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PAPER

Improving Noised Gradient Penalty with Synchronized Activation
Function for Generative Adversarial Networks

Rui YANG†a), Raphael SHU††, Nonmembers, and Hideki NAKAYAMA†, Member

SUMMARY Generative Adversarial Networks (GANs) are one of the
most successful learning principles of generative models and were wildly
applied to many generation tasks. In the beginning, the gradient penalty
(GP) was applied to enforce the discriminator in GANs to satisfy Lipschitz
continuity in Wasserstein GAN. Although the vanilla version of the gra-
dient penalty was further modified for different purposes, seeking a better
equilibrium and higher generation quality in adversarial learning remains
challenging. Recently, DRAGAN was proposed to achieve the local linear-
ity in a surrounding data manifold by applying the noised gradient penalty
to promote the local convexity in model optimization. However, we show
that their approach will impose a burden on satisfying Lipschitz continuity
for the discriminator. Such conflict between Lipschitz continuity and local
linearity in DRAGAN will result in poor equilibrium, and thus the gener-
ation quality is far from ideal. To this end, we propose a novel approach
to benefit both local linearity and Lipschitz continuity for reaching a better
equilibrium without conflict. In detail, we apply our synchronized acti-
vation function in the discriminator to receive a particular form of noised
gradient penalty for achieving local linearity without losing the property
of Lipschitz continuity in the discriminator. Experimental results show
that our method can reach the superior quality of images and outperforms
WGAN-GP, DiracGAN, and DRAGAN in terms of Inception Score and
Fréchet Inception Distance on real-world datasets.
key words: GAN, gradient penalty, local linearity

1. Introduction

Generative Adversarial Networks (GANs) [1] gain a signif-
icant role in generative models. The generator plays a min-
max game against the discriminator. Typically, such adver-
sarial learning policy aims to achieve a dynamic equilibrium
between generator and discriminator when networks ob-
tained the convergence, to generate high-quality images im-
itatively. Hereon, the convergence of generator and discrim-
inator is dynamic while their common equilibrium point is
fixed as a certain point [1].

Lipschitz-1 continuity was adopted as a condition for
training WassersteinGAN [2]. Wasserstein distance (W-
distance) can support an ideal dynamic equilibrium in
GANs’ training owing to the fact that the probability mea-
sure of W-distance is strictly weaker than KL-divergence [3]
and exhibited excellent performance. One famous approach
of Lipschitz constraint in GANs is adding the gradient
penalty (GP) in the discriminator loss, as in WGAN-GP [4].
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The intuition of gradient penalty is that if the gradients de-
rived from the discriminator are not greater than 1 almost
everywhere, we can assert that the discriminator satisfies the
Lipschitz-1 continuity.

Besides, different variants of gradient penalty in GANs
can profoundly impact the properties of GANs’ training,
such as convergence [5], gradient exploding [4], local linear-
ity [6], or generation diversity [7], etc. Therefore, different
variants of GP will result in various equilibrium situations
and thus affect the generation quality.

In DiracGAN [5], the authors proved that applying the
zero-centering gradient penalty onto real samples can im-
prove the convergence. The authors found that the one-
centering gradient penalty in WGAN-GP makes the learning
direction oscillate around the equilibrium center.

DiracGAN improved the convergence problem, while
it cannot prevent gradient explosion [7]. DRAGAN [8] was
one meaningful attempt to solve both problems. The authors
noticed that the gradients of random samples around image
inputs are very sharp in the discriminator when the model
collapse occurred. As a result, they proposed the noised
version of gradient penalty by penalizing real images with
a small perturbation to enlarge the penalized space and en-
courage the discriminator to escape from the local minima.
Consequentially, as mentioned in [6], such operations can
encourage the local linearity and benefit the training process
due to the convexity of linear functions in optimization.

This study found that the gradient penalty in DRAGAN
could be a burden in chasing Lipschitz-1 continuity when
strengthening its local linearity. In detail, when applying
the gradient penalty onto the perturbed image, the positive-
ness of feature maps before activation layers in the discrim-
inator is less likely the same as the positiveness of feature
maps of the original image, while only weight parameters
corresponding to positive features will be upgraded based
on ReLU function. Whereas, ensuring sufficient penalty
onto real images is the key point of Lipschitz continuity, as
proved in DiracGAN [5]. In other words, applying noised
gradient penalty will release the penalty of original images,
which hampers the Lipschitz continuity and thus obstructs
the convergence.

To this end, we design a masked synchronized activa-
tion function that can activate the feature maps of perturbed
images and original images synchronously. To be specific,
our synchronized activation function can derive an improved
version of the noised gradient penalty by avoiding the con-
flict between penalizing perturbed noised images or origi-
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Table 1 Different types of gradient penalties.

Method
Prevent Keep Guarantee
Gradient Lipschitz Local

Exploding Continuity Linearity

WGANGP ! Lipschitz-1 %

DiracGAN % Lipschitz-0 %

DRAGAN ! obstructed !

Ours ! Lipschitz-k !

nal images in DRAGAN, which refers to local linearity and
Lipschitz continuity, respectively. Hence, our method can
acquire both advantages in local linearity and Lipschitz con-
tinuity without the conflict in DRAGAN. We conclude fea-
tures of past works and our method in Table 1. As shown
in Table 1, applying the gradient penalty onto larger in-
put space, such as the linear interpolation in WGANGP or
adding a noise perturbation in DRAGAN and ours, can pre-
vent gradient from exploding. DRAGAN acquires local lin-
earity while loses the feature in Lipschitz continuity. Fur-
thermore, due to the noised gradient penalty, our method can
still prevent the gradient from exploding as in DRAGAN.

In all, we highlight our contributions as follows:

• We show the noised gradient penalty in DRAGAN ob-
structs the Lipschitz continuity of the discriminator;

• We propose a synchronized activation function for im-
proving the noised gradient penalty to enable the lo-
cal linearity in the discriminator without obstructing its
Lipschitz continuity;

• Experiments show that our method achieves higher
generation quality and faster convergence speed
against WGAN, WGAN-GP, DiracGAN, and DRA-
GAN in image generation tasks.

2. Background

2.1 WassersteinGAN

The original intention of applying gradient penalty on the
discriminator in WassersteinGAN is to force the discrimina-
tor to satisfy Lipschitz-1 continuity based on Kantorovich-
Rubinstein duality [9]:

W(Pr,Pθ) = sup
∥ f ∥L≤1

Ex∼Pr [ f (x)] − Ex∼Pθ [ f (x)]. (1)

Here, if the function f (·) (i.e., the discriminator) sat-
isfies that the Lipschitz constant is not greater than one,
then W-distance can be correctly applied in the adversar-
ial training. Although W-distance has better properties than
JS-divergence or f-divergences in GANs, correctly imple-
menting Lipschitz-1 constraint in the adversarial training is
also very important. In practice, one option is to apply the
one-centering gradient penalty as in WGAN-GP:

E
x̂∼Px̂

[
(∥▽x̂D(x̂)∥2 − 1)2

]
, (2)

where D(·) is the discriminator, x̂ is the linear interpolation
between real image and fake image (later the same).

In some recent works, other types of gradient penalty
were proposed to achieve better performance when train-
ing GANs. For instance, infinite norm was used in [10] via
a viewpoint from SVM. Besides, R1 penalty also obtained
great success in StyleGAN [11] and StyleGAN2 [12], [13].

2.2 DiracGAN

DiracGAN analyzed the eigenvalues of the Jacobian of the
associated gradient vector field [5] and proposed the zero-
centering gradient penalty which can ensure the conver-
gence ability significantly. Here is the gradient penalty term
in the discriminator loss of DiracGAN:

EpD(x)

[
∥∇Dψ(x)∥2

]
, (3)

where pD(x) is the data distribution and ψ is the discriminator
parameter. Moreover, the authors also show that DiracGAN
performs well in the cases of only penalizing fake images or
linearly combining gradient penalties from both real images
and fake images.

Zero-centering gradient penalty solves the local con-
vergence problem based on their proof of training dynamics.
However, only penalizing such samples can hardly prevent
gradient from exploding as introduced in [7].

2.3 DRAGAN

DRAGAN found that when mode collapse occurred, the dis-
criminator often has sharp gradients around the real sam-
ples. As it is hard to find out the exact reason caus-
ing mode collapse, punishing the gradients of surrounding
points close to the real samples is one feasible method. Here
is the gradient penalty term in DRAGAN:

Ex∼Preal,δ∼U(−σ,σ)

[
∥∇xDθ(x + δ)∥2 − k

]
, (4)

where δ is sampled from a Uniform distribution with the
range of a single standard deviation σ of current input batch
x. k is the Lipschitz-k constant. Fedus et. al. [6] further
discussed this work and reinterpreted the internal mecha-
nism. In practice, penalizing points in local scope help the
discriminator to be close to linear around the local data man-
ifold. The convexity of linear functions helps optimize dur-
ing the training process to overcome the gradient exploding
problem mentioned earlier without harming the convergence
property in an ideal case.

3. Deriving Noised GP from Synchronized Activation
Function

3.1 Motivation: Solving the Conflict in DRAGAN

By penalizing gradients of the discriminator from images
with a small perturbation, such a noised gradient penalty in
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Fig. 1 One example to illustrate our synchronized activation function. ReLU refers to Rectified Lin-
ear Unit. X is the input tensor of the discriminator, and (X + ϵ) is its noised version for deriving the
noised gradient penalty. R and S are feature maps before the activation function for inputs X or (X + ϵ)
respectively. R′ is the feature map after applying the activation function on R, and S ′ is the activated
feature map of S . As shown in S ′, each element in S will be activated based on the mask generated by
R, not on S . In this example, elements in S ′ marked as blue were rectified based on the mask despite its
positiveness in S as in red square. And R′ is activated via a normal ReLU function as in orange square.
After all, the discriminator output of X + ϵ will derive our noised GP as in Algorithm 1.

DRAGAN can encourage the discriminator to become near-
convex in the local scope. Meanwhile, the feature maps of
original image inputs (for adversarial loss) in the discrimina-
tor are different from their noised version (for noised gradi-
ent penalty). Consequently, weight parameters correspond-
ing to feature maps for noised image inputs are less likely
to be activated synchronously than original image inputs
based on ReLU-like activation functions, either in the back-
propagation step. Whereas, ensuring a sufficient penalty for
original image inputs was proved as the convergence condi-
tion of GANs as shown in [5]. Therefore, the noised gradi-
ent penalty will improve the model robustness against gradi-
ent exploding due to its better convexity yet obstructing the
convergence.

3.2 Proposal: Improving the Noised GP via Synchronized
Activation Function

In this section, we introduce a synchronized activation
function. It is a simple modification to ReLU or any
ReLU-like activation functions, such as Rectified Linear
Unit (ReLU) [14], Parametric Rectified Linear Unit (P-
ReLU) [15], or Leaky Rectified Linear Unit (L-ReLU) [16],
etc.. The core idea is to activate feature maps from noised
inputs only based on masks from original inputs.

As shown in Fig. 1, we use ReLU function as an ex-
ample to interpret our synchronized activation function. Be-
fore passing feature maps through the activation layer, we
first forward propagate real image tensors and surround-
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Algorithm 1 WGAN with noised GP based on synchronized
activation functions.
Require: learning rates (αg, αd), batch size B, discriminator training iter-

ations m per generator step, training data distribution Pdata, distribution
q of the noise perturbation, GP strength λ.
Initialize G parameter θ and D parameter ϕ (Dsync owns the same param-
eter as D);
while θ has not converged do

for j = 1, ..., m do
Sample real samples {xi}Bi=1 ∼ Pdata and i.i.d. noises {zi}Bi=1 ∼

N(0, 1);
Generate fake samples {yi}Bi=1 ← Gθ(zi);
GPsync ← (∥∇Dsync(x + δ)∥ − k)2, δ ∼ q, k ∈ [0, 1]; ▷ via Eq. (9)
LossD

( j) ← Dϕ(Gθ(z)) − Dϕ(x) + λ · GPsync; ▷ via Eq. (8)
end for
ϕ← Adam(∇ϕ

∑m
j=1 Loss(j)

D , ϕ, αd);

Sample i.i.d. noises {zi}Bi=1 ∼ N(0, 1);
Generate fake samples {yi}Bi=1 ← Gθ(zi);
LossG ← −Dϕ(Gθ(z)); ▷ via Eq. (7)
θ ← Adam(∇θLossG, θ, αg);

end while

ing image tensors (real images with perturbations) through
the same convolution and normalization layers, respectively.
Before the ReLU activation layer, we define R and S as
non-activated feature maps from real image input tensors
and surrounding image input tensors respectively, and create
rectified tensors R′ and S ′ which are multiplied by 0 tem-
porarily. Then, R and S will be activated separately: R is
activated by a normal ReLU activation function, and our
synchronized activation function will activate S as shown
below:

R′i = 1(Ri > 0)Ri, (ReLU) (5)

S ′i = 1(Ri > 0)S i.(Ours) (6)

Each element S ′i in S ′ should be activated or not is depen-
dent on the mask from R yet S . Here, subscript i in Eq. (5), 6
refers to the ith element in its specific feature map. Mean-
while, R will be activated by the normal ReLU and get R′.
Next, we will pass both activated feature maps R′ and S ′

through the next layer and repeat all operations until the fi-
nal output layer. Outputs from (X+ϵ) will be used for apply-
ing gradient penalty, and R′ for reducing the discriminator
loss.

After receiving noised gradient penalty based on our
synchronized activation function, we still need to compute
other parts of the discriminator loss and the generator loss.
Details will be introduced in Sect. 4 and Algorithm 1.

4. Loss functions

4.1 Generator Loss

WassersteinGAN is trained based on Eq. (1), and different
variants defined different types of motivation for training the
discriminator. This work focus on improving the GP in dis-
criminator loss which is not related to the generator directly.
Therefore, the generator loss in our experiments of G(·) are

all the same:

LossG = − E
z∼p(z)

[D(G(z))] . (7)

4.2 Discriminator Loss

Common discriminator variants of WGAN-GP loss func-
tions majorly have the adversarial loss term and the gradient
penalty term and can be written as follow:

LossD = − E
x∼qdata(x)

[D(x)]+

E
z∼p(z)

[D(G(z))] + λ · GPsync,
(8)

where LossD is the discriminator loss, D(G(z)) are outputs of
the discriminator of fake images generated from the genera-
tor G(·), and vice versa for D(x). GPsync refers to the gradi-
ent penalty based on our synchronized activation function. λ
is the hyper-parameter to control the strength of the gradient
penalty. In the synchronized discriminator Dsync based on
our proposed activation function, the gradient penalty term
is:

GPsync = E
x∼pdata(x),δ∼q

[
(∥∇Dsync(x + δ)∥ − k)2

]
, (9)

where x were sampled from the real image distribution. k is
the GP center varying from zero to one and we tested zero-
centering and one-centering GP as ablations in our exper-
iments. The perturbation σ has two definitions in practice:
1) In original implementation by the authors in DRAGAN, δ
refers to the standard deviation of the real image distribution
in one batch as in Eq. (4); 2) Some common implementa-
tions of DRAGAN define the edge of the local range as ran-
dom fake images and also obtain idea results. Therefore, we
set both implementations as ablation studies in our experi-
ments to compare their performances for noised GP. Nev-
ertheless, other factors also matter the model performance
and it is hard to assert which one is better. Besides, Dsync(·)
performs linearity in the gradient penalty term and D(·) per-
forms non-linearity in adversarial losses.

We also use the hinge loss to stabilize and improve the
training in the discriminator [17]:

HingeLossD = E
x∼qdata(x)

[min(0,−1 + D(x))]+

E
z∼p(x)

[min(0,−1 − D(G(z))] ,
(10)

where min(0, x) returns the minimum value between the in-
put x and the zero.

5. Experiments

As illustrated above, our synchronized activation function
can derive the improved noised gradient penalty from ac-
quiring both advantages from local linearity and Lipschitz
continuity. Nevertheless, it is hard to evaluate the goodness
of the equilibrium directly. Besides, the target of the image
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generation task is to train a model which can generate high-
quality images successfully, and better equilibrium allows
GANs to maintain more information and details to reach this
target. Therefore, we design several experiments to evaluate
and compare our method with past methods via testing the
generation quality and their convergence speed to show the
goodness of each method.

Firstly, we train the image generation task based on
past gradient penalty and ours and record raw evaluation
metrics. Then, we compare the best FID and IS during the
training process for quantitative analysis. Next, we draw
curve charts for evaluation metrics by comparing the con-
vergence speed. Besides, we also show statistics of diver-
sity analysis among all categories of CIFAR-10 to discuss
the performance of methods. Finally, we also show visual
samples for qualitative analysis.

5.1 Settings

5.1.1 Dataset

We tested and compared our method with past works based
on CelebA (203k training images, resize to 64x64 resolu-
tion), CIFAR-10 (50k training images, 10 classes, 32x32
resolution), and Tiny-ImageNet (100k training images, 200
classes, 64x64 resolution).

5.1.2 Comparison

We set three past works as baselines to compare with our
work. Firstly, WGAN-GP started the boom to use the GP to
help train the GANs. Next, DiracGAN solved the oscillat-
ing problem in convergence in WGAN-GP based on zero-
centering GP. Afterwards, DRAGAN noticed the gradient
exploding problem in DiracGAN and further improved the
local linearity based on their noised GP. Finally, we recorded
two kinds of evaluation metrics to show how well can dif-
ferent kinds of GP lead to the equilibrium. All settings used
Eq. (8) and λ was always set as ten based on past literatures.

As for experiments in WGAN-GP [4], ours, and DRA-
GAN [8], these methods penalize extra points instead of real
or fake samples. Thus, they have the same training time.
While DiracGAN [5] is faster due to the direct penalization
on real or fake samples.

5.1.3 Ablation

As for the noised gradient penalty based on our synchro-
nized activation function, we use four different settings
which are combinations between 1) define local range with
a single standard deviation or treat random fake images as
the edge of local range; 2) using one-centering GP to gam-
ble on acquiring more information during the oscillation or
using zero-centering GP to maintain a better convergence.

In Table 2, we named our method with settings of
‘random fake images as the edge of local range’ and ‘one-
centering GP’ as ‘SYNC-R.F.-1’. And vice versa for cases

of ‘singe standard deviation as the edge of local range’ and
‘zero-centering’, as in ‘-S.S.’ and ‘-0’.

As the loss function in DRAGAN [8] can be treated
as the non-synchronized-activation version of our one-
centering ‘Sync-S.S.’ experiment, we set them in the same
group for comparison. Identically, WGAN-GP [4] is similar
to the one-centering ‘Sync-L.I.’ case, and DiracGAN [5] is
similar to the zero-centering ‘Sync-R.F.’ case.

We did not compare the setting of ‘L.I.’ with the zero-
centering GP due to WGAN-GP [4] did not mention or val-
idate such a setting in the original paper. Besides, although
other possible combinations (zero-centering ‘S.S.’ and one-
centering ‘R.F.’) cannot gain their advantages in past works,
we also test their performances based on our synchronized
activation function for comparison.

5.1.4 Network Architecture

As for the experimental comparison, we used the famous
BigGAN [18] architecture as the base model and only
changed the versions of gradient penalty in the discrimina-
tor loss function. Besides, we used a mean-pooling layer to
instead of the max-pooling layer in BigGAN to avoid non-
linearity except for ReLU function. In this case, all of the
non-linearity are bring from the activation function which
controlled the ablation to verify our synchronized activation
function.

We have several reasons to select BigGAN model as
the network architecture for all experiments. First, BigGAN
model is more competitive against past models. Although
past models (DCGAN [19], SAGAN [20], SNGAN [17],
etc.) obtained great success, BigGAN achieved state-of-
the-art performance. Second, BigGAN model only has one
single max-pooling layer. Therefore, changing such a max-
pooling layer to a mean-pooling layer will not bring a re-
markable difference in performance. Third, BigGAN model
used spectral normalization [17] to keep its training stability,
and there is no other terms in the loss function. In this case,
we can exclude interference factors via other types of penal-
ties, yet some other powerful network architectures (e.g.,
StyleGAN [11] and StyleGAN2 [12], [13]) cannot.

5.1.5 Hyper-Parameters

We trained the generator and the discriminator once-by-once
in turns. All models were trained by Adam optimizer [21]
with the generator learning rate set as 2e-4 and the discrim-
inator learning rate set as 2e-4, respectively. The Beta1 was
0.9 and Beta2 was 0.999 in Adam optimizer. The exponen-
tial moving average (EMA) were started after first 1k train-
ing iterations. The batch size was 64 for Tiny-ImageNet
experiments and was 256 for CIFAR-10 and CelebA experi-
ments. For CIFAR-10 experiments, we trained models with
enough iterations and recorded the metrics curves for com-
parison while applying the early-stop mechanism for Tiny-
ImageNet and CelebA experiments. The dimension number
of the input noise is 128 for all experiments. We used Py-
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Table 2 Best FID (lower is better) and their corresponding IS (higher is better) during training pro-
cesses. As IS is meaningless for human face dataset, so we only list FID for CelebA experiments. Our
methods are marked with †. For penalized objects, ‘-R.F.’ stands for ‘random fake samples as the scope
of local data manifold’; ‘-S.S.’ for ‘a single standard deviation of real images as the scope of local data
manifold’; ‘-L.I.’ for ‘treat the linearly interpolated images as the local center and use a single standard
deviation of them as the local scope’. We mark the best scores bold for each similar methods and square
the best scores among all the methods.

Method
Penalized GP CIFAR-10 Tiny-ImageNet-200 CelebA
Objects Center IS FID IS FID FID

WGAN-GP L.I. 1 7.836±0.095 8.179 10.315±0.192 29.925 8.711

†Sync. L.I. 1 8.301±0.112 7.160 12.085±0.218 28.340 6.497

†Sync. R.F. 1 8.250±0.056 6.698 12.058±0.149 27.887 6.557
DRAGAN S.S. 1 7.579±0.109 9.384 10.591±0.113 29.545 7.188
†Sync. S.S. 1 8.244±0.094 6.982 12.071±0.231 29.158 6.914
DiracGAN R.F. 0 7.677±0.094 9.185 9.968±0.159 31.098 7.511
†Sync. R.F. 0 8.238±0.093 7.398 11.214±0.229 30.821 6.512

†Sync S.S. 0 8.271±0.084 6.795 11.935±0.262 27.839 7.350

torch [22] version 1.1.0 to organize all experiments.

5.1.6 Evaluation Metrics

For evaluations, we used the famous Fréchet Inception Dis-
tance (FID) [23] to quantify the model performance (lower
is better). We also compared Inception Score (IS, higher
is better). We sampled the best-performed model based on
FID and also recorded its IS due to FID is relatively better
than IS [24], [25]. For testing the best model performance,
we calculated and recorded the IS and FID score every 1k
training steps. For every experiment, we sampled 50k ran-
dom samples to calculate the FID and IS.

5.2 Quantitative Analysis

As shown in Table 2, we compared two kinds of evalua-
tion metrics for three real-world datasets. We trained all
experiments with the same architecture except for the type
of GP in the discriminator loss. From Table 2: 1)First of all,
our method based on the synchronized activation function
can generate superior quality compared with other types of
GP; 2)In the case of ablation studies, among four different
ablations, the setting of ‘-R.F.-0’ performed inferior perfor-
mance than other ablations in terms of FID and IS. In a com-
plex dataset, the ‘-R.F.-0’ setting cannot defeat past works
w.r.t. the FID score while the IS is superior; 3) In order
to further analyze whether this setting sacrificed the genera-
tion quality to balance other properties, we will compare the
convergence speed and the generation diversity latter; 4) Be-
sides, the setting of ‘-R.F.-1’ and the setting of ‘-S.S.-0’ per-
formed equally excellent in terms of FID. We suppose that
‘-R.F.’ can exert a risky training strategy in one-centering
GP while ‘-S.S.’ can cooperate with a steady training strat-
egy in zero-centering GP as introduced in Sect. 4.2.

Table 3 Statistics of LPIPS (higher is more diverse)
among all categories of CIFAR-10 experiments.

Method Mean Std Min Max

WGAN-GP 0.2150 0.0757 0.1142 0.3701
DRAGAN 0.2344 0.0712 0.1089 0.3760
DiracGAN 0.2316 0.0861 0.1111 0.4273
Sync-R.F.-1 0.2136 0.0692 0.0993 0.3513
Sync-S.S.-1 0.2106 0.0729 0.1173 0.3514
Sync-R.F.-0 0.2346 0.0746 0.1106 0.3719
Sync-S.S.-0 0.2151 0.0865 0.0950 0.4227

5.3 Diversity Analysis

In Table 3, we show LPIPS statistics for CIFAR-10 ex-
periments to compare the generation diversity. Generally
speaking, our ‘-R.F.-0’ setting can achieve similar diversity
as DRAGAN. In contrast, all methods obtained negligible
differences, which means that our methods can still keep a
standard performance in the generation diversity.

5.4 Qualitative Analysis

In Fig. 2, we show randomly generated samples and com-
pare with real samples. Generally, our method is less likely
to generate weird samples, and the backgrounds in our sam-
ples are more clear.

From Fig. 3, we can find that our methods demon-
strated a higher convergence speed to reach the peak per-
formance during the training process. Many reasons can
lead to faster convergence in GANs training. We summarize
two possible reasons based on past literature. First, strictly
keeping Lipschitz continuity in the discriminator can lead
to the stable training process [4], and therefore lead to faster
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Fig. 2 CelebA generation samples and real samples.

Fig. 3 IS and FID curve maps by training iterations. Our methods demonstrated better generation qualities and
faster convergence speed. ‘k’ refers to one thousand training iterations here. One reminder is that in Table 2, we
sampled from the trained iteration, which achieved the best FID and then recorded the corresponding IS in that
iteration. Some models can achieve a little bit better IS before or after the best FID iteration.
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convergence. DRAGAN and WGAN-GP penalized limited
samples (real, fake, or linear combinations), and DRAGAN
penalized random samples near the real or fake samples. In
contrast, ours penalized the whole local region, larger than
past works. Second, local linearity can benefit the training
process due to the convexity of linear functions in optimiza-
tion [6]. Our method specially designed the synchronized
activation function to keep better linearity in the local range.

6. Discussion

6.1 Penalized Points and GP Center

Some past works discussed the penalized points between
two cases: the linear interpolation between real and fake
samples or only penalize onto real samples with noise. In
our work, the linear range (random fake samples as the edge
of local data manifold) or the spherical range (single stan-
dard deviation of real samples as the edge of local data man-
ifold) demonstrated their properties to a certain extent. At
the same time, the major contributor is the noised GP based
on our synchronized activation function.

Discussion between zero or one-centering GP also
makes sense. Dislike evaluation metrics in other computer
vision tasks (classification, segmentation, etc), computing
FID and IS are timely expensive. If the project time is not
limited, calculate FID scores for every iteration to select the
best result. Therefore, sampling evaluation metrics scores
after certain iterations are more feasible under a limited
training time for the whole generation task, which means the
best model might be neglected. The zero-centering case can
lead the optimizing direction to one point that reduces the
oscillation in adversarial learning and increases the lower
bound of model performance. The one-centering case will
lead to a circling case in optimization which brings chances
to meet better equilibrium. In other words, less oscillation
increases the sampling lower bound of the generator perfor-
mance, while higher fluctuation may bring some extraordi-
nary generators occasionally. Thus, which center is better
will depend on the training difficulty of dataset size and the
scale of network architecture. In our experiments, the set-
ting of using random fake images with one-centering GP or
using a single standard deviation with zero-centering GP is
recommended for higher generation quality. As for higher
generation divergence, the setting of using random fake im-
ages with zero-centering GP is appreciated.

6.2 Recent Works

GP-based methods are well developed in some recent works.
Basically, recent GPs tend to solve other problems yet local
linearity. SVM-GANs [10], [26] proposed to penalize the
infinite norm in GP to achieve a maximum-margin classi-
fier in the discriminator. WGAN-div and one of its special
case [7], [27] defined GP as a high order exponential loss
function rather than mean-square loss in past works. Gen-
eralization and stability can be improved significantly based

on their GP. Gradient normalization [28] changed GP to the
normalization and achieved larger capability in the discrim-
inator. Our method follows the traditional Frobenius norm
and mean-square-error as past works [4] and changes penal-
ized objects merely. Thus, our method is compatible with
mentioned recent works because these methods have no re-
lation to the activation function.

6.3 Limitation of Our Method

Our method realized a novel synchronized activation func-
tion to achieve local linearity. The first limitation is that
there must be no other non-linearity in the discriminator ex-
cept for our activation function. Thus, our method is suitable
if changing other non-linearity in some models will not de-
generate the model performance (such as changing the max-
pooling layer to the mean-pooling layer in BigGAN). Be-
sides, our method could be applied to any GP-based meth-
ods if they are compatible with our work.

7. Conclusion

This work provided insights into the conflict problem be-
tween local linearity and Lipschitz continuity in DRAGAN.
Then, we proposed an improved version of noised GP based
on our synchronized activation function to solve the con-
flict problem in the discriminator and improve the genera-
tion quality. Table 2 showed that our proposal opens a novel
approach for improving the generation quality as well as the
convergence speed based on different real-world datasets.
Besides, our method can also be applied in newly proposed
GANs to improve their discriminator performance and gen-
eration quality.
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