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Graph Embedding with Outlier-Robust Ratio Estimation

Kaito SATTA†, Nonmember and Hiroaki SASAKI†a), Member

SUMMARY The purpose of graph embedding is to learn a lower-
dimensional embedding function for graph data. Existing methods usually
rely on maximum likelihood estimation (MLE), and often learn an embed-
ding function through conditional mean estimation (CME). However, MLE
is well-known to be vulnerable to the contamination of outliers. Further-
more, CME might restrict the applicability of the graph embedding meth-
ods to a limited range of graph data. To cope with these problems, this
paper proposes a novel method for graph embedding called the robust ratio
graph embedding (RRGE). RRGE is based on the ratio estimation between
the conditional and marginal probability distributions of link weights given
data vectors, and would be applicable to a wider-range of graph data than
CME-based methods. Moreover, to achieve outlier-robust estimation, the
ratio is estimated with the γ-cross entropy, which is a robust alternative to
the standard cross entropy. Numerical experiments on artificial data show
that RRGE is robust against outliers and performs well even when CME-
based methods do not work at all. Finally, the performance of the proposed
method is demonstrated on realworld datasets using neural networks.
key words: graph embedding, representation learning, graph data, outlier-
robustness, ratio estimation

1. Introduction

Graph embedding is aimed at learning an embedding func-
tion from data vectors associated with nodes and their link
weights (i.e., graph data). The learned embedding function
converts data vectors to useful lower-dimensional feature
vectors, which enable us to easily use a variety of statisti-
cal methods, while it is not straightforward to apply them to
graph data without learning embedding functions. A num-
ber of tasks can be performed via graph embedding such as
node classification, link prediction, node clustering, etc. For
references of these tasks and more examples, we refer to a
recent survey paper for graph embedding [1]

To develop scalable methods to the graph size or di-
mensionality of data vectors, recent works for graph em-
bedding have employed neural networks and stochastic op-
timization [2]–[5]. A common approach is based on prob-
abilistic models. In [6], the conditional distribution of link
weights given data vectors is modeled by the Poisson distri-
bution, and then an embedding function is learned by max-
imizing the likelihood function with stochastic optimiza-
tion. The likelihood-based approach is simple and has been
demonstrated to work well, but includes two limitations:
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First, we need to specify a probabilistic model for the con-
ditional distribution. Thus, a misspecification of the con-
ditional distribution would lead to degenerated graph em-
bedding. The second limitation is that the maximum likeli-
hood estimation (MLE) is known to be sensitive to outliers.
Thus, when link weights are contaminated by outliers, the
likelihood-based approach can be inappropriate.

To overcome these limitations, a robust method for
graph embedding is proposed in [7]. In this method, an em-
bedding function is learned through conditional mean esti-
mation (CME) of link weights given data vectors using the
β-cross entropy [8]. β-cross entropy is known as a density
power cross entropy and often produces more robust esti-
mation against outliers than MLE. In addition, any spe-
cific probabilistic model is not used for CME in this method.
However, the conditional mean (CM) only describes a lim-
ited statistical dependency between link weights and data
vectors, and thus there should be still a room for improve-
ment over CME. For instance, when CM is constant, then
the embedding function learned through CME can be almost
a constant function, which is useless in general.

This paper proposes a novel method for graph em-
bedding called the robust ratio graph embedding (RRGE).
RRGE robustly learns an embedding function through es-
timation of the ratio between the conditional and marginal
distributions of link weights given data vectors. This ap-
proach should be more appropriate than CME because even
when CM is constant, the conditional distribution in the ratio
is not necessarily constant and captures more general statis-
tical dependencies between link weights and data vectors.
Thus, the proposed method would be able to learn a useful
embedding function on a wider-range of graph data. Fur-
thermore, for robust estimation of the ratio, we propose to
use the γ-cross entropy [9], which has a favorable robustness
property so called the strong robustness: Contamination ra-
tio of outliers is not necessarily assumed to be small for ro-
bust estimation. Previously, a similar method has been pro-
posed for representation learning on Euclidean data based
on density ratio estimation with the γ-cross entropy [10].
Our work can be regarded as an application of the Euclidean
method for representation learning to graph embedding. Fi-
nally, we numerically demonstrate that RRGE is robust to
outliers and works well on a wide-range of graph data even
when CM is constant.
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2. Problem Setting and Background

We consider an undirected graph which consists of n nodes
and links between them. The i-th node is equipped with a
d-dimensional data vector xi ∈ Rd, and the link weight be-
tween i-th and j-th nodes is expressed as a nonnegative and
symmetric weight wi j = w ji ∈ {0, 1, 2, . . . , } where wii = 0
for all i = 1, . . . , n. The goal of graph embedding is to
estimate an embedding function f (x) : Rd → R

K from
{wi j}1≤i< j≤n and {xi}ni=1 where K > 0 denotes the feature di-
mension.

In order to take the link information into account, the
fundamental task is to estimate f (x) such that the statistical
dependency between the link weights wi j and data vectors
(xi, x j) is captured. To this end, let us denote the condi-
tional distribution of the link weight w given data vectors
(x, x′) by p(w|x, x′). Then, we assume that the data vectors
xi are independently and identically distributed, and the link
weights wi j in a random undirected graph are independently

generated as wi j|xi, x j
indep.∼ p(w|xi, x j).

Maximum likelihood estimation (MLE) is one of the
simplest approach to learn f (x) [2], [3], [6]. For in-
stance, [6] substitutes a conditional Poisson distribution for
p(w|xi, x j), and formulates the log-likelihood function as∑

(i, j)∈In

[
wi j log μ f ,α(xi, x j) − μ f ,α(xi, x j)

]
, (1)

where In := {(i, j)|1 ≤ i < j ≤ n}, and μ f ,α(xi, x j) denotes
the conditional mean in the conditional Poisson distribution
and is modeled as log μ f ,α(xi, x j) := 〈 f (xi), f (x j)〉 − α with
the inner product 〈·, ·〉 and a parameter α. Then, the em-
bedding function f (x) is learned by maximizing (1). This
approach is simple and appealing, but includes two issues:
First, it assumes that the underlying conditional distribution
is Poisson, which may not be fulfilled in practice. Second,
MLE is often hampered by the contamination of outliers.

To alleviate these issues, [7] uses the β-cross en-
tropy [8] with which an embedding function f (x) is learned
through conditional mean estimation (CME). By model-
ing the conditional mean E[W |xi, x j] :=

∑
w wp(w|xi, x j) by

μ f ,α(xi, x j) as in (1), the empirical β-cross entropy for CME
is formulated as∑

(i, j)∈In

[
−wi j
μ f ,α(xi, x j)β − 1

β
+
μ f ,α(xi, x j)1+β

1 + β

]
. (2)

This graph embedding method based on the β-cross entropy
has been shown to be robust against outliers. In addition,
this model does not employ a particular probabilistic model
for CME. However, the conditional mean E[W |xi, x j] only
captures a limited dependency between the link weight wi j

and data vectors (xi, x j). For instance, when the true con-
ditional mean is constant (i.e., E[W |xi, x j] = const), then
the estimated conditional mean μ f̂ ,̂α(xi, x j) could be close

to constant (i.e., μ f̂ ,̂α(xi, x j) = 〈 f̂ (xi), f̂ (x j)〉 − α̂ ≈ const),

implying that the learned embedding function f̂ (x) can be
almost a useless constant function.

3. Graph Embedding with Robust Ratio Estimation

3.1 Ratio Estimation for Graph Embedding

A more general approach over CME should be directly
based on estimation of the conditional distribution p(w|x, x′)
without specifying any probabilistic models. However, as
already discussed in Sect. 3.2 of [7] with the β-cross en-
tropy, this general approach might be intractable because
it involves an infinite summation with respect to w ∈
{0, 1, 2, . . . }, which is essentially the same as the partition
function problem in MLE. Alternatively, we estimate the
following ratio of the conditional and marginal distributions
for graph embedding:

log
p(w|x, x′)

p(w)
= log

p(w, x, x′)
p(w)p(x, x′)

, (3)

where p(x, x′) denotes the joint density for x and x′ and
p(w) is the marginal distribution of the link weight w. Un-
like the conditional expectation E[W |xi, x j], the distribution
ratio (3) includes the conditional distribution more directly
and thus would capture more general statistical dependency
between w and (x, x′). Thus, even when E[W |xi, x j] is con-
stant, the distribution ratio (3) is not necessarily constant and
must be dependent to xi and x j due to the conditional dis-
tribution in the numerator. Moreover, by slightly modifying
Theorem 1 in [10], this ratio estimation can be seen as maxi-
mizing mutual information between link weighs and feature
vectors f (x) under some conditions, ensuring the embed-
ding function learned through the ratio estimation would in-
clude large amount of information to link weights.

3.2 Outlier-Robust Ratio Estimation

Next, we develop a practical robust method such that the in-
tractable infinite summation does not appear. To this end, we
apply a representation learning method for Euclidean data
proposed in [10] to graph data, which begins with the fol-
lowing binary classification problem:

D+ := {(wi j, xi, x j)}ni, j=1∼p(w, x, x′)

vs. D− := {(w∗i j, xi, x j)}ni, j=1∼p(w)p(x, x′),

where w∗i j is a random permutation of wi j with respect to
i, j and can be regarded as samples from the marginal dis-
tribution p(w) because the random permutation deletes the
dependency to (xi, x j). Then, we assign pseudo labels y = 0
and y = 1 toD+ andD− respectively, and employ a γ-cross
entropy [9] to estimate the posterior probability p(y|w, x, x′).
To this end, we express a model for p(y|w, x, x′) as

f (y|w, x, x′) = {F(r(w, x, x′))}1−y{1 − F(r(w, x, x′))}y,
(4)
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where F(r(w, x, x′)) := er(w,x,x′ )
1+er(w,x,x′ ) . Since it holds from (4) that

r(w, x, x′) = log
f (y = 0|w, x, x′)
f (y = 1|w, x, x′) ,

r(w, x, x′) can be seen as a model for

log
p(y = 0|w, x, x′)
p(y = 1|w, x, x′) = log

p(w, x, x′|y = 0)p(y = 0)
p(w, x, x′|y = 1)p(y = 1)

= log
p(w, x, x′)

p(w)p(x, x′)
,

where we applied the Bayes theorem with the symmetric
class probabilities (i.e., p(y = 0) = p(y = 1) = 1

2 ) and
following relation fromD+ andD−:

p(w, x, x′|y = 0) = p(w, x, x′)
p(w, x, x′|y = 1) = p(w)p(x, x′). (5)

Thus, we can obtain an estimate of the distribution ratio (3)
through the posterior probability estimation. In fact, the
same approach has been taken in density ratio estimation
using logistic regression [11].

To fit the model r(w, x, x′), our objective function Dγ(r)
is formulated from the γ-cross entropy for posterior proba-
bility estimation in [9], [12] as follows:

Dγ(r) := −1
γ

log

⎡⎢⎢⎢⎢⎢⎢⎣∑
w

� 1∑
y=0

p(y, w, x, x′)

×
⎛⎜⎜⎜⎜⎜⎝ f (y|w, x, x′)γ+1∑1
y′=0 f (y′|w, x, x′)γ+1

⎞⎟⎟⎟⎟⎟⎠
γ
γ+1

dxdx′
⎤⎥⎥⎥⎥⎥⎥⎥⎦

:= −1
γ

log
[1
2

EWXX′
[{

Fγ+1(r(W, X, X′))
} γ
γ+1

]
+

1
2

EW×XX′
[{

1 − Fγ+1(r(W, X, X′))
} γ
γ+1

]]
, (6)

where EWXX′ and EW×XX′ denote the expectations over
p(w, x, x′) and p(w)p(x, x′) respectively, Fγ+1(r(w, x, x′)) :=

e(γ+1)r(w,x,x′ )
1+e(γ+1)r(w,x,x′ ) , and we assumed p(y = 0) = p(y = 1) = 1

2 again
and used (5). In (6), γ is a positive parameter and controls
the robustness to outliers: A higher value of γ implies more
robust to outliers. A simple calculation ensures that Dγ(r) is
minimized at r(w, x, x′) = log p(w,x,x′)

p(w)p(x,x′) .
In practice, we need to approximate (6) from data sam-

ples in D+ and D−. By applying the law of large numbers
for doubly-indexed partially dependent random variables [7,
Theorem A.1] , an empirical approximation of (6) is given
up to a constant by

D̂γ(r) := −1
γ

log
[ 1
|In|

∑
(i, j)∈In

{
Fγ+1(r(wi j, xi, x j))

} γ
γ+1

+
1
|In|

∑
(i, j)∈In

{
1 − Fγ+1(r(w∗i j, xi, x j))

} γ
γ+1

]
, (7)

where |In| denotes the number of elements in In. The key
point is that D̂γ(r) does not include any infinite summation

with respect to w and thus easy to use in practice. We call the
proposed method based on D̂γ(r) as the robust ratio graph
embedding (RRGE). Theoretical analysis to the outlier-
robustness of using the γ-cross entropy has been thoroughly
performed in the context of density ratio estimation. We re-
fer to Sect. 4.3 in [10].

4. Numerical Illustration

4.1 Illustration on Artificial Data

By following the experimental setting in [7], we first in-
dependently generated data vectors {xi ∈ R20}200

i=1 from the
mixture of four Gaussians: 50 data vectors xi were gen-
erated from each Gaussian density, and the k-th Gaussian
density for k = 1, . . . , 4 has mean Aµk and the identity
covariance matrix where the elements in µk ∈ R5 and
A ∈ R20×5 were independently sampled from the normal
density. Then, every generated data vector xi was rescaled
such that

∑200
i=1 xi/200 = 4. Finally, the link weights wi j were

generated as follows:

Bernoulli link with outliers: We randomly generated wi j

from a Bernoulli distribution B(p) where p denotes the
probability: If xi and x j are generated from the same Gaus-
sian, then wi j ∼ B(0.05), while wi j ∼ B(q) if xi and x j are
generated from different Gaussians.
Categorical link with a constant mean: To generate
graph data such that the conditional mean E[W |xi, x j] is
a constant, we first randomly generated wi j ∈ {0, 1, 2} from
a categorical distribution as follows: Denoting by pk the
probability that wi j = k (k = 0, 1, 2), p1 = 1 − 0.1/(1 +
‖xi − x j‖/δ) where δ := maxi, j ‖xi − x j‖, while p0 = p2 =

(1 − p1)/2. Thus, the conditional mean E[W |xi, x j] is ex-
actly one, while the conditional variance of wi j depends on
xi and x j.

By expressing the embedding function by f (x) = Bx
where B ∈ R5×20 is a matrix, we applied the following three
graph embedding methods to the generated graph data:

ML-GE: Embedding function f (x) is learned by maximiz-
ing the likelihood function (1) w.r.t. B and α.
β-GE: Embedding function f (x) is learned by minimizing
the β-cross entropy (2) w.r.t B and α.
RRGE: With a parameter w0, we express r(w, x, x′) :=
|w − w0|〈 f (x), f (x′)〉 − α in (7), and the embedding func-
tion f (x) as well as the parameters (α, w0) are learned by
minimizing the γ-cross entropy (7).

The objective functions in all methods were optimized by
using BFGS, and the ridge regularization was performed to
B. Due to BFGS, the absolute function |w − w0| in RRGE is
smoothly approximated by log(cosh(w − w0)). With the op-
timized matrix B̂, we applied the k-means clustering to the
feature vectors {yi := B̂xi}200

i=1 . The clustering performance
was measured by the adjusted Rand index (ARI) [13]: The
maximum value of ARI is one, and a higher value means a
better clustering result.
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Table 1 Averages of ARI values over 100 runs. Numbers in the parentheses are standard errors. The
best and comparable methods judged by the t-test at the significance level 1% are described in boldface.

ML-GE β = 0.1 β = 0.5 β = 1.0 β = 10 γ = 1 γ = 5 γ = 10 γ = 30
Bernoulli link (q = 0.01)
0.930(0.012) 0.932(0.012) 0.945(0.011) 0.932(0.015) 0.729(0.031) 0.937(0.012) 0.954(0.010) 0.905(0.021) 0.878(0.021)
Bernoulli link (q = 0.02)
0.819(0.017) 0.833(0.016) 0.887(0.014) 0.921(0.016) 0.675(0.030) 0.838(0.017) 0.896(0.015) 0.893(0.017) 0.876(0.022)
Bernoulli link (q = 0.03)
0.535(0.024) 0.557(0.024) 0.684(0.025) 0.851(0.022) 0.686(0.032) 0.650(0.027) 0.687(0.027) 0.804(0.025) 0.846(0.021)
Categorical link
0.075(0.008) 0.075(0.008) 0.075(0.008) 0.075(0.008) 0.077(0.008) 0.529(0.031) 0.581(0.031) 0.753(0.028) 0.875(0.017)

The results for Bernoulli links with outliers are pre-
sented in Table 1. When q = 0.01 (i.e., small contam-
ination of outliers), all methods work well. However, as
q is increased, the ARI values of ML-GE are strongly de-
creased, while both β-GE and RRGE still keep high ARI
values. Thus, RRGE also achieves robust graph embedding
as β-GE. Regarding categorical links with a constant con-
ditional mean (Table 1), RRGE with γ = 30 shows the best
performance. Even for the other γ values, RRGE still per-
forms clearly better than ML-GE and β-GE. This would be
because the distribution ratio (3) captures more general sta-
tistical dependency between link weights and data vectors.
On the other hand, since β-GE is based on CME and ML-
GE assumes the Poisson distribution, their performance is
not so good. In short, these results indicate that RRGE is
robust against outliers as β-GE yet possibly applicable on a
wide-range of graph data.

4.2 Illustration on Realworld Datasets

Next, we demonstrate the performance of RRGE on real-
world datasets, and follow the experimental setting in [14]†.
We employ the following datasets with binary link weights
whose details are given in [14]:

WebKB: 877 nodes, 1,480 links and d = 1,703††.
WordNet: 37,623 nodes, 312,885 links and d = 300†††.
DBLP: 41,328 nodes, 210,320 links and d = 33 [15].

Following the shifted inner product similarity [16], we
used a similarity function, d(xi, x j) = 〈 f (xi), f (x j)〉+h(xi)+
h(x j), where h(x) was modeled as a neural network. Regard-
ing the embedding function f (x), we employed a 2-hidden
layer fully-connected neural network where each hidden
layer has 2,000 units and ReLU activation function. All pa-
rameters were optimized by the Adam optimizer with the
learning rate 5e − 4 and minibatch size nB = 64. For We-
bKB, the learning rate was decreased to 5e − 5 after 100
iterations. To optimize the parameters, the following meth-
ods for binary wights wi j ∈ {0, 1} were employed:

LR: Since a similar form of the objective function has been
used in a number of works and shown promising perfor-
mance (e.g., [14], [16]), we minimized the following objec-
tive function akin to the cross entropy in logistic regression
†https://github.com/kdrl/WIPS
††https://linqs.soe.ucsc.edu/data
†††https://code.google.com/archive/p/word2vec

(LR): ∑
(i, j)∈W′

n

log F(d(xi, x j)) +
∑

(i, j)∈I′i,r
log{1 − F(d(xi, x j))}

where F is the logistic function,W′
n denotes a random sub-

set of node pairs with strictly positive link wights, and I′i,r
is a random subset of In and includes r nodes randomly se-
lected to the i-th node as in the negative sampling. Thus,
the numbers of nodes in W′

n and I′i,r are n2
B and rn2

B, re-
spectively. We used r = 5 as in [14].
RRGE: Here, we simply expressed the ratio model as
r(wi j, xi, x j) = wi jd(xi, x j). Since wi j is binary, this model
form simplifies a learning procedure with stochastic gradi-
ent descent. Inspired by LR, the γ-cross entropy was mod-
ified as follows:

D̂γ(d) := −1
γ

log
[ ∑

(i, j)∈W′
n

{
Fγ+1(d(xi, x j))

} γ
γ+1

+
∑

(i, j)∈I′i,1

{
1 − Fγ+1(d(xi, x j))

} γ
γ+1

]
.

We randomly selected a single data vector x j to xi in the
second summation. This random node selection removes
the statistical dependency to link weights wi j and works
similarly as the random permutation w∗i j in (7) because wi j

are binary.

Evaluation task was link prediction task: Data samples
are split into training (64%), validation (16%), test (20%)
sets. Then, we optimized the parameters on the training sets,
and the best model was selected using the validation set.
For DBLP and WordNet (WebKB), the maximum number of
iterations was 10,000 (2,000), and the model was validated
at every 500 (100) iterations. Based on the validated models,
we predicted links of unseen nodes on the test set, and the
performance score was area under the curve (AUC).

Table 2 shows that the proposed method compares
favorably with LR, and thus is promising on realworld
datasets.

5. Conclusion

This paper proposed a novel method for graph embedding.
In addition to the robustness against outliers, the key feature
is that an embedding function is learned through estimation
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Table 2 Averages of AUC values over 10 runs. The best score for each
dataset and K is described in boldface.

LR γ = 0.1 γ = 0.3 γ = 0.5 γ = 1.0

W
eb

K
B K = 10 0.806 0.832 0.828 0.827 0.816

K = 50 0.792 0.815 0.805 0.800 0.793
K = 100 0.822 0.842 0.838 0.836 0.828

W
or

dN
et K = 10 0.871 0.874 0.882 0.886 0.893

K = 50 0.892 0.893 0.896 0.897 0.896
K = 100 0.901 0.901 0.902 0.904 0.900

D
B

L
P K = 10 0.870 0.861 0.863 0.863 0.866

K = 50 0.876 0.867 0.868 0.867 0.866
K = 100 0.875 0.867 0.868 0.868 0.866

of the ratio between the conditional and marginal distribu-
tions of link weights, which possibly promotes applicabil-
ity to a wider-range of graph data. The usefulness of the
proposed method is demonstrated through numerical exper-
iments both on artificial and realworld datasets.
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