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Group Sparse Reduced Rank Tensor Regression for
Micro-Expression Recognition∗

Sunan LI†,††, Yuan ZONG†a), Cheng LU†,††, Nonmembers, Chuangan TANG†, Member,
and Yan ZHAO††, Nonmember

SUMMARY To overcome the challenge in micro-expression recogni-
tion that it only emerge in several small facial regions with low intensity,
some researchers proposed facial region partition mechanisms and intro-
duced group sparse learning methods for feature selection. However, such
methods have some shortcomings, including the complexity of region divi-
sion and insufficient utilization of critical facial regions. To address these
problems, we propose a novel Group Sparse Reduced Rank Tensor Re-
gression (GSRRTR) to transform the fearure matrix into a tensor by lay-
ing blocks and features in different dimensions. So we can process grids
and texture features separately and avoid interference between grids and
features. Furthermore, with the use of Tucker decomposition, the feature
tensor can be decomposed into a product of core tensor and a set of ma-
trix so that the number of parameters and the computational complexity
of the scheme will decreased. To evaluate the performance of the proposed
micro-expression recognition method, extensive experiments are conducted
on two micro expression databases: CASME2 and SMIC. The experimen-
tal results show that the proposed method achieves comparable recognition
rate with less parameters than state-of-the-art methods.
key words: micro expression recognition, tensor, Tucker decomposotion,
group sparse learning

1. Introduction

In recent years, micro-expression recognition has been an
active topic in the fields of computer vision and human-
machine interaction. However, the micro-expression is hard
to detect and classify due to it only emerges in several small
facial regions and only lasts fewer than 0.2 second. Due
to these difficulties, many researchers had investigated the
region selection methods to suppress the influence of other
facial regions. Inspired by Facial Action Coding System
(FACS), Wang et al. designed Regions of Interests (ROIs)
that crop the face based on the action units [1]. Further-
more, in [2] Zong et al. proposed a kernelized group sparse
learning (KGSL) method to build the relationship between
descriptors that extracted from hierarchical divided facial
image. However, these methods laying texture features by
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turns in one dimension to construct feature matrices, which
mixed information from different facial blocks and texture
features of these blocks.

Based on the fact that different kind feature matrices
can be stacked in different dimensions to make feature ten-
sors, tensor is very useful in excavateing underlying struc-
ture of high dimensional feature [3]. In [4], Vasilescu et al.
constructed tensor with two dimensions corresponding the
views and illuminations respectively to excavate the multi-
factor structure information of the feature tensor. Decom-
position and sparse coding based method was proposed in
[5] that extracted useful information from the origin feature
tensor to reduce the number of parameters needed in the op-
timization step.

In this letter, we propose a novel Group Sparse Re-
duced Rank Tensor Regression (GSRRTR) model to con-
struct feature tensor by laying grids and features in different
dimensions. Benefit from the separation of selecting grids
and features, these two different type features can be pro-
jected into the better feature spaces without the interference
of another. Since the complexity of computing quadratic in-
creased with the size of feature and number of blocks, we
use Tucker decomposition to reduce the paramters. In this
case, the GSRRTR model learns projection matrix from dif-
ferent dimension of feature tensor respectively and reduces
the compution complexity based on the Tucker decomposi-
tion.

2. GSRRTR

2.1 GSLSR

To begin with, we will give a brief review of the Group
Sparse Least-Squares Regression (GSLSR). Given R micro-
expression video clip’s hierarchical spatiotemporal descrip-
tors that extracted according [6] as X = [x1, · · · , xR] ∈ Rd×R,
where d represents the size of hierarchical spatio-temporal
descriptors. And we use Y =

[
y1, · · · , yR

] ∈ Rc×R represents
X’s label, and the c is the number of classes in used database
and yR is a vector that depends on the sample R’s true micro-
expression. Intuitively, there could have a projection matrix
to project the feature matrix into the label space. For this
reason, we can construct the difference between label ma-
trix and projected feature matrix by Eq. (1):

min
U

∥∥∥Y − UT X
∥∥∥2

F
, (1)
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where UT is the proposed projection matrix. By partitioning
the ordinary face into blocks, matrix UT X should be trans-

formed into
N∑

i=1
UT

i Xi where Xi is the used facial block’s tex-

ture descriptor matrix and Ui is the corresponded projection
matrix of block Xi. Then the equation of (1) can be rewritten
as:

min
Ui

∥∥∥∥∥∥∥Y −
N∑

i=1

UT
i Xi

∥∥∥∥∥∥∥
2

F

. (2)

Then, for selecting facial blocks that exactly associated
with micro-expressions, the parameter βi is introduced to
quantify different facial blocks based on their importance.
Since their contributions are probably different, we can im-
pose l1 norm regularization onto the objective function to
eliminate the influence of most blocks during optimization.
Therefore, the final GSLSR model can be written as follows:

min
Ui, β

∥∥∥∥∥∥∥Y −
N∑

i=1

βiU
T
i Xi

∥∥∥∥∥∥∥
2

F

+ μ

N∑
i=1

βi (3)

2.2 GSRRTR

Due to the QR decompose was used in the original GSLSR,
the projection matrix U was decomposed into the product of
two matrices G and U. Then the parameter βi had been prod-
uct with U to construct Ui. During the optimization proce-
dure of Ui, the information of blocks and part of texture
feature are mixed while the other part of texture feature G
is not affected. This issue may influence the performance of
learned projection matrix.Tensor-based algorithms are pre-
ferred in tickling multi-view features. This is the main moti-
vation of extending ordinary GSLSR to a tensor version for
tackling hierarchical block and texture descriptors respec-
tively. For using tensor based method, the matrix Xi and
Ui in formulation (3) can be written in a high-order fomu-
lation X = [X1, · · · , XR] ∈ Rd′×N×R and U ∈ Rc×d′×N where
XR ∈ Rd′×N represent the feature of sample R, d′ is the di-
mension of hierarchical spatiotemporal descriptors and N is
the number of facial clip’s patchs that satisfied d = d′ × N.
Then, we can rewritten the GSLSR formulation of (3) as:

min
Ui, β

∥∥∥∥∥∥∥Y −
N∑

i=1

βiUT
(1)iX(3)i

∥∥∥∥∥∥∥
2

F

+ μ

N∑
i=1

βi. (4)

The Tucker decomposition can reduce the rank of fea-
ture tensor and projection tensor. The tensorX andU in for-
mulation (4) can be rewritten as the tensor product of core
tensor and some projection matrix:

X = CEX×1VX1×2VX2×3VX3;

U = CEU×1VU1×2VU2×3VU3,

where ×n represent the product between a tensor and a ma-
trix on nth dimension, CEX ∈ RM1×M2×M3 and CEU ∈
RM1×M2×M3 are the core tensor of the decomposition, V(X)N

and V(U)N represent the projection matrix on the n-order of
the feautre tensor and original projection tensor. The final
optimization formulation is getted by substituting X and U
into the original GSLSR instead of Xi and Ui in (3):

min
Ui, β

∥∥∥∥∥∥∥Y −
N∑

i=1

βiVU1 ×CEU(1) × A1 × A2 ×CET
X(3) × VT

X3

∥∥∥∥∥∥∥
2

F

+ μ

N∑
i=1

βi.

(5)

Where A1 = VU2⊗VU3, A2 = VX1⊗VX2, then we can translate
the formultion (5) into:

min
Ui, β

∥∥∥∥∥∥∥Y −
N∑

i=1

βiVU1 ×CEU(1) × A3 × A4 ×CET
X(3) × VT

X3

∥∥∥∥∥∥∥
2

F

+ μ

N∑
i=1

βi.

(6)

Where A3 = VU2 ⊗ I, A4 = VX1 ⊗ VU3 × VX2, so we can
translate the loss function of GSRRTR into the format of
original GSLSR problem. To achieve this goal, we follow
the definition of parameters in formulation (3), let:

G = VU1 ×CEU(1);

P = VU2 ⊗ I;

Z = (VX1 ⊗ VU3 × VX2) ×CET
X(3) × VT

X3.

Based on the construction of Eq. (4) and the definition of
Tucker decomposition in different dimensions we can get
different loss functions due to the Tucker decomposition in
different dimensions of feature tensor, then the final loss
function can be rewritten as the sum of two losses:

L = min
Ui,Pi

∥∥∥∥∥∥∥Y −
d∑

i=1

G1 × P1 × Z1

∥∥∥∥∥∥∥
2

F

+ λ1 ‖U1‖1

+

∥∥∥∥∥∥∥Y −
N∑

i=1

G2 × P2 × Z2

∥∥∥∥∥∥∥
2

F

+ λ2 ‖U2‖1

s.t. P1 = U1; P2 = U2.

(7)

Then, based on the optimization of GSLSR, the final opti-
mization problem can be obtained, which aims to minimize
the Lagrangian function using ALM method:

L(P1, P2,U1,U2, λ1, λ2, u1, u2) = L + Tr[T1(P1 − U1)]

+
u1

2
‖P1 − U1‖2F + Tr[T2(P2 − U2)] +

u2

2
‖P2 − U2‖2F .

(8)

Where T1 and T2 are Lagrange multipliers, u1 and u2 are
regularized parameters. Finally the optimal P1, P2 and U1,
U2 can be learned by optimizing the Lagrangian function (8)
iteratively until all convergence conditions are satisfied. The
procedures for P1’s optimization are given in Algorithm 1 as
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Algorithm 1 Procedure for learning the optimal parameter
Un of GSRRTR.
Input: feature matrix of training set X, label matrix of training set L, trade-

off parameter λn un, order of Tucker decomposition Mn

Output: Ensemble of classifiers on the current batch, En;
1: Fix T1 and U1 and update P1:

P1 =

(
2ZZT

μ1
+ I

)−1 (
2ZXT G1 − T1

μ1
+ U1

)

in the formulation matrix I represent the identity matrix
2: Fix T1 and P1 and update U1 [7]:

U1 =

∥∥∥∥P1 +
T1
μ1

∥∥∥∥
F
− λ1
μ1∥∥∥∥P1 +

T1
μ1

∥∥∥∥
F

(
P1 +

T1

μ1

)

3: Update T1:

T1 = T1 + ρ1(P1 − U1)

Where ρ1 is a scaled parameter
4: Update the parameter u1;

u1 = min(ρ1u1, umax)

5: Repeat step 1–4 for feature tensor and projection tensor in dimension
2 to optimize P2, U2

6: Check whether convergence condition is satisfied;

‖P1 − U1‖∞ + ‖P2 − U2‖∞ ≤ ε

7: return P1, P2;

a example.

2.3 Complexity Analysis

In ordinary GSLSR, the computational complexity of com-
puting the product of projection matrix and feature matrix
is O(NM) where N is the number of grids and M is the size
of features from every grids. While the computational com-
plexity of the GSRRTR is O(M1 + M2 + N1 + N2). Since
the dimension Mn and Nn used in the Tucker decomposition
is usually much smaller than the dimension of ordinary ma-
trix M and N, the overall computational cost of GSRRTR is
much smaller than the GSLSR based method.

3. Experiment

3.1 Experimental Setup

In this section, extensive experiments are conducted to
evaluate the performance of the proposed GSRRTR. Two
widely-used micro-expression databases are adopted, i.e.
CASME II [8] and SMIC [9]. CASME II collected 247
micro-expression video clips from 26 subjects. Each of
these video clips is labeled by one of five micro-expressions
classes, i.e., Happy, Surprise, Disgust, Repression, and Oth-
ers. SMIC consists of 16 subjects and 164 facial video clips
involving three different micro expressions classes, i.e. Pos-
itive, Negative, and Surprise. In the experiments, we choose

Table 1 WAR and UAR results on the CASME2 database, where the
best results are highlight in bold.

Comparison Methods
Accuracy (%)

WAR UAR

LBP-SIP+SVM [2] 40.89 /

STLBP-IP+SVM [6] 55.47 /

CNN + LSTM Model [11] 60.98 /

LGCcon [12] 62.14 59.00
GSLSR [13] 57.09 49.77
GSRRTR (ours) 63.56 57.24

Table 2 WAR and UAR results on the SMIC database, where the best
results are highlight in bold.

Comparison Methods
Accuracy (%)

WAR UAR

LBP-SIP+SVM [2] 47.56 /

STLBP-IP+SVM [6] 52.44 /

CNN + LSTM Model [11] 62.97 /

LGCcon [12] 63.41 62.00
GSLSR [13] 53.05 53.87
GSRRTR (ours) 60.37 64.10

the STLBP-IP [6] to describe the facial video clips. And
we choose unweighted average recall (UAR), which can be
calculated by [10], as the main performance metric due to
its robustness to the sample class imbalance. Besides, the
weighted average recall (WAR) is also adopted to serve as
the secondary performance metric. For the experiments of
using both micro-expression databases, leave-one-subject-
out (LOSO) protocol is used to calculate the performance
metric. In addition, the trade-off parameters correspond-
ing to the best UAR in the fold of the first subject are se-
lected in the experiments on each database, which means
that the trade-off parameters are fixed throughout the fol-
lowing folds.

3.2 Results and Analysis

The experimental results are reported in Tables 1 and 2 re-
spectively. From the results, it is clear that GSRRTR obtains
the comparable performance among all the methods. Com-
pared with other methods (including CNN based and sub-
space based methods), we can see that GSRRTR achieves
significant improvement over the baseline methods in most
cases, especially in SMIC. In SMIC, our method obtains
64.10% (UAR) and 60.37% (WAR) recognition accuracies,
which have the increases of 2.10% (UAR) over LGCcon
and 7.30% (WAR) / 10.23% (UAR) over original GSLSR
method respectively. The best result was obtained when the
λn was fixed at 1 and un was fixed at 2 in CASME II, λn was
fixed at 1 and un fixed at 3 in SMIC. The parameters was
select from preset paramters grids, i.e. M1 range from 100
to 230 with step size 10: M1 ∈ [100 : 10 : 230] and M2

range from 30 to 80 with step size 10: M2 ∈ [30 : 10 : 80].
It is interesting to see that, in contrast to the result in
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Fig. 1 Result of different rank for GSRRTR.

SMIC, the UAR and WAR of GSRRTR in CASME II are
much worse than compared methods. This is most likely
due to the unbalance problem of the labeled data samples in
each class of database. In SMIC, we can find that GSRRTR
outperform other algotithm in UAR rather than WAR, that,
GSRRTR perform well with smaller size samples and class
balanced database. While the unbalnce problem between
different calsses is much serious in CASME II. In previous
works in [14] and [15], we can find that LSR, which is the
fundamental part of GSRRTR, could be viewed as a simpli-
fied version of linear discriminant analysis (LDA) under the
assumption that the numbers of data samples in each class
are approximately equal. If the numbers of the labeled data
samples in each class are largely different, the LSR model
will deviate from the LDA model and hence the discrimi-
nant ability of LSR would degraded. In addition, it is clear
to see that, compared with SMIC, where the classes are bal-
anced, the performance of all LSR based methods including
KGSL and GSLSR decreases clearly in CASME II.

And we also investigate the parameter sensitivity of
the proposed GSRRTR method. To see whether GSRRTR
model with different ranks of Tucker decomposition is ro-
bust, we conduct extensive experiments on CASME II. In
the experiment we fix the rank of dimension in number of
blocks in GSRRTR while changing the rank of texture de-
scriptor. More specifically, the value range of M1 are set as
[100 : 10 : 230]. Experimental results are given in Fig. 1,
where the MU1 corresponds to the M1 of project tensor U
and MX1 corresponds to the M1 of feature tensor X. From
the results, we can see that the performance of GSRRTR
changes slightly with different value of MU1 and MX1. The
result demonstartes that the proposed GSRRTR method is
robust to its change in low rank parameters.

4. Conclusion

In this letter, we have designed a tensor based group sparse
learning scheme called GSRRTR to better describe micro-

expressions and reduce the interference between different
facial blocks. By the extensive experiments, the results show
that our method can effectively deal with micro-expression
classification tasks with fewer parameters.
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