
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.12 DECEMBER 2022
2131

LETTER

Verikube: Automatic and Efficient Verification for Container
Network Policies

Haney KANG†a) and Seungwon SHIN†b), Nonmembers

SUMMARY Recently, Linux Container has been the de-facto standard
for a cloud system, enabling cloud providers to create a virtual environment
in a much more scaled manner. However, configuring container networks
remains immature and requires automatic verification for efficient cloud
management. We propose Verikube, which utilizes a novel graph structure
representing policies to reduce memory consumption and accelerate veri-
fication. Moreover, unlike existing works, Verikube is compatible with the
complex semantics of Cilium Policy which a cloud adopts from its advan-
tage of performance. Our evaluation results show that Verikube performs at
least seven times better for memory efficiency, at least 1.5 times faster for
data structure management, and 20K times better for verification.
key words: cloud, Linux Container, network verification, first-order logic,
virtualization

1. Introduction

Linux Container’s [1] ability to provide better virtual en-
vironment capacity and resource efficiency let Linux Con-
tainer be the de-facto standard for cloud systems. With
the paradigm of application shifting from monolithic to mi-
croservice architecture, service provider initiate their ser-
vices over clouds with containerized applications. In prac-
tice, Google, one of the most well-known IT vendors,
newly creates billions of containers for its services, such as
Youtube, Gmail, and the search engine [2].

Meanwhile, configuring cloud networks remains chal-
lenging due to the potentially large number of tenants and
the complexity. Cloud providers are responsible for manu-
ally writing available and secure network policies that are
thus error-prone. Existing works such as NoD [3], Plotkin
et al. [4], Cloud Radar [5], Probst et al., [6] and Tenant-
Guard [7] proposed several methods for verifying policies
formatted routing rules.

However, policies of container-based cloud environ-
ments introduce unique challenges due to the unique ecol-
ogy of containers. Containers are faster and scale better than
VMs; the policy verification for containers also has to be a
run-time and scale better than those for VMs [2]. Moreover,
instead of the network policy operating within routers, pol-
icy enforcement shifts to direct packet processing [8], [9].
Kano [10] proposes outperforming matrix-based policy ver-
ification for containers compared to existing tools. How-

Manuscript received May 23, 2022.
Manuscript revised August 9, 2022.
Manuscript publicized August 26, 2022.
†The authors are with Electrical Engineering, KAIST, Korea.

a) E-mail: haney1357@kaist.ac.kr
b) E-mail: claude@kaist.ac.kr

DOI: 10.1587/transinf.2022EDL8046

ever, (i) its memory consumption to manage the matrix rep-
resenting connectivity between every pair of containers still
burden host machines, and (ii) it only focuses on container-
level connectivity without considering detailed packet types,
including L4 and L7 protocols.

To overcome these challenges of verifying container
cloud networks, we propose Verikube, a prototype tool for
verifying network policy. Verikube introduces a graph to
manage data of the cloud environment efficiently. Each node
of the graph holds a group of formalized policies; the for-
malized policies are later used as an input of Yices2 [11], an
SMT solver, to figure out cloud network-wide conflicts.

In summary, our contribution is twofold:

• We design an effective and fine-grained policy verifi-
cation tool for containers that is scalable in system re-
source consumption and verification time while sup-
porting a wide range of network policies (L3 to L7).

• We implement a prototype system of Verikube and
demonstrate its effectiveness in real-world cloud envi-
ronments.

2. Background and Motivating Example

2.1 Cilium Network Policy

Cilium is a tool that controls network connectivity imple-
mented with an extended Berkeley Packet Filter (eBPF)
that runs sandboxed programs in the Linux kernel [12]. On
the one hand, Cilium modules running in the kernel as an
eBPF program accelerate Cilium’s packet processing per-
formance. On the other hand, the custom eBPF program
of Cilium enables querying containers not only by their IP
but also by various properties. These advantages of Cilium
facilitate innovative management of containers, as (i) po-
tential container clouds are large-scale, and (ii) volatility of
containers frequently changes their IP addresses.

Cilium policies are either JSON or YAML, as shown
in Fig. 1 (a). Cilium policies share a Global Selector across
the policy. At the same level of policy hierarchy, Direction
and Action such as “ingress” and “egressDeny” follow. Be-
neath, Rule then followed by Direction and Action. At
the top level of each Rule, Per-rule Selector composed of
multiple Expressions comes. Global Selector and Per-rule
Selector become the source and destination selectors based
on the Direction of the corresponding policy Rule. Finally,
Packet Specification, which defines finer-granularity rules

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



2132
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.12 DECEMBER 2022

Fig. 1 (a) Example of Cilium policy which defines connectivity between
Nginx and Database Containers. (b) Example of policy conflict

such as L4 and L7, comes at the lowest level. We use the
term Treatment to refer to a pair of Action and Packet Spec-
ifications.

2.2 Motivating Example

Although Cilium network policy provides an intuitive in-
terface to define rules, human error hinders the availability
of cloud networks. Kubernetes [13], one of the primary con-
tainer orchestration tools provided by Google, supports con-
tainers up to 300K; the number of policies also scales similar
containers, resulting in an increased possibility of the hu-
man factor. For example, Fig. 1 (b) shows the simplest form
of policy error. The “ingress” rule of policy1 allows con-
tainer group A to communicate with container group B, but
the “ingressDeny” rule precludes communication between
the same pair of container groups. The main reason for con-
flicts is the design of policy language, in which identical
policies potentially intersects the semantics of selectors.

3. Design

3.1 Requirements and Overview

Throughout the design, we consider several requirements
and approaches to mediate each.
Verikube uses memory efficiently. We noticed that con-
tainers filtered by the same selectors always have the same
treatments and verification results. Denoting group of con-
tainers filtered by the same policies as container class, we
design Verikube to perform verification for container class
rather than verifying each container. With this approach,
unlike existing approaches managing entire data of cloud,
Verikube no longer needs to manage a list of containers and
reduces the number of verification required. Verikube may
complain about policy conflict that currently does not tar-
get any container. Yet, it is worth to be identified as it is a
potential error for future containers.
Verikube efficiently queries treatments to guarantee run-
time verification. Querying treatment is a bottleneck since
treatments responsible for a container class are scattered

Fig. 2 The overall architecture of Verikube

around many policies in the cloud. Therefore, we introduce
Policy Graph that immediately reflects changes in cloud and
query treatments from selectors. As Policy Graph man-
ages links between policy rules in which selectors are log-
ically implying, Verikube traverse the graph to find treat-
ments without exploring entire policies in the cloud.
Verikube verifies fine-grained L4 and L7 policies. Packet
specification of Cilium Policy is composed of simple action
and various L4 and L7 protocols, yet existing solutions only
verify L3 point-to-point connectivity. Thus, Verikube adopts
SMT-solver Yices2 [11] by converting L4 and L7 policies
into formal propositions. Verikube efficiently detects the
conflict and opens flexibility for Cilium’s features that will
be extended in the future by adopting SMT-solver.

As shown in Fig. 2, Verikube is mainly composed of
two key modules. Once policies change in the cloud, Policy
Graph Constructor, an interface module to manage Policy
Graph, updates policies and reflects the changes into Policy
Graph. It then queries treatments corresponding to the con-
tainer class of the new policy. Treatments returned by Policy
Graph are then passed to Formalizer and transformed into
propositions to be applied by SMT solver. The SMT solver
identifies the verification result, and policy changes are fi-
nally delivered to the cloud if verification succeeds.

3.2 Policy Graph Constructor

Policy Graph G(V, E) is a directed acyclic graph represent-
ing policy rules and their logical relation. We designed each
node to represent a unique pair of container classes iden-
tified by a selector. Thus, we denote a node v(S ,D) ∈ V
defined by selectors S and D, which denote source and des-
tination container class, respectively. Besides, nodes are as-
sociated with treatments T (S ,D). Edge, meanwhile, is de-
noted by e(vi, v j), meaning directed link from vi to v j. Each
edge satisfies following proposition, (S i =⇒ S j)∧(Di =⇒
Dj) =⇒ e(v(S i,Di), v(S j,Dj)) ∈ E.

Policy Graph Constructor, an interface module of Pol-
icy Graph, performs three operations: (i) creating, (ii) re-
moving, and (iii) querying policies. When cloud providers
modify policies, we regard they remove and newly create
policies.

Algorithm 1 describes a simple graph algorithm to re-
flect the cloud’s policy when cloud providers introduce the
new policy. The algorithm takes Policy Graph G(V, E),
Treatments T , and the new policy Policy consists of mul-
tiple entries of policy rules as an input. Each policy rule



LETTER
2133

is composed of a pair of selectors S , D, and treatments. If
a node identified by S and D exists, it extends treatments
of the new policy to T (S ,D) (Line 13). Otherwise, Policy
Graph Constructor creates the new node for an S and D pair
(Line 3), then figures out any node that has logical impli-
cations with the new node (Line 4-10). Finally, it initializes
treatments of a selector pair S , D (Line 11-13). In the case of
dropping policies from the cloud, Policy Graph Constructor
reversely performs the above process to remove nodes and
edges from Policy Graph.

Once policies in the cloud change, verification is
needed. Verikube queries a set of treatments by a pair of
selectors that specifies the container class to be verified to
perform verification. Policy Graph Constructor first access
the node v(S ,D), then traverse edges to figure out nodes con-
nected by v(S ,D) to collect all treatments affecting the par-
ticular container class.

3.3 Formalizer

From treatments queried from Policy Graph, Formalizer
converts treatments to formalized format. As a proto-
type, Verikube only considers the L4 layer and action. For
verification, we first introduce an uninterpreted function,
f (Proto, Port) → Action, to initially allow every type of
packet [14]. The function’s first argument is protocol and
takes one of TCP, UDP, and ANY. Note that ANY semantically
indicates “don’t-care”. However, a second argument, Port,
is an integer value from 0 to 65535. We use a bit vector of
size 16 to describe the data type of Port. At last, f returns
ALLOW or DENY, an alias of True and False.

Formalizer converts each treatment to an assertion that
limits the result of f for given inputs. For example, the treat-
ment allowing Port 80 and TCP packets becomes formalized
as ∀p ∈ Port,∀pr ∈ Proto, p = 80 ∧ pr = TCP =⇒
f (p, pr) = True.

Algorithm 1: Policy Graph Construction when the
new policy introduced

input : G(V, E), T , Policy
output: None

1 for (S ,D,Treatments) ∈ Policy do
2 if v(S ,D) � V then
3 V.append(v(S ,D))
4 for v(S ′,D′) ∈ V do
5 if (S ′ =⇒ S ) ∧ (D′ =⇒ D) then
6 E.append(v(S ′,D′), v(S ,D))
7 else if (S =⇒ S ′) ∧ (D =⇒ D′) then
8 E.append(v(S ,D), v(S ′,D′))
9 end

10 end
11 T (S ,D)← ∅
12 end
13 T (S ,D).extend(Treatments)
14 end

4. Evaluation

4.1 Implementation

We only use Kano [10] for our evaluation since it is the only
related work verifying container networks and is compati-
ble with Cilium Network Policy for evaluation comparison.
However, as Kano is not publicly available, we implemented
its logic by referring to its algorithm described in the pa-
per. To diversify Verikube’s ability, we experimented with
Verikube under two different conditions. On the one hand,
we set experiment settings verikube-min, which creates ran-
dom policies to have a unique single expression to avoid
having an edge between any nodes. On the other hand, we
performed verikube-randedge, which randomly selects ex-
pressions and lets nodes having edges connected to other
nodes.

We implement Verikube with 674 LoCs C code for
high memory efficiency and performance. Kano, however,
is not publicly opened; thus, we manually implemented its
verification algorithm described in the paper [10]. We im-
plemented Kano also with C for a fair comparison, hav-
ing 515 LoCs. We evaluated both Kano and Verikube in
the same environment. Our machine is composed of In-
tel i5-6600K 3.50 GHz quad-core CPU and two 8 Gb of
M378A1G43EB1-CPB 2133 MHz DDR4 memory manu-
factured by Samsung. The host operating system is Ubuntu
20.04.3 LTS focal, and the corresponding kernel version is
5.4.0-89-generic.

4.2 Results

To empirically show advantage of Verikube, we measure
memory usage, CPU cycle for data structure maintenance,
and CPU cycle for verification with different number of con-
tainers and policies. We fixed number of policies to 10K for
measuring resource consumption with different number of
containers, whereas we fixed number of containers to 100K
for measuring affects on number of policies. Our evaluations
are done for five times, and average the resulting values to
avoid dependency on the configuration of randomly selected
node and expressions.
Memory efficiency: As described in Fig. 3 (a), heap mem-
ory usage of Verikube is independent to number of contain-
ers. This result come from our design choice that consumes

Fig. 3 Heap usage comparison of Verikube and Kano with different num-
ber of containers (a) and policies (b).



2134
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.12 DECEMBER 2022

Fig. 4 CPU cycle used by Verikube and Kano to add new policy with
different number of containers (a) and policies (b).

Fig. 5 CPU cycle used by Verikube and Kano for verification with dif-
ferent number of containers (a) and policies (b).

memory space only for storing policies unlike Kano which
requires memory space for every container’s policies re-
gardless of policy duplication. By comparing verikube-min
and verikube-randedge, Verikube requires a small amount of
memory for edges; still, it is small enough and does not dis-
rupt scalability. In the case of increasing number of policies,
shown in Fig. 3 (b), both Verikube and Kano require addi-
tional memory. Nevertheless, as the growing rate of mem-
ory used by Verikube is much smaller than Kano, it does
not exceed 100 MB even if the number of policies reaches
100K.
Data Structure Management: Figs. 4 (a) and 4 (b) describe
CPU cycles used when cloud providers introduce the new
policy into the cloud. CPU usage of Verikube when inserting
new policy does not varies with number of containers, due to
same reason of the result on memory usage. Thus, Verikube
performs identically under different container numbers but
is only affected by policy numbers. However, the perfor-
mance of Kano gets worse when the number of containers
and policies increase. Meanwhile, under the different num-
ber of containers and policies, Verikube performs more than
1.5 faster in any case. By comparing the case of none-edge
and random-edge, there is a significant performance gap be-
tween the two evaluating scenarios caused by the iterating
edges of all related node in Policy Graph.
Verification: As described in Figs. 5 (a) and 5 (b), the
verification performance of Verikube outperforms Kano.
As shown in the figures, the verification performance of
Verikube does not vary by container and policy numbers.
The SMT solver takes in charge of policy verification in
Verikube, and its performance only depends on number of
expression which is commonly low in much cases regard-
less of number of both containers and policies. Meanwhile,
Kano iterates policies of every container, which fails to
scale. In conclusion, the scalability of Verikube does not

depend on the verification process itself.

5. Conclusion

We propose Verikube that efficiently manages data structure
representing cloud environment in terms of memory and
performance. With Verikube, cloud providers are available
to figure out network-wide policy conflict in run-time under
much more strict resource conditions. Our evaluation shows
that Verikube only affected by policy numbers. Verikube per-
forms better under the same number of policies, implying
that Verikube is much more scalable and efficient.

Acknowledgements

This work has been supported by the Future Combat Sys-
tem Network Technology Research Center program of De-
fense Acquisition Program Administration and Agency for
Defense Development. (UD190033ED)

References

[1] “Linux containers - LXC,” https://linuxcontainers.org/lxc/
introduction/, accessed May 15 2022.

[2] “Cloud functions,” https://cloud.google.com/functions, accessed
May 15 2022.

[3] N.P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G.
Varghese, “Checking beliefs in dynamic networks,” 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 15), pp.499–512, 2015.

[4] G.D. Plotkin, N. Bjørner, N.P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” ACM SIGPLAN Notices, vol.51, no.1, pp.69–83, 2016.

[5] S. Bleikertz, C. Vogel, and T. Groß, “Cloud radar: near real-
time detection of security failures in dynamic virtualized infrastruc-
tures,” Proc. 30th annual computer security applications conference,
pp.26–35, 2014.

[6] T. Probst, E. Alata, M. Kaâniche, and V. Nicomette, “An auto-
mated approach for the analysis of network access controls in cloud
computing infrastructures,” Network and System Security, Lecture
Notes in Computer Science, vol.8792, pp.1–14, Springer Interna-
tional Publishing, Cham, 2014.

[7] Y. Wang, T. Madi, S. Majumdar, Y. Jarraya, A. Alimohammadifar,
M. Pourzandi, L. Wang, and M. Debbabi, “Tenantguard: Scal-
able runtime verification of cloud-wide vm-level network isolation,”
Proc. 2017 Network and Distributed System Security Symposium,
2017.

[8] “Cilium - Linux native, API-aware networking and security for con-
tainers,” https://cilium.io, accessed May 15 2022.

[9] J. Nam, S. Lee, H. Seo, P. Porras, V. Yegneswaran, and S. Shin,
“{BASTION}: A security enforcement network stack for container
networks,” 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pp.81–95, 2020.

[10] Y. Li, C. Jia, X. Hu, and J. Li, “Kano: Efficient container network
policy verification,” 2020 IEEE Symposium on High-Performance
Interconnects (HOTI), pp.63–70, IEEE, 2020.

[11] “The Yices SMT Solver,” https://yices.csl.sri.com, accessed May 15
2022.

[12] “eBPF - Introduction, tutorials & community resources,” https://
ebpf.io, accessed May 15 2022.

[13] “Kubernetes,” https://kubernetes.io, accessed May 15 2022.
[14] “Yices Manual Version 2.6.4,” https://yices.csl.sri.com/papers/

manual.pdf, accessed May 23 2022.

http://dx.doi.org/10.1145/2914770.2837657
http://dx.doi.org/10.1145/2664243.2664274
http://dx.doi.org/10.1007/978-3-319-11698-3_1
http://dx.doi.org/10.14722/ndss.2017.23365
http://dx.doi.org/10.1109/hoti51249.2020.00024

