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SUMMARY A method to predict lightning by machine learning analy-
sis of atmospheric electric fields is proposed for the first time. In this study,
we calculated an anomaly score with long short-term memory (LSTM), a
recurrent neural network analysis method, using electric field data recorded
every second on the ground. The threshold value of the anomaly score
was defined, and a lightning alarm at the observation point was issued or
canceled. Using this method, it was confirmed that 88.9% of lightning oc-
curred while alarming. These results suggest that a lightning prediction
system with an electric field sensor and machine learning can be developed
in the future.
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1. Introduction

Lightning is a meteorological phenomenon that can cause
enormous damage to humans and electric equipment [1]–
[10]. To realize an “internet of things” society, the devel-
opment of a lightning prediction system to prevent damage
caused by lightning is critical. Previous research has pro-
posed a lightning prediction method based on a threshold
of atmospheric electric field data, which is not pragmatic.
The lightning analysis system of the Japan Meteorologi-
cal Agency (JMA), Lightning Nowcast [11], uses radar and
electromagnetic radiation from lightning to observe thun-
derclouds and lightning on a 1 km mesh at 10 min intervals.
However, it cannot detect thunderclouds and lightning in ad-
vance [12]. By utilizing Machine learning technology, alarm
and alarm canceled system has been obtained with electric
field data from a single field mill for the first time. As shown
in Table 1, It is part of the papers we surveyed on using ma-
chine learning to predict lightning.

The purpose of using machine learning in this study is
to predict the inference result from a large amount of time-
series electric field data. Our model consisted of four layers
and was composed of time-series electric field data recorded
at observation points during fair-weather. The time-series
electric field data at the time of occurrence of lightning was
input into the model, and output values are used in lightning
prediction calculations. The output values were compared
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Table 1 Comparison of lightning prediction methods.

Author Variables Method Field mill alarm

[Tao et al., 2016 [13]] electric field RNN 5 alarm

[Karen et al., 2016 [14]] multivariate random forest several alarm

[Daniel et al., 2018 [15]] electric field CRNN 30 alarm

[Bryson et al., 2018 [16]] multivariate logistic regression 6 alarm

This paper electric field
CRNN /

1
alarm

Decision tree / canceled

Table 2 Dates when data were collected in 2017.

Propoerties of data Month Date

Fair-weather

Training data

July 13th, 14th, 15th, 20th, 21st

Aug
2nd, 3rd, 12th, 13th, 14th, 16th,

19th, 20th, 24th, 27th, 28th

Test data
July 3rd, 6th

Aug 30th, 31st

Lightning-
Verification data

July 9th, 17th, 18th, 28th, 30th

weather Aug 4th, 5th, 18th, 23th, 26th

with the actual electric field data, and the anomaly level was
calculated. The threshold value of the anomaly level was
determined using a confusion matrix. If the anomaly level
exceeds the threshold value, the system issues a lightning
alarm.

2. Experiments

In experiments, the electric field existing between clouds
and the ground were recorded at 1s intervals using a field
mill placed in Amagasaki City Hyogo, Japan [17]. The field
mill can record the electric field change induced by lightning
15 km away. The lightning data is provided by the JMA.
Evacuation action is required within a radius of 10 km from
where lightning occurs.

As shown in Table 2, the dataset was created from 16
days of fair-weather over a period of 2 months.

The training data consisted of 300 s of time-series elec-
tric field data as explanatory variables and (300+1) s of elec-
tric field data as response variables. The machine learning
layer was designed with a many-to-one model to determine
a single predicted value from continuous time-series electric
field data. The model architecture is shown in Fig. 1.

Equation (1) is the Mean Absolute Percentage Error
(MAPE). Since the model’s output in this study is numeri-
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Fig. 1 Machine learning layer structure.

Fig. 2 The difference between the predicted data and the actual data is
the predicted loss.

cal, MAPE was applied to measure accuracy.

MAPE =
100

n

n∑

n=1

∣∣∣∣∣
v̂i − vi
vi

∣∣∣∣∣ (1)

= 24.00%

Equation (2) is the relationship between ε, v̂ and v. If an
actual data v is input that the model cannot predict, the pre-
diction loss ε returns a very large value. As shown in Fig. 2,
if the prediction data v̂ is accurate, then the prediction loss
ε can be viewed as a residual of the actual data v. When v
changes in a manner that the model can predict, the residual
ε converges by v̂ and approaches 0.

Prediction Loss ε = |v̂ − v| (2)

Equation (3) is the anomaly score proposed in the
present study. The anomaly score is the sum of the differ-
ence 300 s between the model output and the actual elec-
tric field values. The 300 s was determined by evaluating
several intervals. Equation (4) is the value obtained using
only the electric field values via the conventional method.
This model is intended to accurately predict the electric field
value in a fair-weather. Since Eq. (3) is the sum of Eq. (2),
the ideal anomaly score in fair-weather should be 0. In the

case of lightning, the model is exposed to sudden changes in
the actual electric field value. The discrepancy between the
model’s predicted value and the actual electric field value
increases, resulting in a rise in anomaly score.

Anomaly score α = log2

⎛⎜⎜⎜⎜⎜⎜⎝
i+300∑

i

ε

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

Electric field sum β = log2

⎛⎜⎜⎜⎜⎜⎜⎝
i+300∑

i

|v|
⎞⎟⎟⎟⎟⎟⎟⎠ (4)

A confusion matrix was used for the simulation to de-
termine the threshold. The variables in the confusion ma-
trix are as follows. The number of true positives (TP) is the
number of correct answers where the system predicted light-
ning and it occurred. The number of false negatives (FN) is
the number of incorrect answers where the system predicted
that lightning would not occur, but it occurred. The number
of false positives (FP) is the number of incorrect answers
where the system predicted that lightning would occur, but
one did not occur. The number of true negatives (TN) is the
number of correct answers for which the system predicted
that lightning would not occur, and it did not occur. The pa-
rameters used to evaluate the confusion matrix include the
accuracy, precision, recall, and the F1 score; the formulas
are as follows.

Accuracy =
T P + T N

T P + FP + FN + T N
(5)

Precision =
T P

T P + FP
(6)

Recall (TPR) =
T P

T P + FN
(7)

F1Score =
2 × Precision × Recall

Precision + Recall
(8)

The success of lightning prediction was evaluated for
each occurrence of lightning. It is necessary to determine
the evaluation radius when evaluating the success because
lightning can be somewhere on a global scale. Therefore,
we defined lightning within 15 km of the field mill as actual
lightning and 15 to 21 km as no lightning. If the threshold
was too low, alarms were issued even though no lightning
occurred, resulting in numerous false alarms. Therefore,
the confusion matrix was calculated for each change in the
threshold to find the optimal threshold. Although recall and
precision are both accuracy indices, they complement each
other; the appropriate threshold should be considered, and
the highest value of the F1 score should be observed, which
is the harmonic mean. As shown in Fig. 3, we determined
that the threshold for the anomaly score was 6.6 and that the
threshold for the electric field sum was 5.1. Table 3 showed
the confusion matrix when the threshold for the anomaly
score was set to 6.6.

As shown in Fig. 4, the same trend was confirmed for
10 days of lightning-day data, one of which is shown be-
low. An alarm can be issued for both the anomaly score and
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Fig. 3 We looked for the point of maximum F1 score while varying the
threshold.

Table 3 Confusion matrix of anomaly score with optimal F1 score.

Anomaly score α Actual

Threshold = 6.6 Lightning No lightning

Predicted
Lightning (TP) 1368 (FP) 171

No lightning (FN) 12 (TN) 33

Fig. 4 Comparison of this study and conventional methods for lightning.

the electric field value when the score exceeds the thresh-
old. For the anomaly score, when lightning passed through,
the score was well below the threshold and did not result
in a false alarm. However, in the electric field value, the
score was often above the threshold when lightning passed
through, resulting in a false alarm.

Fig. 5 Lightning alarm and alarm canceled based on the Anomaly score.

Table 4 The alarm is 32 m and 10s before the lightning, and the alarm
cancels at 42 m and 15 s after the lightning passes.

Period
Time

Description
[hh:mm:ss ]

I
03:49:50 to Period of need to evacuate immediately.

04:22:00 In this case for 32 m 10 s.

II
04:22:00 to Period of dangerous with lightning.

05:31:00 In this case for 1 h 9 m 0 s.

III
05:31:00 to Period of check if no danger.

06:13:15 In this case for 42 m 15 s.

Table 5 Lightning after the anomaly score exceeds the threshold and it
falls below the threshold when lightning passes.

Moment
Time

Description
[hh:mm:ss ]

a 03:49:50
Anomaly score is exceed the threshold.

It is an evacuation alarm can be issued.

b 04:22:00 First lightning 9.28-km distance.

c 05:31:00 Final lightning 7.88-km distance.

d 06:14:15
Anomaly score is fall the threshold.

It is the evacuation alarm can be canceled.

3. Results and Discussion

As shown in Fig. 5, the same trend was confirmed for 10
days of lightning-day data, one of which is shown below.
Tables 4 and 5 show the specific time of issuance and can-
cellation of the alarm.

Equations (9), (10), (11), and (12) can be used to mea-
sure the accuracy of lightning predictions. The true positive
rate (TPR) is the correct rate when the predicted lightning
occurs. The probability of false detection (POFD) is a false
alarm rate when lightning is predicted even though there is
no lightning. The probability of false alarm (POFA) is a
false alarm rate when the predicted lightning did not occur.
True Skill Statistics (TSS) is the difference between TPR
and POFD, a rating index sometimes referred to as Hanssen-
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Table 6 Comparison of lightning prediction accuracy between related
studies and this paper.

TPR %
POFD % POFA % OUI %

(Recall)

[Mazany et al., 2002] 87.5 23.1 30.0 60.2

[Kehrer et al., 2006] 95.0 47.0 45.3 45.0

[Murphy et al., 2008] 37.7 N / A 71.0 N / A

[Da Silva Ferro et al., 2011] 60.0 N / A 41.0 N / A

[Daniel et al., 2018] 77.6 83.0 48.1 53.9

This Paper 88.9 83.8 11.1 44.3

Kuiper Skill Score. The operating utility index (OUI) is a
statistic from a related paper by Kehrer et al. [18] that is
used to weigh the importance of TPR. This paper follows
the method used by Daniel et al. [15] to evaluate the light-
ning prediction accuracy. However, a simple comparison is
difficult because each study uses different prediction meth-
ods. In this study, we confirmed that the anomaly score
α calculated from the prediction loss ε responds to steep
fluctuations in the electric field due to lightning. We have
shown that it is possible to distinguish between fair-weather
and lightning using only electric field data. As shown in
Table 3, it is possible to suppress the FN values by distin-
guishing between the states. As shown in Table 5, the mea-
sured accuracy based on TPR is 88.9% probability of alarm
in actual lightning. This is the second-highest accuracy after
that achieved by Kehrer et al. [18]. The POFD is higher be-
cause the present study evaluates the success prediction for
each lightning and only evaluates alarms for lightning that
are likely to cause false alarms over short distances of 15 to
21 km. The weighted accuracy of OUI was 44.3%.

POFD =
FP

FP + TN
(9)

POFA =
FP

TP + FP
(10)

TSS = TPR − POFD (11)

OUI =
3(TPR) + 2(TSS) − (POFA)

6
(12)

4. Conclusion

Focusing on TPR, the result of this paper, the lightning pre-
diction accuracy is 88.9%. The alarm was 32 m and 10 s
before the lightning approached 10 km, and the alarm can-
celed 42 m and 15 s after the lightning passed. The proposed
model can be trained using only fair-weather data that does
not require observations of lightning-day and is expected to
be used in regions with little lightning. Since lightning can
be predicted using only a tiny amount of electric field data,
the proposed method is expected to improve real-time per-
formance and reduce calculation costs. Furthermore, since
only one observation point is needed, the mesh can be re-
fined and more accurate by increasing the number of ob-
servation points. Future work is expected further to deepen

the architecture of the machine learning model structure and
add electric field data to improve the accuracy of electric
field predictions. This will improve the accuracy of light-
ning predictions and enable alarm earlier.
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