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PAPER

Speech Recognition for Air Traffic Control via Feature Learning
and End-to-End Training

Peng FAN†, Xiyao HUA††, Yi LIN††, Bo YANG††, Jianwei ZHANG††, Nonmembers, Wenyi GE†††, Member,
and Dongyue GUO†a), Nonmember

SUMMARY In this work, we propose a new automatic speech recog-
nition (ASR) system based on feature learning and an end-to-end training
procedure for air traffic control (ATC) systems. The proposed model inte-
grates the feature learning block, recurrent neural network (RNN), and con-
nectionist temporal classification loss to build an end-to-end ASR model.
Facing the complex environments of ATC speech, instead of the hand-
crafted features, a learning block is designed to extract informative features
from raw waveforms for acoustic modeling. Both the SincNet and 1D con-
volution blocks are applied to process the raw waveforms, whose outputs
are concatenated to the RNN layers for the temporal modeling. Thanks
to the ability to learn representations from raw waveforms, the proposed
model can be optimized in a complete end-to-end manner, i.e., from wave-
form to text. Finally, the multilingual issue in the ATC domain is also
considered to achieve the ASR task by constructing a combined vocabu-
lary of Chinese characters and English letters. The proposed approach is
validated on a multilingual real-world corpus (ATCSpeech), and the exper-
imental results demonstrate that the proposed approach outperforms other
baselines, achieving a 6.9% character error rate.
key words: automatic speech recognition, feature learning, air traffic con-
trol, multilingual, end-to-end training

1. Introduction

Automatic speech recognition (ASR) translates speech into
human-readable texts and has been widely used in various
scenarios [1]. Recently, introducing the ASR and spoken
language understanding (SLU) techniques into air traffic
communications to reduce the workload of the ATCo and
ensure flight safety has gathered more attention from re-
searchers [2]. In this procedure, the ASR is one of the fun-
damental components and a high-confidence ASR result is
the key to supporting downstream applications.

However, compared to the common ASR research, the
ATC has many new challenges and difficulties. In general,
the ATCo and pilots’ speeches are usually in English. How-
ever, in China, the ATCos and pilots communicate through
Chinese for domestic flights more frequently. That is to say,
speech on the same frequency usually in both Chinese and
English, i.e., multilingual ASR is required for the ATC do-
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main [3]. Our previous work introduced ASR into the ATC
safety monitoring framework, and also converted ATCo and
pilot speech into instructions for controlling intent infer-
ence [4].

Recently, the end-to-end speech recognition system
has provided higher performance than traditional methods
for common ASR tasks [6]. However, current end-to-end
ASR systems usually use mel-frequency cepstral coeffi-
cients (MFCCs) or filter-bank (FBANK) to process the raw
waveform speech instead of directly inputting the raw wave-
form. In this procedure, the raw speech is divided into
frames with 25 ms frame length and 10 ms shift, and a se-
ries of signal processing transformations are applied to con-
vert the 1D waveform into 2D feature map. After the raw
waveform speech is processed by MFCC or FBANK, the ex-
tracted feature map is fed into the neural network for acous-
tic modeling. This method has achieved state-of-the-art re-
sults in many ASR tasks. However, the design of FBANK
and MFCC is based on the human ear’s response to audio,
it may lose some of the raw waveform speech information.
In addition, compared to the common domain, there are
still many challenges to tackling the acoustic specificities
of the ATC speech due to the complexity in the real environ-
ment [3], [7], including radio background noise, high speech
rate, unstable speech rate, etc. Considering the complex
ATC environment, handcrafted feature engineering may not
be an optimal option for ASR tasks. Therefore, exploring
more effective feature learning approaches has become a
promising technique to boost ASR performance in the ATC
domain. Furthermore, learning informative and discrimina-
tive features from raw waveforms by the neural network has
achieved desired performance improvement in many previ-
ous works, such as SincNet [5], wav2vec [8].

In this work, an end-to-end neural network is designed
to achieve the ASR task in the ATC domain, in which a novel
dual paths feature learning block is proposed to extract high-
level speech representations from raw waveforms. Since the
raw waveform is a one-dimensional signal, it is natural that
learn speech representation from the raw waveform using
the 1D convolution mechanism. Motivated by wav2vec and
SincNet, both the SincNet and 1D convolution blocks are
used to build the dual paths learning block to learn features
from raw waveforms. The backbone network is constructed
by recurrent neural network (RNN) layers and is jointly op-
timized with features learning block by the connectionist
temporal classification (CTC) loss function. Most impor-
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tantly, the proposed model leverages the dual paths feature
learning block to implement the end-to-end training, which
predicts the text sequence from raw waveform without any
pretraining.

The model proposed in this paper introduces a feature
learning approach for speech recognition tasks in the ATC
domain, and the work in this paper is dedicated to solving
the multilingual speech recognition problem in the ATC do-
main. The experimental results show that our approach out-
performs other baselines on the ATCSpeech corpus, achiev-
ing a 6.9% character error rate (CER), i.e., 0.9% absolute
CER reduction over other baselines.

2. Related Work

With the rapid development of deep learning techniques in
the past decades, it has outperformed the conventional meth-
ods for the ASR task [9], [10]. A deep learning-based fea-
ture extracted method–SincNet, was proposed to deal with
the ASR task and speaker recognition task, and the exper-
imental results showed that the neural network based on
SincNet achieved better performance for both two tasks.
The SincNet can learn more informative and discriminative
features from raw waveform [5], [11]. Other deep learning-
based models, like wav2vec, were also proposed to extract
speech features from raw waveforms. The wav2vec model
explores unsupervised pre-training for speech recognition
by learning representations from raw audio through several
1D convolution layers. The wav2vec model is trained on
large amounts of unlabeled speech and the resulting repre-
sentations serve as the input of the acoustic model for the
ASR task [8].

For the common ASR applications, the SincNet was
proposed to be combined with end-to-end architecture,
which achieved higher accuracy on Wall Street Journal cor-
pus [12]. In addition, the sinc-convolution was combined
with the depthwise convolutions to construct the lightweight
sinc-convolutions (LSC) model [13], which serves as a
learnable feature extraction block for end-to-end ASR sys-
tems with minor trainable parameters. Furthermore, the
wav2vec2.0 is combined with the BERT to construct an end-
to-end ASR model, achieving higher performance by learn-
ing features from pre-trained models [14]. Additionally,
the SincNet-based feature learning approaches were also
applied in many applications and achieved desired perfor-
mance improvements. In [15], the SincNet and LEAF [16]
were employed as the learnable frontends to extract the
time-frequency representations from the raw-waveform do-
main and show competitive performance in the speech com-
mand classification tasks. Similarly, a parameterized convo-
lutional neural network (CNN) was used for acoustic mod-
eling from raw waveform for the dysarthria speech recog-
nition tasks [17]. In [18], a SincNet-based speech feature
learning method was proposed to achieve automatic smoker
identification tasks. It can be found that investigating learn-
able frontends has drawn a lot of attention from researchers
and made significant progress in the field of speech process-

ing.
For the ASR research in the ATC domain, several

state-of-the-art ASR models were applied to build a bench-
mark, which was trained on more than 170 hours of ATC
speech [19]. The contextual knowledge was integrated into
the ASR model to achieve semi-supervised training, which
provided better performance for recognizing callsign of the
ATC instruction [20]. Our previous work built a unified
framework for multilingual speech recognition in the ATC
system to translate ATC and pilot multilingual speech to
text [3]. To deal with the scare of high quality annotated
training data in the ATC domain, a novel method was pro-
posed to leverage pretraining and transfer learning [21]. In
order to improve the call sign recognition rate in ATC
speech, a context-aware language model is proposed [22].
In addition, a method based on deep learning is proposed
to solve speaker role identification in the air traffic control
domain [23].

3. Methodology

In this work, a complete end-to-end architecture is proposed
to achieve the multilingual ASR task in the ATC domain
by cascading a dual paths feature learning block and back-
bone network. Both the SincNet and convolutional layers
are applied to formulate a dual paths feature learning block
to extract high-level representations from raw waveforms.
By combining with the backbone network (referred to the
Deep Speech 2 model [24]), the proposed model is finally
optimized by the CTC loss function. In addition, to con-
sider the multilingual ASR issue in the ATC domain, a spe-
cial vocabulary is built based on Chinese characters and En-
glish letters. The architecture of the proposed model is illus-
trated in Fig. 1. Thanks to the design of the dual paths fea-
ture learning block, the proposed model is able to directly
predict the text sequence from the waveforms and can be
optimized in an end-to-end manner with the goal of an ASR
task, instead of a pretraining task.

3.1 Dual Paths Feature Learning

In the ATC domain, the ASR task faces the challenges
of multilingual language, complex background noise, etc,
which results in the fact that handcrafted feature engineering
may not be an optimal option for the ASR task. Therefore,
the dual paths feature learning block is applied to extract
features from raw waveforms in a learnable way, which fur-
ther supports the acoustic modeling of the ASR task.

In this work, a novel dual paths feature learning block
is proposed to learn informative features from raw wave-
forms, whose outputs are generated by concatenating the
feature maps of different learning paths. For ASR, the
wav2vec model learning speech representations from the
raw waveforms by 1D convolution beyond the traditional
handcrafted feature [8]. Motivated by wav2vec, the 1D con-
volution be chosen as one of the dual paths. In general,
the dual paths feature learning block consists of dual paths:
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Fig. 1 The architecture of the proposed end-to-end automatic speech recognition system. The model
consists of the dual paths feature learning block and the backbone network. A dual paths feature learning
block is used to learn features from the raw waveforms. The drawn of SincNet components are referred
from [5].

a) SincNet path: including a sinc-convolutional layer and
four convolutional layers. The configurations are as follows:
filter-sizes [129, 3, 3, 3, 3], strides [1, 1, 1, 1, 1], max pool-
ing size [3, 3, 3, 3, 3], and ReLU activations. b) Conv1D
block path: including five Conv1D blocks, whose configu-
rations are the same as that of the SincNet path to keep the
same feature map size, supporting the concatenation opera-
tion of the dual paths. Each Conv1D block is cascaded by
a 1D convolutional layer, batch normalization layer, max-
pooling layer, and ReLU layers.

SincNet is a novel convolutional neural network
(CNN), which performs convolutional perception using the
specific Sinc function. The layer is an improved neural net-
work based on the parametrized Sinc functions, which has
the ability to learn task-oriented features from speech sig-
nals directly. In general, the convolution operation is defined
as follows:

y[n] = x[n] ∗ h[n] =
L−1∑

l=0

x[l] · h[n − l]. (1)

y[n] = x[n] ∗ g[n, θ], (2)

where ∗ is convolution operation, x[n] is a chunk of the
speech signal, h[n] is a filter with length L, and y[n] is fi-
nal filtered result. Compared to a large number of param-
eters in the common CNN block, the sinc-convolution op-
erator is able to achieve the signal processing with much
fewer trainable parameters by defining the filter function g.
In this work, the rectangular bandpass filter is applied to
serve as the filter-bank to implement the speech processing,
this function g can be written in the time domain as follow:

g[n, f1, f2] = 2 f2 sinc(2π f2n) − 2 f1 sinc(2π f1n). (3)

In the above function, the sinc function is defined as
sinc(x) = sin(x)/x, where f1 and f2 are the learned low

and high cutoff frequency of the bandpass filter, respec-
tively. The parameter f is randomly initialized in the range
of [0, fs/2], and fs is the sample rate of the speech signal.

gw[n, f1, f2] = g[n, f1, f2] · w[n]. (4)

w[n] = 0.54 − 0.46 cos(2πn/L). (5)

Furthermore, to smooth out the abrupt discontinuities
at the end of g, an available option is used to make g multi-
plied by a window function w, such as the popular Hamming
window [5].

3.2 The Backbone Network

Our work is motivated by the end-to-end ASR system Deep
Speech 2 [24]. In this work, we explore architecture with
a dual paths feature learning block and backbone network.
The backbone network consists of 7 RNN blocks and a fully
connected layer, which is further optimized with the CTC
loss. The RNN block includes bidirectional long short-term
memory (Bi-LSTM) layers and a batch normalization layer.
The batch normalization is applied to speed up the model
convergence, while the dropout layer is used to prevent the
overfitting problem. The ReLU is selected as the activation
function for the proposed model.

3.3 The CTC Loss

In the proposed end-to-end ASR model, the goal is to pre-
dict the text sequence S = {s1, . . . , sm} from the input speech
signal X = {x1, . . . , xo}, in which si is from a special vocab-
ulary based on Chinese characters and English letters.

In general, multiple frames in X correspond to a token
of S . The length of speech frames is usually much longer
than the label length. To address this issue, the CTC loss
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function was designed to automatically achieve the align-
ment between the speech and label sequence. The tth frame
corresponds to the output label k and its probability is de-
noted zt

πt
. Given the speech input X, the probability of the

output sequence π is shown in (6). Therefore, the probabil-
ity of the final sequence can be obtained by (7), in which v
is the set of all possible sequences and A denote the length
T sequences over the vocabulary. For example, by using ‘ ’
to denote a blank, both the outputs “X YY Z” and “ XY Z ”
correspond to the final output “XYZ” [25].

p(π|X) =
T∏

t=1

zt
πt
, π ∈ A. (6)

p(S |X) =
∑

π∈v−1(s)

p(π|X). (7)

4. Experiments

4.1 ATC Corpus

In this work, the training data of the proposed model is the
ATCSpeech corpus, which is collected from the real-world
ATC environment and manually annotated [26]. All the ut-
terances of the ATCSpeech corpus are with the 8000 Hz
sample rate. The ATCSpeech corpus is a multilingual cor-
pus containing Chinese and English speeches. There are
16939 transcribed English utterances (about 18.69-hour) in
the corpus, while 45586 (about 39.83-hour) for Chinese
speech. The division for the train, validation and test set
can be found in Table 1.

4.2 Experimental Configurations

In this work, the proposed model is constructed based on
the open framework PyTorch 1.7.0. The training server was
equipped with an Intel i7-9700 processor, a single NVIDIA
TITAN RTX GPU, 32-GB memory, and an Ubuntu 18.04
operating system.

During the model training, the Adam optimizer is used
to optimize the trainable parameters. The initial learning
rate is 0.0001. The batch size is set to 32. In the first epoch,
the speech samples are sorted in reverse order (based on
speech duration) to detect the overflow of GPU memory as
early as possible. In the following epochs, the training sam-
ples are shuffled to improve the model’s robustness. The vo-
cabulary is built on Chinese characters and English letters,
and also with some special tokens (<UNK>, <S PACE>).
Finally, a total of 705 tokens in the vocabulary. As in [26],
the Deep Speech 2 [24], Jasper [27] and Wav2Letter++ [28],

Table 1 Data size of the corpus. “#U” denotes the speeches utterances
and “#H” denotes the speeches hours.

Language
Train Dev Test

#U #H #U #H #U #H
Chinese 43186 37.77 1200 1.04 1200 1.03
English 15282 16.84 850 0.95 807 0.89

which are applied to achieve the monolingual and multilin-
gual ASR task in this work. In addition, a competitive ASR
architecture, Conformer [29] is also selected as the baseline.
In order to ensure the fairness of the experiment, all those
models are trained on the same dataset (ATCSpeech) with-
out extra training data.

To confirm the effectiveness of the acoustic model, no
language model is integrated into the ASR decoding proce-
dure, i.e., greedy strategy.

4.3 Overall Results

In this section, all the models are applied to achieve both
monolingual and multilingual ASR tasks. To confirm the
efficacy of the dual paths feature learning block, handcrafted
feature engineering is performed to generate the input for
baseline models. The experimental results for all the models
are reported in Tables 2–4.

In general, the proposed approach yields the highest
performance among all the models for both monolingual
and multilingual ASR tasks. The Deep Speech 2 base-
line obtains better performance among the four baselines
while the conformer model does not perform best due to
limited dataset size and batch size. We also observed that
the loss of the Deep Speech 2 model decreases fastest and
the network converges earliest than other approaches. This
can be attributed to that temporal modeling provides sig-

Table 2 The result of Chinese speech. “Fea.” details the type of input
features employed, and “Training” denotes the loss and epoch of the train-
ing. “Dev” denotes the validation dataset. Results are expressed in CER.

Models Fea.
Training Dev Test

Loss Epoch CER% CER%
Deep Speech 2 [26] FBANK 0.53 33 8.1 8.1

Jasper10*3 [26] FBANK 2.45 101 11.2 11.3
Wav2letter++ [26] FBANK 2.37 136 14.2 14.3

Conformer [29] FBANK 0.31 91 8.9 8.9
Ours RAW 0.26 105 7.6 7.6

Ours (multilingual model) RAW 0.26 102 7.3 7.3

Table 3 The result of English speech.

Models Fea.
Training Dev Test

Loss Epoch CER% CER%
Deep Speech 2 [26] FBANK 0.54 107 10.4 10.4

Jasper10*3 [26] FBANK 0.91 200 9.2 9.3
Wav2letter++ [26] FBANK 1.06 307 11.3 11.4

Conformer [29] FBANK 0.22 178 10.9 11.0
Ours RAW 0.21 150 8.9 8.9

Ours (multilingual model) RAW 0.26 102 6.3 6.3

Table 4 The result of the multilingual speech.

Models Fea.
Training Dev Test

Loss Epoch CER% CER%
Deep Speech 2 FBANK 0.45 30 7.8 7.8

Jasper10*3 FBANK 2.35 97 10.0 10.1
Wav2letter++ FBANK 2.29 115 12.3 12.4

Conformer [29] FBANK 0.28 88 8.3 8.4
Ours RAW 0.26 102 6.9 6.9
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Table 5 The result of the model with different SincNet kernel sizes.
“Kernel Size” details the kernel size of the proposed method first convo-
lution layer.

Kernel Size
Training Dev Test

Loss Epoch CER% CER%
251 0.31 90 7.3 7.4
129 0.26 102 6.9 6.9
65 0.25 95 7.0 7.1

nificant performance improvement for the ASR task, which
is also the motivation of our backbone network. In addi-
tion, the multilingual ASR system is able to obtain higher
accuracy than that of the monolingual ASR system, bene-
fiting from the larger dataset and prominent discrimination
between Chinese and English. However, since the proposed
approach learns speech features directly from the raw wave-
forms, there are more parameters that need to be learned
which makes the loss decrease and the network converge
slower than the Deep Speech 2 baseline in training. Specif-
ically, for the Chinese speech, the proposed model achieves
7.6% CER, i.e., 0.5% absolute CER reduction over the Deep
Speech 2 model. Furthermore, for the proposed model, it
achieves 7.3% CER, i.e., 0.3% absolute CER reduction train
on the multilingual data and is superior to that of only train-
ing on Chinese speech. For English speech, the proposed
model obtains 0.4% absolute CER reduction over the Jasper
model (highest baseline accuracy), reaching 8.9% CER. The
proposed model training on multilingual speech achieves
6.3% CER, i.e., 2.6% absolute CER reduction over that of
training on English speech. To be specific, for the multilin-
gual ASR task, the proposed model achieves higher perfor-
mance than that of the monolingual ASR system, achieving
6.9% CER. The results also confirm the effectiveness of
the dual paths feature learning block in the proposed model,
which learns more informative and discriminative features
for the ASR task.

4.4 Ablation Study

In this section, we explore different convolution configura-
tions of the SincNet by ablations to find an optimal model
architecture. As illustrated in [5], the size of the convolu-
tion kernel and the size of max pooling will affect the risk
of aliasing in the filtered signal. The kernel size of 251 (as
in [5]) is selected as the baseline for the proposed model in
this work.

Considering the higher speech rate in the ATC environ-
ment [3], a smaller kernel size is designed for the proposed
dual paths feature learning block (for both the SincNet and
common CNN paths), including 129 and 65. For the convo-
lutional operation, a smaller kernel takes fewer frames as a
single phoneme state, corresponding to a higher speech rate.
The experimental results are listed in Table 5. It can be seen
that the proposed model achieves the highest accuracy with
the kernel size of 129, which is the optimal option for the
ATCSpeech corpus.

In addition, the contribution of the different paths in the

Table 6 The results of different feature learning networks structure.
“Models” is the backbone network with different feature learning blocks.

Models
Training Dev Test

Loss Epoch CER% CER%
1D CNN*1 (a) 0.27 93 7.4 7.5
SincNet*1 (b) 0.26 95 7.1 7.2
SincNet*2 (c) 0.25 97 7.1 7.1

ours (d) 0.26 102 6.9 6.9

dual paths feature learning block is also considered to im-
prove the final performance. As listed in Table 6, a total of 4
configurations are designed in this ablative study, including
the single path (a and b) and dual paths (c and d). As can
be seen from the experimental results, both the four config-
urations achieve desired performance improvement baseline
models, i.e., 7.4% CER v.s. 7.8% CER, which confirms the
effectiveness of the learning mechanism for the ASR task in
the ATC domain. In general, the dual paths configuration
achieves higher performance than that of the single path,
which benefits from the model capacity for learning diverse
task-oriented features. In addition, the single path SincNet
(a) is able to obtain comparable performance with that of the
dual paths SincNet (c), which indicates that only simply ac-
cumulating the same architecture fails to learn informative
features for improving the ASR performance. Finally, the
proposed model achieves the most significant performance
improvement (6.9% CER) by concatenating the SincNet and
CNN block, which supports the motivation of model design
in this work. In conclusion, both the model capacity and
the feature diversity are indispensable to tackling the ASR
specificities in the ATC domain.

5. Conclusion

In this work, we present an innovative fully end-to-end ASR
model using the proposed dual paths feature learning block
in the ATC domain, which results in better recognition per-
formances without extra training data. For the ASR in the
ATC domain, the proposed dual paths feature learning block
can learn more meaningful information from raw wave-
forms, and the feature learning-based ASR system perfor-
mance beyond the handcrafted feature learning-based ASR
system. Moreover, the dual paths feature learning block
can learn more diverse features than the single path feature
learning ASR system in the field of ATC. In addition, it
is also found that adding SincNet paths cannot further im-
prove the final performance, while better results can be ob-
tained by cascading SincNet and Conv1D blocks. Thanks
to the increased capacity of the proposed model, more di-
verse features can be learned in ASR tasks in the ATC do-
main. The experimental results have demonstrated the pro-
posed method outperforms other baselines in multilingual
ASR tasks on the ATCSpeech corpus.
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