image. Specifically, F t−1

p ∈ Rc×h×w represents the
pose feature and F t−1

s ∈ Rc×h×w represents the appearance
feature, where h,w are feature spatial size and c is the chan-
nel wise demension. F t−1

p and F t−1
s are feed into a convolu-

tion layer to generate fp ∈ Rc×h×w and fs ∈ Rc×h×w, respec-
tively. Then, fp is reshaped to R(hw)×c and fs is reshaped to
R

c×(hw). After that, the correspondence between the target
pose represtation and the source image can be established
by

C(i, j) =
( fp(i) − μ( fp)) · ( fs( j) − μ( fs))

|| fp(i) − μ( fp)||2 · || fs( j) − μ( fs)||2 (2)

where μ( fp) and μ( fs) represent mean value. C ∈ Rhw×hw is
called correspondence matrix, whose element C(i, j) mea-
sures the similarity of fp at point i and fs at point j. Then,
the correspondence matrix can be used to warp the source
image feature by

fs→t(i) =
∑

j

softmax
j

(C(i, j)) · f̄s( j) (3)

where f̄s ∈ R(hw)×c is obtained by applying convolution and
reshape operations, and fs→t ∈ R(hw)×c. Finally, fs→t is re-
shaped to F t

s ∈ Rc×h×w. Ft
s is the feature of source image
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Fig. 3 An overview of the network architecture of the generator.

after deformation, which contains target pose information.
Note that different MSC block is used for features of dif-
ferent scales. Here, the method of [9] is used for reference
to establish the correspondence between the target pose rep-
resentation and the source image. Unlike [9], which estab-
lishes the single-scale correspondence, the multi-scale cor-
respondence is establish in the proposed model. It is shown
in the experiment that the single-scale correspondence is
not enough to capture all necessary information and estab-
lish accurate correspondence for our complex task, thus the
multi-scale correspondence is explored for a fine-grained
generation and the experimental results illustrate its effec-
tiveness.

Texture rendering. After obtaining the warped source
image feature, the feature needs to be used to generate the
final output. Figure 3 shows the architecture of the texture
renderer. To better preserve the information of texture fea-
ture, the SPADE network structure [17] is borrowed. The
texture features of different sizes are used as the input of the
SPADE module. But some changes have been made to the
SPADE network structure: 1) As opposed to [17], the BN
layer in the SPADE module is replaced with the IN layer,
because in the image generation task, different images have
different styles, therefore, the IN layer that performs feature
statistics on a single channel of a single instance is more
suitable. 2) The input of texture renderer is replaced from
the constant code to the target pose feature. Compared with
the constant code, the target pose feature has richer infor-
mation, which can speed up the convergence of the model.
Moreover, the target pose feature can provide position con-
straints for texture feature, leading to a more realistic gener-
ated image.

3.3 Discriminator

Inspired by [18], GAN loss and feature loss are combined
in the discriminator to achieve a stable training effect. The

inputs of the discriminator are the real image and the gen-
erated image. The feature loss function is calculated at the
output of each layer of the discriminator and the GAN loss
function is calculated in the last layer.

3.4 Objective Functions

Due to the complexity of the task, a joint loss function is
proposed to train the proposed network. It repreesnts a com-
bination of the adversarial loss, feature loss, reconstruction
loss, perceptual loss, contextual loss and correspondence
loss, written as follows:

Ltotal = λadvLadv + λfeaLfea + λrecLrec

+λperLper + λconLcon + λcorLcor
(4)

where λadv, λfea, λrec, λper, λcon, λcor denote the weights of
corresponding losses. The goal of adversarial loss is to make
the distribution of the generated image as close as possible
to the distribution of the real image, which is defined as

Ladv = E[log(1−D(G(Is, S s, S t, Pt))]+E[log D(It)] (5)

The feature loss can be written as

Lfea =

n∑

i=0

αi||Di(Ig) − Di(It)||1 (6)

where Di denotes the i−th, i = 0, 1, 2 layer feature from
discriminator, αi denotes the weight of the feature loss of
each layer. The reconstruction loss is used to penalize the
difference between the generated image and the real image
at the pixel level:

Lrec = ||Ig − It||1 (7)

In addition, the perceptual loss

Lper = ||φl(Ig) − φl(It)||1 (8)
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Table 1 The detailed architecture of our approach. k7s1p3 indicates the convolutional layer with
kernel size 7, stride 1 and padding 3.

Module Network layer Output shape(H×W×C)

Conv2d / k7s1p3 + Resblock / k3s1 256× 256 × 3
Conv2d / k4s2p1 + Resblock / k3s1 128× 128 × 16

pose encoder / appereance encoder Conv2d / k4s2p1 + Resblock / k3s1 64× 64 × 32
Conv2d / k4s2p1 + Resblock / k3s1 32× 32 × 64
Conv2d / k4s2p1 + Resblock / k3s1 16× 16 × 128

64× 64 × 32
MSC blocks MSC block×3 32× 32 × 64

16× 16 × 128

SPADE ResBlk 16× 16 × 128
Bilinear Interpolation 32 × 32 × 128

SPADE ResBlk 32× 32 × 64
Bilinear Interpolation 64 × 64 × 64

Texture rendering SPADE ResBlk 64 × 64 × 16
Bilinear Interpolation 128 × 128 × 16

SPADE ResBlk 128 × 128 × 3
Bilinear Interpolation 256 × 256 × 3

Conv2d / k3s1p1 256 × 256 × 3
tanh 256 × 256 × 3

Conv2d / k7s1p3 + Resblock / k3s1 256 × 256 × 3
Discriminator Conv2d / k4s2p1 + Resblock / k3s1 128 × 128 × 16

Conv2d / k4s2p1 + Resblock / k3s1 64× 64 × 32

where φl denotes the output of l−th layer from the pretarined
VGG-19 model, is also used to match the deep features of
the image and is effective in image generation tasks. We also
adopt contextual loss proposed in [19], which is designed
for image generation that naturally handles tasks with non-
aligned training data and is very suitable for the task in the
current paper. The contexttual loss is used:

Lcon = − log(CX(φl(It), φl(Ig)) (9)

where CX denotes the contexttual similarity between the
feature of synthesized image and the feature of target im-
age. The detailed definition can be found in [19]. Finally,
in order to improve the similarity between Ft

s and the tar-
get image in the feature space, the following cost function is
used:

Lcor = ||F t
s − φl(It)||1 (10)

4. Experiments

4.1 Implementation Details

Datasets. Experiments are carried out on the In-
shop Clothes Retrieval Benchmark of the Deepfashion
dataset [10], which contains 52,712 images of people with
varying poses and appearances. Adopting the data division
configuration in [2], 10,1966 image pairs are used as train-
ing dataset and 8750 image pairs are used as test dataset, to
ensure that there is no overlap between the two sets.

Metrics. Inception Score (IS) [20], Structural Similar-
ity (SSIM) [21], Frechet Inception Distance (FID) [22] and
Learned Perceptual Image Patch Similarity (LPIPS) [23] are

used to quantitatively evaluate the quality of the generated
image, which are commonly used as evaluation metrics in
image generation task. For IS and SSIM, a higher score is
better. For FID and LPIPS, a lower score is better.

Network Implementation and Training Details. The
proposed network is implemented based on PyTorch, us-
ing four 2080Ti GPUs. The pose encoder and the appear-
ance encoder both contain 4 down-sampling layers, and the
texture renderer is composed of 4 SPADE ResBlks. The
discriminator is composed of three down-sampling layers.
The detailed parameter setting is shown in Table 1. In each
layer of the network, spectrum normalization [24] is used to
stabilize network training. The Adams optimizer [25] with
β1 = 0.5 and β2 = 0.999 is used. Inspired by TTUR [22],
the initial learning rates of the generator and discriminator
are set to 0.0002 and 0.0003, respectively. The batch size
is set to 4, the training process lasts for 30 epochs, and the
learning rate is linearly decayed to 0 after 15 epochs. The
weights for the loss terms in (4) are set to λadv=1, λfea=1,
λrec=0.01, λper=0.5, λcon=0.4, λcor=1.

4.2 Pose-Guided Person Image Generation Results

The results of pose-guided image synthesis are shown in
Fig. 4. Given a source image and any target pose, the pro-
posed method can convert the pose to the target pose while
maintaining the texture of the source image.

4.2.1 Comparison with SOTA

For pose-guided person image generation, the proposed
method is compared with five state-of-the-art methods, i.e.,
PG2 [1], DefGAN [5], PATN [8] and ADGAN [2], CoCos-
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Fig. 5 Qualitative comparison with state-of-the-art methods.

Fig. 4 Results of synthesizing person images in arbitrary poses from the
Deepfashion dataset

Net [9]. The results of the comparison methods are obtained
through the open-source code and pre-trained models re-
leased by the authors of that papers.

Qualitative comparison. Among the comparison
methods, Def-GAN, PATN, and CoCosNet take the defor-
mation between the source image and the target image into
consideration but PG2 and ADGAN don’t. The qualitative
comparison result is shown in Fig. 5. It can be learnd from
the results that compared with PG2 and ADGAN, the pro-
posed method has the correct pose and more detailed texture
results due to the consideration of the deformation between
the source image and the target image. On the other hand,
compared with other methods, such as DefGAN, PATN, and
CoCosNet, the proposed method can also generate more nat-

ural and realistic results due to the multi-scale correspon-
dence, especially on face identity and hair texture.

Quantitative comparison. To verify the effectiveness
of the proposed method more objectively, quantitative ex-
periments are conducted to compare the proposed method
with state-of-the-art methods. The results of the quantita-
tive comparison are shown in Table 2. It can be known from
the table that the proposed method is better than state-of-
the-art methods in all four evaluation metrics, increasing the
best IS score from 0.773 to 0.813, improving the best SSIM
score from 3.439 to 3.542, reducing the best FID score from
13.009 to 11.307 and dropping the best LPIPS score from
0.177 to 0.127. On the other hand, the proposed method has
fewer parameters than PG2 [1], Def-GAN [5] and CoCos-
Net [9]. The results of qualitative experiment further verify
the effectiveness of the proposed method.

4.2.2 Ablation Study

To verify the influence of the important part of the proposed
method on the final result, the ablation study is conducted.
The ablation study is divided into the following parts: w/o
parsing: The semantic map is not used as target pose repre-
sentation, but only keypoint-based pose representation. w/o
pose feature: The input of the texture renderer is replaced
from the target pose feature to the constant code. w/o GAN
loss: The proposed model is trained without using GAN
loss. w/o MSC blocks: The single-scale correspondence
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Table 2 Quantitative comparison with state-of-the-art methods and ablation study. “Deform” indi-
cates whether the method models deformation and “M” indicates millions.

Model Deform SSIM ↑ IS ↑ FID ↓ LPIPS ↓ Parameters

PG2 [1] (NIPS2017) � 0.773 3.202 47.713 0.245 437.09M
Def-GAN [5] (CVPR2018) � 0.756 3.439 26.430 0.209 82.08M

PATN [8] (CVPR2019) � 0.771 3.203 19.822 0.196 41.36M
ADGAN [2] (CVPR2020) � 0.770 3.392 13.009 0.177 48.79M

CoCosNet [9] (CVPR2020) � 0.759 3.280 15.022 0.194 145.50M

w/o parsing � 0.727 3.461 45.404 0.242 -
w/o pose feature � 0.806 3.410 13.487 0.134 -
w/o GAN loss � 0.808 3.448 13.439 0.132 -

w/o MSC Blocks � 0.811 3.507 11.874 0.136 -
Ours(full) � 0.813 3.542 11.307 0.127 59.60M

Real Data - 1.000 4.053 0.000 0.000 -

Fig. 6 Qualitative results of the ablation study.

is established between the target pose representation and the
source image. The results of the ablation study are shown
in Table 2 and Fig. 6. It can be known from the results that
the target semantic map can provide effective structural con-
straints during the image generation process. Moreover, the
target pose feature as input can effectively guide the ren-
dering of texture features, and under the constraint of GAN
loss, the network can generate a more realistic image. From
the comparison result, it can be seen that the multi-scale cor-
respondence learning can improve the quality of the gener-
ated image.

4.3 Clothing-Guided Person Image Generation Results

As described in Sect. 3.2, the proposed model can extract the
desired clothing attributes from different source images and
combine them to implement clothing-guided person image
generation. As shown in Fig. 7, for the given source image,
the first row represents the conditional image with the de-
sired clothing attributes, and the second row represents the
generated image. In the first three columns, the proposed
model can change the upper clothes of the source image ac-
cording to the desired clothing attributes. In the last three

Fig. 7 Results of synthesizing person images with controllable compo-
nent attributes.

columns, the proposed model can change the pants of the
source image according to the desired clothing attributes.

5. Conclusion

In this paper, a generative model is proposed for person im-
age generation, and is applied to pose-guided person im-
age generation and clothing-guided person image genera-
tion. At the core of our model is the multi-scale corre-
spondence learning between the target pose representation
and the source image, which effectively addresses the mis-
alignment introduced by transferring pose to preserve richer
information on appearance. Experimental results illustrate
that the proposed method is better than state-of-the-art meth-
ods in pose-guided person image generation and show its ef-
fectiveness in clothing-guided person image generation. In
the future work, the approach presented in the current paper
will be extended to person video generation. The key dif-
ficulty of this issue is how to ensure the timing consistency
between frames. Moreover, we will try to use other complex
data set and improve the generalization ability of the model.
Finally, person image generation in complex backgrounds is
also an issue worthy of investigation.
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