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Entropy Regularized Unsupervised Clustering Based on Maximum
Correntropy Criterion and Adaptive Neighbors

Xinyu LI†, Hui FAN†, and Jinglei LIU††a), Nonmembers

SUMMARY Constructing accurate similarity graph is an important
process in graph-based clustering. However, traditional methods have three
drawbacks, such as the inaccuracy of the similarity graph, the vulnerability
to noise and outliers, and the need for additional discretization process. In
order to eliminate these limitations, an entropy regularized unsupervised
clustering based on maximum correntropy criterion and adaptive neighbors
(ERMCC) is proposed. 1) Combining information entropy and adaptive
neighbors to solve the trivial similarity distributions. And we introduce
�0-norm and spectral embedding to construct similarity graph with sparsity
and strong segmentation ability. 2) Reducing the negative impact of non-
Gaussian noise by reconstructing the error using correntropy. 3) The pre-
diction label vector is directly obtained by calculating the sparse strongly
connected components of the similarity graph Z, which avoids additional
discretization process. Experiments are conducted on six typical datasets
and the results showed the effectiveness of the method.
key words: adaptive neighbors, entropy regularized, half-quadratic opti-
mization, maximum correntropy criterion

1. Introduction

Clustering is an important topic in computer vision and ma-
chine learning. With the increase of the amount of data
and the complexity of data types, it is more and more time-
consuming to label data, so it is necessary to study unsu-
pervised clustering. It can be divided into K-means-based
clustering and graph-based clustering [1]. However, it is
hard to accurately partition real-world data because it is usu-
ally non-linear separable. In order to deal with the complex
manifold structure in data, researchers have proposed many
graph-based clustering methods [2], [3].

Cai et. al. [4] proposed a regularized graph NMF
(GNMF) method to encode geometric information. Pei et
al. [5] proposed a concept decomposition method (CFAN)
with adaptive neighbors. The basic idea is to integrate an
adaptive neighbor regularization constraint into the concept
decomposition, and the goal is to extract the representation
space that maintains the geometric neighborhood structure
of the data. Huang et al. [6] proposed an adaptive graph
regularized clustering method based on NMF, which per-
forms matrix decomposition and similarity learning at the
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same time. By balancing the interaction between the two
subtasks in the model, each subtask is iteratively improved
based on the results of the other subtask. Wang et al. [7]
proposed an unsupervised clustering method that combines
information entropy and adaptive neighbors to dynamically
learn connected graphs.

Although graph-based clustering have achieved many
remarkable achievements, these algorithms still suffer from
some shortcomings. Most methods are measured based on
distance, and the similarity graph is usually fixed in the sub-
sequent analysis. They lack physical meaning and are very
sensitive to the noise contained in the original data. More-
over, the methods mentioned above do not take into account
the significant impact of noise and outliers on the clustering
results.

2. Related Work

2.1 Adaptive Neighbor

Denote X = {x1, x2, . . . , xn} ∈ Rd×n as the data matrix and
Y = {y1, y2, . . . , yn} ∈ Rd×n as the clean data matrix. The
original data always contain noise and outliers, so we learn
similarity graph directly from the clean data Y . Thus, the
preliminary neighbor clustering model can be expressed as

min
zT

i 1=1,0≤zi≤1,zii=0

n∑
j=1

(‖yi − y j‖22zi j). (1)

However, there is a trivial solution to Eq. (1), so that only
the point closest to yi belongs to its neighbor. To solve this
problem, we introduce the entropy maximization constraint.

2.2 Information Entropy Maximization

Information entropy is defined as Π(zi) =
∑n

j=1(−zi j ln zi j).
Since the value of zi j is non-negative, the equation can only
reach a minimum when one of the elements has a value of
1 and the others have a value of 0. This sparse overfitting
distribution is no different from the trivial solution of the
Eq. (1). To avoid this situation, we consider combining the
information entropy maximization regularization with the
Eq. (1) to reliably and stably fit the current state of similar
variables at each step of the optimization process to obtain
the optimal similarity graph.
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2.3 Spectral Embedding

Denote F = { f1, f2, . . . , fn} ∈ Rn×c as the indictor matrix, if
two data points are similar, their indicator vectors are also
closed to each other [8]. It can be expressed as

min
n∑

i, j=1

‖ fi − f j‖22zi j. (2)

2.4 Correntropy

Correntropy is a measure of the local and nonlinear similar-
ity of two random variables in information theory [9]. It can
be defined as

G(P,Q) = E[κ(P,Q)] =
∫
κ(p, q)dFPQ(p, q), (3)

where κσ is a shift-invariant kernel with the bandwidth of σ,
E[·] denotes the expectation, and FPQ(p, q) denotes the joint
distribution function of (P, Q) [10]. Given a finite number
of samples (pn, qn)N

n=1, the approximate correntropy can be
obtained as

GN,σ(P,Q) =
1
N

N∑
n=1

Ω (pn − qn) , (4)

where Gaussian distributed kernel function Ω(p − q) =

e−
(p−q)2

2σ2 . Correntropy eliminates the negative impact of larger
outliers on clustering by adjusting the observation window
σ. Correntropy can extract higher-order statistics of data, so
as to solve the stability problem of second-order similarity
measure [11].

3. Proposed Method

3.1 Model of ERMCC

ERMCC integrates reconstruction error based on corren-
tropy, spectral embedding, adaptive graph construction
combining graph regularization and information entropy of
similarity matrix into a unified objective function as shown
in Eq. (5).

max
Y,F,Z

d∑
i=1

Ω

⎛⎜⎜⎜⎜⎜⎜⎝
√√ n∑

j=1

(
Xi j − Yi j

)2⎞⎟⎟⎟⎟⎟⎟⎠ − λ‖ fi − f j‖22zi j

− α
n∑

i=1

n∑
j=1

(‖yi − y j‖22zi j − μzi j ln zi j),

s.t.∀i, zT
i 1 = 1, 0 ≤ zi j ≤ 1, zii = 0, ‖zi‖0 = k.

(5)

The advantages of the ERMCC model can be summarized
in the following three parts:

(1) Correntropy removes the effects of non-Gaussian noise
and outliers by adjusting the kernel bandwidth σ, and

it can extract more information from the data for adap-
tive learning, resulting in more accurate solutions than
traditional MSE method.

(2) To solve the problem of noise and outliers and the prob-
lem of trivial solutions in the traditional method of con-
structing similarity graph. The combination of graph
regularization based on clean data Y and similarity ma-
trix information entropy reliably and stably fits the cur-
rent state of similar variables at each step of the opti-
mization process to obtain the optimal similarity graph.

(3) Spectral embedding and �0-norm constraint are used to
satisfy that the constructed sparse similarity graph Z
have accurate c connection component. This ensures
that the clustering results are obtained while learning
the similarity graph, avoiding additional discretization
operations.

3.2 Solution of ERMCC

3.2.1 HQ Optimization

Nonlinear and nonconvex problems are difficult to optimize
directly, so we use a half-quadratic optimization method for
the reconstruction error term [12]. It can be written as

max
Y,�
Ω =

d∑
i=1

�i

σ2

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

(
Xi j − Yi j

)2 − ϕ (�i)

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)

When the parameter is fixed, Eq. (6) can be expressed equiv-
alently as

min
Y
Ω = −

d∑
i=1

�i

n∑
j=1

(
Xi j − Yi j

)2
= tr(XT PX − 2YT PX + YT PY),

(7)

where P is a positive diagonal matrix and Pii = −�i =

e−
∑n

j=1(Xi j−Yi j)2

2σ2 and σ =
√

1
2d

∑d
i=1
∑n

j=1

(
Xi j − Yi j

)2
. Then

Eq. (5) can be transformed as

min
Y,F,Z

d∑
i=1

tr(XT PX − 2YT PX + YT PY) + λ‖ fi − f j‖22zi j

+ α

n∑
i=1

n∑
j=1

(‖yi − y j‖22zi j + μzi j ln zi j),

s.t.∀i, zT
i 1 = 1, 0 ≤ zi j ≤ 1, zii = 0, ‖zi‖0 = k. (8)

3.2.2 Initialize Similarity Matrix Z

Y is initialized to a d×n random matrix. Introducing the La-
grange multiplier method to Eq. (7), according to the KKT
conditions, we can obtain:

Y ← Y
PX
PY
. (9)

Initialize similarity matrix Z, and use the Lagrange mul-
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tiplier method to solve Eq. (8). Meanwhile, we denote
uy

i j = ‖yi − y j‖22, then we can rewrite Eq. (8) as

min
Z
α

n∑
i=1

n∑
j=1

uy
i jzi j + μzi j ln zi j

s.t.∀i, zT
i 1 = 1, 0 ≤ zi j ≤ 1, zii = 0

(10)

Construct Lagrange function as

L = α
n∑

j=1

(uy
i jzi j + μzi j ln zi j) + β(

n∑
j=1

zi j − 1). (11)

Take the partial derivative with respect to zi j and β respec-
tively, then we can obtain:

zi j = e−
1
μ (uy

i j+
β
α )−1
= e−

β
αμ−1e−

1
μ uy

i j . (12)

Substitute Eq. (12) into the partial derivative of L with re-
spect to β to get

e−
β
αμ−1

n∑
m=1

e−
1
μ uy

im = 1⇔ e−
β
αμ−1
=

1∑n
m=1 e−

1
μ uy

im

. (13)

Substitute Eq. (13) into Eq. (12) to get the initialization so-
lution of zi j,

ẑi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e
− 1
μ u

y
i j∑n

m=1 e−
1
μ u

y
im
, if j � i;

0 if j = i.
(14)

We set the parameter as μ = (ζ/n)
√∑n

i, j=1(uy
i j)

2, where ζ is

an additional ratio coefficient that adjusts the initial μ. Since
uy

i j = ‖yi − y j‖22, it is equivalent to setting the value of μ
according to different datasets.

3.2.3 Update Variable

Fix Z, Y and update F:
Equation (8) can be transformed as

min
F
‖ fi − f j‖22zi j = min

F
λtr(FT LZ F). (15)

The optimal solution of Eq. (15) is to obtain the orthogonal
clustering index matrix F formed by the c eigenvectors of
LZ corresponding to the c minimum eigenvalues.

Fix F, Y and update Z:
Denote u f

i j =
1
2‖ fi − f j‖22 and ui j = uy

i j + ξu
f
i j, where

ξ = λ
α

, then we can rewrite Eq. (8) as

min
Z

n∑
i=1

n∑
j=1

‖yi − y j‖22zi j + μzi j ln zi j + ξ‖ fi − f j‖22zi j

= min
Z

n∑
i=1

n∑
j=1

ui jzi j + μzi j ln zi j

s.t.∀i, zT
i 1 = 1, 0 ≤ zi j ≤ 1, zii = 0, ‖zi‖0 = k. (16)

Referring to the process of initializing the similarity matrix

Z, we can obtain

zi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−

1
μ ui j∑n

m=1 e−
1
μ uim
, if j � i;

0 if j = i.
(17)

The �0-norm constraint ‖zi‖0 = k is introduced here to limit
the number of non-zero elements in zi to optimize Eq. (17).
On the basis of the obtained z, elements from k to n are
extracted and normalized, while the other n-k elements are
discarded, finally we can obtain:

zi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−

1
μ ui j∑k+1

m=2 e−
1
μ uim
, if 2 ≤ j ≤ k + 1;

0 if j = 1 or k + 1 < j ≤ n.
(18)

3.3 Theoretical Analysis of ERMCC

The stopping condition is rank(LZ) = n − c, which means
that the obtained similarity graph Z has c connected com-
ponents. During the iterative process, the value of rank(LZ)
and n− c are re-compared after each update. Setting the ini-
tial value of λ to be the same as μ. When rank(LZ) < n − c,
it means that the current similarity graph Z does not have
enough connected components, and the role of rank con-
straint should be strengthened, λ should be adjusted to 2λ.
Similarly, when rank(LZ) > n− c, λ should be adjusted to λ2
to weaken the effect of rank constraints.

4. Experiments

4.1 Experimental Setup

Clustering experiments are conducted on 6 publicly avail-
able benchmark datasets, the description of datasets is
shown in Table 1. We compare ERMCC with 6 cluster-
ing methods: K-means, GNMF [4], CFAN [5], NMFAN [6],
ERCAN [7] and ER-F.

4.2 Experimental Result

The comparison of clustering results with various methods
on the three evaluation indicators of ACC, NMI and Purity
is shown in Table 2. To show the effect of the correntropy,
we construct a variant ER-F of ERMCC that excludes the
correntropy from the objective function. We used traditional
Frobenius norm for the reconstruction error measure and ex-
press this term as ‖X − Y‖2F . There are three reasons for

Table 1 Description of datasets.

Type of Dataset Dataset Samples Features Classes
Face image dataset JAFFE 676 213 10

CMU PIE 1166 1024 53
Voice dataset THCHS30 1440 1024 20
UCI dataset Balance 625 4 3

Control 600 60 6
Object image dataset COIL20 1440 1024 20
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Table 2 Experimental results on 6 different datasets.

Dataset Kmeans GNMF CFAN NMFAN ERCAN ER-F ERMCC
ACC

JAFFE 76.24 97.65 91.08 76.92 96.71 96.71 98.12
CMU PIE 31.55 79.85 46.31 41.54 67.84 68.95 83.28
THCHS30 51.10 78.47 60.35 63.77 83.26 85.90 85.90

Balance 53.62 51.20 48.48 67.02 62.24 77.92 78.72
Control 57.39 58.83 71.00 61.63 68.83 75.50 75.50
COIL20 57.55 82.22 65.35 61.82 87.22 87.56 87.78

NMI
JAFFE 81.48 96.48 89.18 80.65 96.23 96.23 97.31

CMU PIE 58.48 92.52 69.39 64.60 84.21 84.49 93.91
THCHS30 68.97 85.12 68.03 75.58 90.34 92.58 92.58

Balance 14.14 10.53 10.96 31.20 8.02 36.32 37.49
Control 65.88 74.21 62.74 69.87 75.80 76.45 76.45
COIL20 73.33 89.99 73.09 73.88 94.50 94.50 94.50

Purity
JAFFE 79.15 97.65 91.08 79.34 96.71 96.71 98.12

CMU PIE 37.66 83.79 51.20 46.02 71.10 73.41 87.22
THCHS30 55.45 79.65 62.99 67.18 86.39 86.04 86.04

Balance 67.62 66.40 64.32 76.62 63.68 80.64 82.24
Control 63.51 66.67 71.00 66.78 73.00 75.50 75.50
COIL20 61.93 83.96 67.92 66.55 90.00 90.00 90.00

the better performance of ERMCC. First, ERMCC elimi-
nates the effect of large differences in results due to the ex-
tra discretization process. Then, ERMCC combines infor-
mation entropy and adaptive neighbors, while introducing
�0-norm constraint and spectral embedding, making the fi-
nal obtained similarity graph sparse and strongly connected.
Finally, compared to ER-F, ERMCC uses the correntropy to
address the non-Gaussian noise and outliers which further
improves the performance of the method. On some datasets,
the performance of ER-F is very close or the same as that
of ERMCC, the reason may be that these datasets do not
contain non-Gaussian noise.

5. Conclusion

In this letter, an entropy regularized unsupervised cluster-
ing based on maximum correntropy criterion and adaptive
neighbors (ERMCC) is proposed. It not only removes the

extra discretization process and obtains the clustering results
directly based on the constructed similarity graph, but also
introduces the correntropy to alleviate the influence of non-
Gaussian noise and outliers. Experiments have also proved
that ERMCC has certain advantages compared with the ex-
isting clustering methods.
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