
1106
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.5 MAY 2023

LETTER

Convolution Block Feature Addition Module (CBFAM) for
Lightweight and Fast Object Detection on Non-GPU Devices

Min Ho KWAK†, Youngwoo KIM††, Kangin LEE†††, and Jae Young CHOI†a), Nonmembers

SUMMARY This letter proposes a novel lightweight deep learning ob-
ject detector named LW-YOLOv4-tiny, which incorporates the convolution
block feature addition module (CBFAM). The novelty of LW-YOLOv4-
tiny is the use of channel-wise convolution and element-wise addition
in the CBFAM instead of utilizing the concatenation of different feature
maps. The model size and computation requirement are reduced by up
to 16.9 Mbytes, 5.4 billion FLOPs (BFLOPS), and 11.3 FPS, which is
31.9%, 22.8%, and 30% smaller and faster than the most recent version of
YOLOv4-tiny. From the MSCOCO2017 and PASCAL VOC2012 bench-
marks, LW-YOLOv4-tiny achieved 40.2% and 69.3% mAP, respectively.
key words: fast object detection, lightweight network, non-GPU devices

1. Introduction

The existing deep network structures [1] present excellent
object detection accuracy owing to their deeper and high-
level feature extraction, which focuses on object location
within an image. However, these methods involve com-
plex network structures, and several network parameters
must be learned. Consequently, they generally require a
large amount of graphic processing unit (GPU) computa-
tion power. The application of these methods to non-GPU-
based devices with limited computing power and memory
size (e.g., augmented reality and mobile devices) remains
challenging despite the extensive research conducted for
the development of fast object detection methods [2]–[4].
Xu et al. [2] proposed an improved YOLOv3 model us-
ing DenseNet to improve the detection speed. They de-
signed a lightweight deep network unit to replace the resid-
ual units in YOLOv3. Wong et al. [3] proposed the YOLO
Nano model using a human-machine collaboration design
approach. Zhao et al. [4] proposed a mixed YOLOv3-LITE
model, which integrates various convolutional neural net-
work (CNN) concepts, presenting a faster processing speed
in an edge computing device.

This letter presents a novel LW(lightweight)-YOLOv4-
tiny network based on the original YOLOv4-tiny model [5].
The novelty of the proposed LW-YOLOv4-tiny model lies in
the development of the convolution block feature addition

Manuscript received December 21, 2022.
Manuscript publicized January 24, 2023.
†The authors are with Division of Computer Engineering, Han-

kuk University of Foreign Studies, Republic of Korea.
††The author is with Sustainable Technology and Wellness

R&D Group, Korea Institute of Industrial Technology, Republic
of Korea.
†††The author is with Institute of Advanced Technology Devel-

opment, Hyundai Motor Company, Republic of Korea.
a) E-mail: jychoi@hufs.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2022EDL8104

module (CBFAM), which performs channel-wise convolu-
tion and element-wise addition instead of the conventional
concatenation of feature maps. CBFAM reduces the compu-
tational complexity and the parameters to increase the speed
of the network. Additionally, the proposed LW-YOLOv4-
tiny model achieves a balance between detection speed and
accuracy by adjusting the design parameters, as shown in
Eq. (1). The LW-YOLOv4-tiny model presents a much
faster object detection speed than the original YOLOv4-tiny
model, based on results of the experiments conducted on
the MSCOCO2017 [6] and PASCAL VOC 2007 [7] bench-
marks [5]. Additionally, it achieves better detection accu-
racy than the recently developed lightweight object detector
models.

2. Overview

Figure 1 depicts the overall structure of the proposed LW-
YOLOv4-tiny network for fast and accurate object detec-
tion. “Conv” represents a convolutional layer followed by
a leaky ReLU activation function. Figure 2 presents the
detailed structure of the CBFAM. In both Figs. 1 and 2,
D[n,m] stands for removing the channels of our feature map
of the final CBFAM indexed from n to m, aiming to match
different channel size when performing element-wise addi-
tion. Note that in Fig. 1, there are two outputs of the final
CBFAM – one (indicated by dot line at the right side) results
from the Leaky activation output, while the other (indicated

Fig. 1 Proposed LW-YOLOv4-tiny network structure; ‘x × y × z’ indi-
cates the dimensions of the width, height, and channel, respectively, and ⊕
represents the element-wise addition.

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers

LETTER
1107

Fig. 2 Comparison between (a) the proposed CBFAM structure and
(b) convolutional block of original YOLOv4-tiny model; ⊕ and &© repre-
sent the element-wise addition and the concatenation, respectively. Note
that the final “Conv3x3” layer should be included within CBFAM and CSP
blocks and also the number of input channels becomes double in the final
“Conv3x3” layer of each CBFAM.

by solid line at the bottom side) is formed with the inclusion
of the last two components of the final CBFAM (i.e., “Max-
pooling” and “Conv3x3” layers) (See Fig. 2 (a) for details).

The CBFAM comprises a series of convolution layers
that integrate the operations of channel-wise convolutions,
an activation function, and element-wise addition, as shown
in Fig. 2. The concatenating operations are replaced with
simple element-wise addition to increase the speed of the
detection process. However, element-wise additions can re-
duce the detection accuracy because they do not account for
the correlations between the channels of two different fea-
ture maps which are considered as the input. Therefore,
channel-wise convolution layers are applied before perform-
ing element-wise addition. Furthermore, the detection per-
formance deteriorates when the element-wise addition of
two inputs is performed without using the activation func-
tion because the distribution of element-wise addition re-
sults may differ from the concatenation operations. A leaky
rectified linear unit (Leaky ReLU) activation function is
added at the end of the element-wise addition to solve this
problem, to ensure that the result of the element-wise ad-
dition imitates the distribution of the concatenation opera-
tions, as shown in Fig. 2.

Note that the proposed CBFAM structure could effec-
tively reduce the number of computations for object detec-
tion. The underlying reason is that the element-wise ad-
dition in the CBFAM does not increase the dimensionality
of feature maps, which is different from the case of using
concatenation. In addition, our combined use of 3x3 convo-
lutional and channel-wise layers with reduced input channel

size from the CBFAM has fewer weights than a single con-
volutional layer with a whole input channel from the original
YOLOv4-tiny.

3. Convolution Block Feature Addition Module

3.1 Motivation

The original YOLOv4-tiny [5] model implemented a large
number of concatenation operations, where the outputs from
two different input feature maps are first concatenated and
the resultant concatenated information is transmitted to the
next convolution layer. The gradient information of both
the current convolution layer and that of the previous layer
must be used to update their weights. The concatenation
operations of the original YOLOv4-tiny model improve the
accuracy but increase the complexity of the network. Fur-
thermore, the large size of the input channel adds several
parameters to the convolution layer, which considerably in-
creases the size of the model and requires more computa-
tional power. These disadvantages can be overcome by us-
ing systems which can perform parallel processing, such as
a GPU. However, the systems which are not equipped with
the GPU hardware can be substantially slowed down owing
to a series of concatenation operations. This work employs
channel-wise convolution layers and element-wise addition
with an activation function instead of concatenating opera-
tions to overcome this issue.

3.2 Proposed CBFAM

Each convolutional block of the original YOLOv4-tiny
model has two concatenation operations. In the pro-
posed method, the current concatenation operations are re-
placed by the proposed CBFAM, which performs channel-
wise convolution and addition (see Fig. 2). The proposed
CBFAM is a modified version of residual connection [5] be-
cause the main branch of CBFAM utilizes only half of the
input channels. This main branch utilizes a part of infor-
mation when passing through a deeper level of the network
for better generalization performance; this mechanism al-
lows the main branch, which generates a high-level feature
map, to utilize less information, and the residual connection
branch, which generates relatively low-level feature map, to
handle the whole information.

The CBFAM is developed to ensure that the existing
concatenation operation adds several parameters to the con-
volution layers owing to its large number of concatenated
channels, which significantly increases the number of I/O
operations. Non-GPU (CPU) systems are not suitable for
parallel processing and can be significantly slowed down
by a series of concatenation operations because of the over-
whelming volume of the I/O process. However, the pro-
posed CBFAM block can significantly reduce the number of
parameters of all the available convolution layers. Specif-
ically, considering the kernel size, input and output chan-
nel sizes, and bias for each convolution layer, the num-

1108
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.5 MAY 2023

ber of parameters are calculated as 119 KB and 188 KB
for the CBFAM and original CSP blocks [5], respectively,
which reduces the number of parameters by up to 36.8%
smaller than original CSP block. Such parameter reduction
is the virtue of adopting the channel-wise convolution and
element-wise addition in the proposed CBFAM blocks. In
our CBFAM, concatenation operations were replaced with
simple element-wise addition. Note that the element-wise
addition does not increase the dimensionality of feature
maps, which is contrast to the case of using concatenation
operations, leading to a reduced number of output channels
of CBFAM compared to the original YOLOv4-tiny model.
Furthermore, the channel-wise convolutional layer allows
model to understand the correlations between the channels
before the inputs are added. The activation function is also
applied to exploit the correlation between the channels of
the two inputs.

The input of each CBFAM is defined as follows:

F(n)
cw [0, α] = Conv1x1

(
F(n)

map

)
(1)

where F(n)
map represents the n-th convolution layer output in

the CBFAM, and Conv1x1 performs channel-wise convolu-
tion with a 1x1 size kernel and F(n)

cw [0, α] is obtained as a re-
sult by applying F(n)

map to the channel-wise convolution com-
putation. Here, α represents a parameter that determines the
number of channels used to form F(n)

cw [0, α] by selecting a
part of the entire channel of F(n)

map. Essentially, F(n)
cw [0, α]

consists of the selected channels of F(n)
map ranging from the

1st channel to the
(
|F(n)

map| ∗ α
)th

channel, where | | denotes
the cardinality of the set. For instance, if α and the total
number of channels of F(n)

map are 0.5 and 256, respectively,
only the channels from the 1st to 128th order can be selected
to construct F(n)

cw [0, α]. An optimal balance can be achieved
between the model size, detection speed, and detection ac-
curacy by adjusting α (see Fig. 3).

To produce the CBFAM output, the intermediate output

Fig. 3 Design flexibility of the LW-YOLOv4-tiny model in terms of de-
tection accuracy and speed as well as model size by varying α in Eq. (1);
MSCOCO2017 test set and ARM Cortex A57 CPU were used.

can be written as follows:

Oim = Leaky
(
F(n−1)

cw [0, α] ⊕ F(n−2)
cw [0, α]

)
(2)

where F(n−1)
cw [0, α] and F(n−2)

cw [0, α] represent the (n−1)th and
(n − 2)th convolution layer outputs of the CBFAM, respec-
tively, which are obtained as described in Eq. (1), “⊕” de-
notes element-wise addition, and Leaky is the Leaky ReLU
activation function [5]. This structure is a type of skip con-
nection [5] which learns residual functions corresponding
to other layer inputs instead of learning unreferenced func-
tions. A deep network based on this structure is easier to op-
timize and can gain accuracy with a considerably increased
depth. The final output of each CBFAM can be expressed as
follows:

Õim = Leaky(Conv1x1(Oim) ⊕ F(n)
cw [0, α]) (3)

and

Output = Conv3x3(Maxpooling(Õim). (4)

The Output in Eq. (4) represents the final output of the
CBFAM, computed via the element-wise addition of Oim

and F(n)
cw [0, α] with a leaky activation.

4. Experiments and Results

The proposed LW-YOLOv4-tiny model is implemented
based on the CSPDarknet53-tiny backbone network [5]
available in the Darknet framework [9]. The cross-stage
residual connection [4] of the original CSPDarknet53-tiny
model is replaced by the proposed CBFAM. Comparative
experiments were performed using MSCOCO2017 [6] and
PASCALVOC2012 [7]. MSCOCO2017 has 123,287 RGB
images with 886,284 instances, and PASCAL VOC 2012
has 21493 images. The same evaluation setup [7] is em-
ployed for PASCALVOC2012, using the training set (21493
images) and the test set (4952 images). The detection ac-
curacy, i.e., mean average precision (mAP), is measured
by using MSCOCO2017 testdev [6] on the detection chal-
lenge server CodaLab to obtain a fair comparison [8]. The
ADAM [11] is used for training, with the batch size of 64.
The learning rate starts with 1e-4 and is multiplied by 0.1
after the iteration reaches at 40000, 60000, and 80000. The
complexity of the model is evaluated by using billion FLOPs
(BFLOPs), model size, and number of parameters. All mod-
els used 416 × 416 input size to get consistent evaluations.
Also note that α shown in Eq. (1), (2), and (3) was set to ‘1’
in all of the following experiments, if not stated otherwise.

Table 1 presents the results of the evaluation with
3.8 GHz Intel Core i7 CPU and a single NVIDIA RTX 3090
GPU. During the test, only the CPU is used for the infer-
ence. According to the test results, the mAP of the LW-
YOLOv4-tiny model is observed to be clearly higher than
those of the YOLOv4-tiny and YOLO Nano series networks,
and it presents better performance in terms of the amount of
computation and model size (the number of parameters), as
shown in Table 1. Particularly, the model size and BFLOPs

LETTER
1109

Table 1 Evaluation results for LW-YOLOv4-tiny and other state-of-
the-art lightweight models. The mAP(M) and mAP(P) denote mAPs on
MSCOCO2017 and PASCALVOC. The α in Eq. (1) was set to 1.

Table 2 Comparison of detection speed (FPS) for different CPU-based
embedded devices with Ubuntu 20.0.4 operating system and 32-bit Floating
Point (FP32) operations. MSCOCO2017 testdev was used. The α in Eq. (1)
was set to 1.

Table 3 Ablation studies of essential components in CBFAMs;
MSCOCO2017 testdev was used.

are reduced by approximately 30% and 22%, respectively,
while the mAP of LW-YOLOv4 is equivalent or even better
when compared to the original YOLOv4-tiny model.

The proposed LW-YOLOv4-tiny model is tested un-
der different CPU (non-GPU)-based devices, which em-
ploy a low-performance computing system with low power
consumption. Table 2 presents the results. The pro-
posed LW-YOLOv4-tiny model had a higher FPS than the
other models. Remarkably, the proposed LW-YOLOv4-tiny
model presents a better FPS when compared to the origi-
nal YOLOv4-tiny model, by up to 11.3 and 1.33 on Intel
i5-8265U and ARM Cortex A57, respectively.

The LW-YOLOv4-tiny model achieves a much better
processing speed for the Google Cloud environment with
the N2 series platform, by up to 20% and 21% for vCPU
x2 and x4, respectively. The primary reason for faster de-
tection of the proposed CBFAM is as follows: (a) the num-
ber of parameters used during the convolution process can
be considerably reduced by using channel-wise convolution
and (b) the number of input channels for all convolution lay-
ers should be decreased by adopting element-wise addition
instead of using concatenation operations.

Table 3 shows the results of ablation studies to val-
idate the effectiveness of essential components such as
channel-wise convolution and element-wise addition in our
CBFAMs. We can see that by combining both channel-wise
convolution and element-wise addition in CBFAMs, our
proposed LW-YOLOv4-tiny attains the best performance
compared to other variants considering the balance between
detection accuracy, lower computational complexity, and
memory size. Figure 3 depicts the design flexibility of the
LW-YOLOv4-tiny model in terms of controlling the trade-
off between the model size, detection accuracy, and speed
by adjusting the parameter, α, in Eq. (1). A good compro-
mise was found by setting α in the range of 0.8 and 1, con-
sidering both the computational complexity and detection
performance, based on the results shown in Fig. 3.

5. Conclusion

The proposed LW-YOLOv4-tiny presents a faster detection
speed and almost identical detection accuracy when com-
pared to other state-of-the-art lightweight networks, partic-
ularly when non-GPU-based embedded devices are imple-
mented.

Acknowledgements

This work was supported by the Hankuk University For-
eign Studies Research Fund. This work was also sup-
ported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT)
(No. 2021R1A2C1092322). This work was partially sup-
ported by the “Development of Wave Overtopping quanti-
tative observation technology” funded by the Korea Insti-
tute of Marine Science & Technology Promotion (KIMST)
(No. 20220180).

References

[1] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M.
Pietikäinen, “Deep learning for generic object detection: A survey,”
arXiv 2018, arXiv preprint arXiv:1809.02165, 2019.

[2] Z.-F. Xu, R.-S. Jia, H.-M. Sun, Q.-M. Liu, and Z. Cui, “Light-
YOLOv3: Fast method for detecting green mangoes in com-
plex scenes using picking robots,” Applied Intell., vol.50, no.12,
pp.4670–4687, 2020.

[3] A. Wong, M. Famuori, M.J. Shafiee, F. Li, B. Chwyl, and J.
Chung, “Yolo nano: A highly compact you only look once con-
volutional neural network for object detection,” arXiv preprint
arXiv:1910.01271, 2019.

[4] H. Zhao, Y. Zhou, L. Zhang, Y. Peng, X. Hu, H. Peng, and X. Cai,
“Mixed YOLOv3-LITE: A lightweight real-time object detection
method,” Sensors, vol.20, no.7, 1861, 2020.

[5] A. Bochkovskiy, C.Y. Wang, and H.-Y.M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” arXiv preprint arXiv:2004.
10934, 2020.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C.L. Zitnick, “Microsoft COCO: Common objects in
context,” European Conference on Computer Vision, Lecture Notes
in Computer Science, vol.8693, pp.740–755, Springer, Cham., Sept.
2014.

[7] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A.

http://dx.doi.org/10.1007/s10489-020-01818-w
http://dx.doi.org/10.3390/s20071861
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/s11263-009-0275-4

1110
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.5 MAY 2023

Zisserman, “The PASCAL visual object classes (VOC) challenge,”
International Journal of Computer Vision, vol.88, no.2, pp.303–338,
2010.

[8] COCO Detection Challenge (Bounding Box), https://competitions.
codalab.org/competitions/20794, accessed June 2021.

[9] A. Bochkovskiy, “Yolo v4, v3 and v2 for Windows and Linux,”
https://github.com/AlexeyAB/darknet, accessed Dec. 2020.

[10] A. Farhadi and J. Redmon, “yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[11] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

http://dx.doi.org/10.1007/s11263-009-0275-4

