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Loan Default Prediction with Deep Learning and Muddling Label
Regularization

Weiwei JIANG†a), Member

SUMMARY Loan default prediction has been a significant problem in
the financial domain because overdue loans may incur significant losses.
Machine learning methods have been introduced to solve this problem, but
there are still many challenges including feature multicollinearity, imbal-
anced labels, and small data sample problems. To replicate the success of
deep learning in many areas, an effective regularization technique named
muddling label regularization is introduced in this letter, and an ensemble
of feed-forward neural networks is proposed, which outperforms machine
learning and deep learning baselines in a real-world dataset.
key words: loan default prediction, deep learning, muddling label regular-
ization

1. Introduction

Different kinds of loans have been a major source of in-
come for financial institutions. However, the default of loans
would incur significant losses. The loan default predic-
tion problem is thus proposed by collecting various data as
the input features, e.g., personal and behavior information.
While the loan default prediction problem has drawn atten-
tion from researchers in different fields and machine learn-
ing methods are already used [1], it is not fully resolved for
the following challenges. The first challenge is the multi-
collinearity in high-dimensional input features, which intro-
duces many highly-correlated features that are not helpful
for building an efficient classifier. The second challenge is
the imbalanced label problem, which is caused by the fact
that overdue cases rarely occur in reality. The third chal-
lenge is the small sample problem. Unlike image or text
data, tabular data used in loan default prediction are difficult
to collect due to both high cost and privacy concerns.

While deep learning has been successful in the finan-
cial domain [2] and computer vision domain [3], it is not
the panacea for problems with tabular data and often fails
behind machine learning models, e.g., support vector ma-
chine, random forest, XGBoost and LightGBM [4]. With
the small sample problem in loan default prediction, deep
learning models are prone to overfitting. In this letter, we
leverage the recently proposed muddling label regulariza-
tion technique [5] for handling overfitting concerns and suc-
cessfully train an ensemble of FFNNs that outperforms ma-
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chine learning baselines, on a real-world dataset for loan de-
fault prediction.

The contributions of this letter are summarized as fol-
lows. First, we use a simple yet general workflow of apply-
ing machine learning technologies to the default prediction
problem. Second, we propose the usage of muddling label
regularization as an effective training method for an ensem-
ble of standard feed-forward neural networks as the clas-
sifier for default prediction. Last, the proposed deep learn-
ing model outperforms all competitive machine learning and
deep learning baselines in a real-world dataset, in terms of
the F1 score.

2. Methodology

The overall workflow for loan default prediction is shown in
Fig. 1. Common data preprocessing operations include fea-
ture deletion, missing data filling, and feature scaling. The
feature reduction technique used in this letter is PCA (prin-
cipal component analysis). The oversampling techniques
used in this letter include SMOTE (synthetic minority over-
sampling technique) and ADASYN (adaptive synthetic sam-
pling approach), both of which are widely used in the litera-
ture. SMOTE applies kNN to choose k nearest neighbors to
create the synthetic samples and ADASYN adaptively gen-
erates minority data samples according to the density distri-
bution using k nearest neighbors.

The base classifier used in this letter is FFNN (feed-
forward neural network). Denote the tabular dataset with N
samples as D = (X,Y) = {(Xi, yi)}, where Xi ∈ Rd, yi ∈
{0, 1}, and d is the feature number. Denote X ∈ Rn×d as a
batch of n samples, H� ∈ Rn×h as the output of hidden layer �
with h neurons, and O ∈ Rn as the output, then the mapping
from X to O in a FFNN with L layers can be denoted as
follows: H1 = σ(XW1+b1), H� = σ(H�−1W�+b�), and O =
HLWL+1 +bL+1, where W and b are model parameters to be

Fig. 1 The overall workflow for loan default prediction.
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trained from data, σ(∗) is the activation function, e.g., ReLU
used in this letter. Denote θ as {Wi,bi}, i = 1, 2, . . . , L + 1,
and the above process can be denoted as a function f , i.e.,
O = f (θ,X).

The loss function used to train the FFNN is extended
from the common BCE (binary cross entropy) function
for binary classification with muddling label regulariza-
tion (BCE-MLR) in this letter. Denoting Y ∈ Rn as
the true labels, the BCE loss is defined as BCE(Y,O) =
− 1

n [Y� log(Sig(O)) + (In −Y)� log(In − Sig(O))], where I
is the identity matrix, Sig(·) is the sigmoid function and � is
the matrix transpose.

To increase the generalization ability of FFNNs, ridge
regularization and random permutations are introduced in
BCE-MLR. For a ridge regularization term λ > 0, we de-
fine P = P(θ, λ,X) = [(HL)�HL + λIh]−1(HL)� ∈ Rh×n. For
a permutation π of n elements, the label permulation opera-
tor of Y is defined as π(Y) = (yπ(1), . . . , yπ(n)). For a given
number T ≥ 1, (πt(Y))T

t=1 are T label permutation operators
that are drawn uniformly at random in the set of all possible
label permutations.

Then, the BCE-MLR function is defined as follows:
BCE-MLR(θ, λ) = BCE(Y,Y∗ + (In − HLP)ξ + HLPY∗) +
1
T

∑T
t=1 |BCE(Y,YIn)−BCE(πt(Y∗), πt(Y∗)+(In−HLP)ξt+

HLPπt(Y∗))|, where ξ and (ξt)T
t=1 are i.i.d. N(0n,I) vectors,

Y∗ = 2Y − 1 and Y = mean(Y).

3. Dataset Description

The real-world dataset used in this letter comes from a
data competition† hosted by China UnionPay Merchant
Services, which provides nationwide payment services for
China UnionPay-labeled cards. The input features include
personal information and property status (feature 1 to fea-
ture 19, including gender, age, house, car, etc.), bank card
holding information (feature 20 to feature 40, including card
type and number, bank types and locations, etc.), transaction
information (feature 41 to feature 130, including the bank
account balance, trading volume, etc.), lending information
(feature 131 to feature 146, including the lending number
and amount in different time periods, etc.), repayment infor-
mation (feature 147 to feature 187, including the repayment
number and amount in different time periods, etc.), and loan
application information (feature 188 to feature 199, includ-
ing the loan number and amount in different time periods,
etc.). The target is to predict the loan default case, which is
a binary classification problem with label 1 as overdue and 0
as no overdue. The labels are highly imbalanced, with 2,144
samples with label 1 and 8,873 samples with label 0.

4. Experiment and Discussion

To evaluate the proposed deep learning approach and com-
pare it with machine learning baselines, the dataset is split
into a training set and a test set with a split ratio of 80% :

†https://open.chinaums.com/intro

20%. The input features with a missing rate higher than
40% are deleted and the remaining 117 features are fulfilled
with zero values before being used as the input of the PCA
module. Min-max normalization is used as the feature scal-
ing technique. Different numbers of components to keep
in PCA are set as 10, 20, and 50. Since accuracy is not
a suitable evaluation metric for imbalanced classification,
the F1 score is adopted in this study, which is the harmonic
mean of the precision and recall. The baseline models in-
clude four traditional machine learning models, i.e., sup-
port vector machine (SVM), random forest (RF), XGBoost
and LightGBM, which are implemented and fine-tuned with
scikit-learn. The baseline models also include two recent
deep learning models, i.e., multilayer perceptron (MLP) [6]
and convolutional neural network (CNN) [7]. A voting en-
semble of three FFNNs based on the majority rule is im-
plemented with PyTorch, in which 1, 2 or 3 hidden layers
are used in FFNNs, with 1024 neurons in each layer. Each
FFNN is trained for 200 epochs, with a batch size of 1 and
a learning rate of 1e-3.

The results are summarized in Table 1. The main find-
ing is that our proposed deep learning approach with the
FFNN ensemble model and BCE-MLR loss function man-
ages to achieve the highest F1 score on the test set with
ADASYN as the over-sampling technique and 20 PCA com-
ponents to keep. Our results reveal a promising research di-
rection by applying the proposed deep learning approach for
similar problems with tabular data. There are some other ob-
servations from our results. The first observation is that al-
most all evaluated models perform poorly without perform-
ing over-sampling techniques, with XGBoost as an excep-
tion. The second observation is that PCA in this case study
brings a performance improvement that exists but is not so
impressive. The third observation is that the best choice for
the number of PCA components to keep is 20, as indicated

Table 1 Experimental results with F1 scores for different models.

Model Over-sampling
PCA

N/A PCA50 PCA20 PCA10

SVM
N/A 0.0744 0.1116 0.1028 0.0274
SMOTE 0.4787 0.4794 0.4862 0.4627
ADASYN 0.4669 0.4803 0.4950 0.4728

RF
N/A 0.0583 0.0046 0.0405 0.0573
SMOTE 0.3841 0.3968 0.4282 0.4117
ADASYN 0.4156 0.4583 0.4694 0.4482

XGBoost
N/A 0.3887 0.4134 0.4059 0.3472
SMOTE 0.4089 0.4181 0.4130 0.4103
ADASYN 0.4236 0.4255 0.4352 0.4015

LightGBM
N/A 0.2275 0.3130 0.0823 0.0938
SMOTE 0.3234 0.3903 0.3947 0.3512
ADASYN 0.3429 0.3747 0.4088 0.3747

MLP [6]
N/A 0.3344 0.2678 0.1943 0.1013
SMOTE 0.3372 0.3616 0.3792 0.3439
ADASYN 0.3516 0.3686 0.3804 0.3590

CNN [7]
N/A 0.2366 0.2275 0.0938 0.0823
SMOTE 0.3253 0.3704 0.3837 0.3815
ADASYN 0.3023 0.3863 0.3889 0.3840

Proposed
N/A 0.2123 0.1768 0.1396 0.1213
SMOTE 0.5083 0.5180 0.5230 0.5131
ADASYN 0.5167 0.5171 0.5275 0.5163
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Fig. 2 F1 scores with different PCA components. (a) SMOTE as the over-sampling technique;
(b) ADASYN as the over-sampling technique.

from different models as a universal result. The last obser-
vation is that in most cases, ADASYN is a better choice than
SMOTE, but the performance gap is minimal.

For a better illustration, F1 scores for evaluated models
with different PCA components are shown in Fig. 2, when
SMOTE and ADASYN are applied as the over-sampling
technique respectively. In both cases, our proposed ap-
proach demonstrates a better performance than the base-
lines.

5. Conclusion

This letter proposes a novel loan default prediction frame-
work with a muddling label regularization and an ensemble
of feed-forward neural networks, which is proven effective
with a real-world dataset. Two further research directions
are considered. The first direction is the potential extension
with other deep learning structures. The other direction is
the extension from binary classification to multi-class clas-
sification, e.g., high/medium/low default risks.
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