
138
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

PAPER Special Section on Empirical Software Engineering

An Empirical Study of Package Management Issues via Stack
Overflow

Syful ISLAM†a), Raula GAIKOVINA KULA††, Christoph TREUDE†††, Bodin CHINTHANET††, Nonmembers,
Takashi ISHIO††, Member, and Kenichi MATSUMOTO††, Fellow

SUMMARY The package manager (PM) is crucial to most technology
stacks, acting as a broker to ensure that a verified dependency package is
correctly installed, configured, or removed from an application. Diversity
in technology stacks has led to dozens of PMs with various features. While
our recent study indicates that package management features of PM are re-
lated to end-user experiences, it is unclear what those issues are and what
information is required to resolve them. In this paper, we have investigated
PM issues faced by end-users through an empirical study of content on
Stack Overflow (SO). We carried out a qualitative analysis of 1,131 ques-
tions and their accepted answer posts for three popular PMs (i.e., Maven,
npm, and NuGet ) to identify issue types, underlying causes, and their reso-
lutions. Our results confirm that end-users struggle with PM tool usage (ap-
proximately 64-72%). We observe that most issues are raised by end-users
due to lack of instructions and errors messages from PM tools. In terms
of issue resolution, we find that external link sharing is the most common
practice to resolve PM issues. Additionally, we observe that links point-
ing to useful resources (i.e., official documentation websites, tutorials, etc.)
are most frequently shared, indicating the potential for tool support and the
ability to provide relevant information for PM end-users.
key words: package manager, end-user issues, stack overflow

1. Introduction

Package manager (PM) is crucial to most the technology
stacks in software development, especially when building a
web or mobile application. Using a package as the third-
party dependency in software applications is prominent,
with more than 5 million open source packages available
via PMs [1]. In 2020, GitHub showed its support for third-
party package usage when it acquired the Node.js PM (i.e.,
npm), which serves over 1.3 million packages to roughly 12
million end-users, and is constantly growing each day [2].

A PM acts as an intermediary broker between an ap-
plication and a third-party package dependency, to ensure
that a verified package is correctly installed, configured, or
removed from an application. PMs were developed as an
automated solution to deal with version compatibility and
build issues that arise when an application adopts numerous
dependencies [3]. Diversity in technology stacks has led to

Manuscript received March 26, 2022.
Manuscript revised August 29, 2022.
Manuscript publicized November 18, 2022.
†The author is with the Noakhali Science and Technology Uni-

versity, Bangladesh.
††The authors are with the Graduate School of Science and

Technology, Nara Institute of Science and Technology, Ikoma-shi,
630–0192 Japan.
†††The author is with the University of Melbourne, Australia.
a) E-mail: syfulcste@nstu.edu.bd

DOI: 10.1587/transinf.2022MPP0001

a variety of PMs with different features. For instance, npm
brokers packages that run in the node.js based environment
and are written in JavaScript. Recent studies have mainly in-
vestigated dependency management and migration [4]–[8].
In our study [9], we explored thirteen PMs to understand
whether their package management features correlate with
the experience of their end-users. While our recent study in-
dicates that package management features of PM are related
to end-user experiences, it is unclear what those issues are
and what information is required to resolve them.

Building on our previous study, we empirically inves-
tigate the issues that end-users face when using PMs and
the information needed to resolve them. Since it is common
practice for end-users to use Stack Overflow to post ques-
tions about issues faced during software development, we
leverage this data source for our work. First we conduct an
in-depth qualitative analysis on 1,131 sample question posts
on three PMs, i.e., Maven, npm, and NuGet to explore PM
issues in term of issue types and their underlying causes.
Next, we investigate the information need to resolve PM is-
sues through a mixed method analysis (i.e., both qualitative
and quantitative). Specifically, we investigated the follow-
ing three research questions:

• RQ1: PM Issues Faced by End-users- What types of
PM issues do end-users face? Our motivation is to gain
a better understanding of the challenges that end-users
face through an investigation of PM issues. Using the
question coding schema of Treude et al. [10], we are
able to classify each PM-related issue. As shown in
Fig. 1, the PM question can be classified as a how-to
type issue in which an end-user asks for instructions.
• RQ2: Underlying Causes of PM Issues-What are the

underlying causes of PM issues? Our motivation is to
discover the underlying cause of end-users challenges
when they use PM. By reading each PM-related is-
sue, we are able to identify and categorize common
underlying causes which explain why end-users strug-
gle with using a PM. As shown in Fig. 1, an example
underlying cause of PM issue can be related to lack of
technical depth on general ideas of dependency prac-
tice.
• RQ3: Information Need to Resolve PM Issues-What

information is needed to resolve PM issues? Our moti-
vation is to identify useful information patterns that can
assist in resolving PM issues. Using a mixed-method

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers



ISLAM et al.: AN EMPIRICAL STUDY OF PACKAGE MANAGEMENT ISSUES VIA STACK OVERFLOW
139

Fig. 1 A PM-related issue that provides an exemplary overview of the elements analyzed in our study.
RQ1 and RQ2 analyze the issue type and underlying cause from the PM-related post text. Finally,
RQ3 analyze the relationship between the PM question and the accepted answer posts to identify the
information need for issue resolution.

analysis between question and accepted answer posts,
we are able to identify common patterns of information
and determine whether they are related to a resolved
PM issue. As shown in Fig. 1, the build configuration
file is identified as a PM-related post attribute which
contributes to the issue resolution.

Our findings from RQ1 show that, most PM issues
are related to how-to questions followed by error mes-
sages, confirming end-users lack instructions and intuitive
error messages when using PMs. These findings indicate
that, end-users are interested in more specific guidance re-
lating to intuitive instructions, concepts, and errors asso-
ciated with PM. In addition, it is necessary to better un-
derstand what technical background knowledge end-users
should have concerning PMs. From RQ2, we find that
the underlying causes of PM issues can be categorized
into package management tool usage, general dependency
practices, specific migration, and others. We observe that
package management tool usage is the most dominant
underlying cause, confirming end-users report technical is-
sues on package management tool usage and not on specific
migrations of dependencies. These findings indicate the ne-
cessity of making it easier for end-users to find the informa-
tion they need to resolve PM tool usage issues, for example,
by providing good error messages or intuitive instructions.
Finally, from RQ3, we find that end-users post external
links to resolve PM issues. We observed that links point-
ing to useful resources such as official documentations and

tutorials are most frequently shared. This finding reveals the
opportunities for tool support and strategies to find useful
information for addressing PM issues. Researchers could
develop approaches that suggest useful information links by
automatically analyzing stack traces and logs to help speed
up the issue-resolution process.

The rest of the paper is organized as follows. Section 2
describes the methodology of dataset building for the target
PMs. Experimental results and discussions are presented
and discussed in Sect. 3. Section 4 presents the implications
of this work. Section 5 presents the threats to validity of this
work. Section 6 presents the related works. Finally, Sect. 7
presents the conclusion of this work.

2. Methodology of Dataset Building

In this section, we explain the methodology of selecting
PMs and their relevant question-and-answer post dataset
building.
Selecting PMs. For in-depth examination of package man-
agement issues faced by end-users, we focused primarily
on PMs associated with web frameworks, owing to their in-
creasing popularity for creating web applications, and dig-
ital systems. We selected the most popular PMs associated
with the top eight web frameworks based on the Stack Over-
flow survey 2020†. This resulted in three PMs: npm (i.e.,

†Stack Overflow Survey: https://insights.stackoverflow.com/
survey/2020



140
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

Table 1 List of tags used to collect PM posts

Initial tag Identified relevant tags
package-managers npm, nuget, nuget-package, maven, npm-

install, npm-scripts, npmignore, pnpm, npm-
shrinkwrap, nuget-package-restore, maven-2

Table 2 Summary of the PM posts dataset prepared for characterization
of PM issues and information need to resolve them.

Dataset (D1) Sample Dataset (D2)

PM #Question
#Accepted

answer
#Question

#Accepted
answer

Maven 74,657 33,710 382 173
npm 30,136 11,857 379 151
NuGet 10,041 5,129 370 182

Total 114,834 50,696 1,131 506

jQuery, React.js, angular, express, Vue.js are web frame-
works of JavaScript), NuGet (i.e., ASP.NET is web frame-
work of C#.NET) and Maven (i.e., Spring is web framework
of Java).
Collecting PM Posts. Initially, we downloaded the Stack
Overflow data dump version 2019-12-25 published on SO-
Torrent [11]. To collect relevant PM posts, we utilized tag-
based question post filtering which was also used by prior
studies [12], [13]. To filter out tags pertaining to the three
PMs, first we collected question posts tagged with the key-
word package-managers. This step resulted in 806 ques-
tion posts. Then, we extracted all tags from the 806 ques-
tion posts, resulting in 626 unique tags. We observed that,
although some tags were rare (i.e., occurring only once)
in the initial posts dataset, they had a strong relationship
with the three PMs. The tag maven-2, for instance, appears
only once in the initial PM post dataset as a coexisting tag,
but the tag itself is associated with 5,568 posts related to
maven. Hence, two authors manually filtered tags from 626
unique tags and identified 11 tags that are associated with
three PMs (see Table 1). Finally, we applied these tags
to collect PM posts. Thus, we obtained PM question-and-
answer dataset (i.e., D1) with 114,834 questions and 50,696
accepted answer posts. Afterward, we prepared representa-
tive sample dataset (i.e, D2), maintaining 95% confidence
level and a confidence interval of 5 for each PM. This re-
sulted in a total of 1,131 sample question from three PMs
(i.e., Maven:382, npm:379, and NuGet:370 posts) and their
associated accepted answers. Table 2 provides an overview
of the prepared datasets for characterization of PM issues,
their underlying causes and the information need to resolve
them. All data and scripts are made available through our
replication package†.

3. Results and Discussions

In this section, we present the approaches used to analyze
†Replication Package: https://zenodo.org/record/7005818#.

Yv3H0OzP30o

PM posts and the results obtained to answer our research
questions.

3.1 PM Issues Faced by End-Users (RQ1)

Approach. To answer RQ1, we conducted a qualitative
analysis of statistically representative sample questions in-
cluded in dataset D2 (see Table 2) for three PM tools,
namely maven, npm, and NuGet. The question coding
scheme proposed by Treude et al. [10] was adopted to an-
notate sample questions into PM issues faced by end-users.
Details of the question coding scheme are described below:

• How-to: Posts that ask for instructions. For example:
“Title: How to get latest version number of an artifact
and replace it in target file? (Id: 26223226)”. In this
post, a developer asked for instruction about getting lat-
est version an artifact.
• Discrepancy: Some unexpected behavior that the per-

son asking about the PM post wants explained. For
example: “Title: Spring Boot JPA & H2 Records Not
Persisted (Id: 27843682)”. In this post, a developer
faced some unexpted issues while running command
mvn spring-boot:run.
• Environment: Posts about the environment either dur-

ing development or after deployment. For example,
“NPM Windows Path Problems (Id: 25120982)”. In
this post, a developer ask for solution of environment
setting issue.
• Error: Posts that include a specific error mes-

sage. For example: “Title: Error running Google
App Engine quick start: POM for com.google.app
engine:app engine-maven-plugin:jar:1.9.24 is missing
(Id: 31576681)”. In this post, a developer asked for
solution of build failure caused after running command
mvn appengine:devserver.
• Decision help: Asking for an opinion. For exam-

ple: “Can I invoke a local bean into a ear file from
a Javax-WS into a war file- apache-tomee-plus-1.7.4
(Id: 51072906)”. In this post, a developer asked for an
opinion about invoking a local bean into a ear file from
a Javax-WS into a war file-apache-tomee-plus.
• Conceptual: Posts that are abstract and do not have a

concrete use case. For example: “Difference between
mvn appengine:update and mvn appengine:deploy in
Google App Engine (Id: 40094090)”. In this post, a de-
veloper asked for understanding the difference between
mvn appengine:update and mvn appengine:deploy.
• Review: Posts that are either implicitly or explicitly

asking for a review. For example: “Is there any pos-
sibility of deleting libraries stored maven central? (Id:
25133985)”. In this post, a developer asked for a
review about possibility of deleting libraries stored
maven central.
• Non-functional: Posts about non-functional require-

ments such as performance or memory usage. For ex-
ample: “Java project runs slow from JAR but fast from



ISLAM et al.: AN EMPIRICAL STUDY OF PACKAGE MANAGEMENT ISSUES VIA STACK OVERFLOW
141

Fig. 2 Percentage of PM issues by question coding from Treude et al. [10]. Result shows that
‘How-to’ and ‘Error’ messages are the most dominant issue faced by end-users.

IDE (Id: 41861330)”. In this post, a developer asked
for performance issue of Java project.
• Novice: Often explicitly states that the person belong

PM posts is a novice. For example: “The missing pack-
age org.spring framework.web (Id: 12603723)”. In this
post, a novice developer asked for a package missing
issues while using Spring MVC.
• How-to/Novice: Posts that belong to a novice asking for

step by step tutorials. For example: “Maven2 - POM
configure issue in Windows (Id: 5087296)”. In this
post, a novice developer asked for step by step instruc-
tion to configure maven POM file.
• Others: Posts that don’t fall in the above categories.

In our annotation guidelines, we did not allow multiple cat-
egories for one question post. To ensure the quality of our
classification, we performed a Kappa agreement check us-
ing 30 random samples among three authors. Using the
Kappa score calculator [14], we checked the agreement level
and find overall score 86.67%, which was almost perfect.
Confident with the agreement, two authors then continued
to manually annotate the remaining sample posts.
Results. Fig. 2 shows the result of our qualitative analysis.
We observe that most PM issues are related to How-to ques-
tions followed by Error messages, confirming end-users
lack instructions and intuitive error messages when using
PMs. In Maven, we find that How-to (39.01%) question is
most dominant, followed by Error (26.96%) and Review
(14.40%). Similar trend is also shared by NuGet, where
How-to (42.16%) question is most dominant, followed by
Error (30.54%) and Decision help (7.30%). On the
other hand, in npm we find that Error (36.94%) message
question is most dominant, followed by How-to (30.87%)
and Review (9.76%). These findings indicate that, end-
users are interested in specific guidance relating to intuitive
instructions, concepts, and errors associated with PMs.

3.2 Underlying Causes of PM Issues (RQ2)

Approach. To answer RQ2, we conducted a qualitative
analysis of statistically representative sample questions in-
cluded in dataset D2 (see Table 2) for three PM tools,
namely maven, npm, and NuGet. An open coding strategy
was adopted similar to the previous work by Hata et al. [15]
in order to reveal the root causes of PM issues. The open
coding process consists of three steps. In step-1, the second
author of this paper derived a draft list of underlying causes
based on 30 randomly sampled posts. Then the first two
authors used the draft list to label the sample questions col-
laboratively. During this step, the underlying causes were
revised. The output of this step was 4 underlying causes in-
cluding others. In step-2, the same two authors performed
manual annotation of another 30 samples to make sure that
no new causes appeared. The output of this step was the
same 4 underlying causes. In step-3, three authors discussed
the coding results that were obtained in step-2 and measured
author agreement using Kappa score [14]. We did not allow
multiple categories for one question post under our annota-
tion guidelines. After two rounds of manual annotation of
30 samples among three authors, we ended up with a Kappa
score of 95.56% (almost perfect). Given reliability of the
annotation guidelines, two authors manually annotated the
remaining samples. The 4 underlying causes of PM issues
are summarized below:



142
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

• Specific migration: Posts related to dependency up-
dates like an upgrade or downgrade to a specific ver-
sion of the package, moving to new environment (lan-
guage/OS/etc), incompatibility of packages and other
associated issues. For example, from the PM Post (Id:
50262939), we observe that an end-user struggle with
issues to migrate his project written in Java8 to Java9.
• Package management tool usage: Posts related to tech-

nical details on package management systems such as
installation, configuration of tools, and their associated
costs. For example, from the PM Post (Id: 4811870),
we observe that an end-user discusses about configur-
ing the maven build tool to run multi-module project in
a custom way.
• General dependency practices: Posts related to lack of

technical knowledge on general dependency manage-
ment practice, bugs, efficiency, etc. For example, from
the PM Post (Id: 30571), we observe that, end-users
ask a question on the general ideas of maven packages
dependency management.
• Others: Posts that are tagged with a PM but do not fall

in the above three categories. For example, the PM
post (Id: 38906885) does not fall in the above three
categories.

Results. Fig. 3 shows the result of our qualitative anal-
ysis. We find that Package management tool usage
is the most dominant underlying cause for all three
PMs, confirming that end-users report technical issues
on Package management tool usage and not on specific
migrations of dependencies. The result is consistent
with previous studies [16]–[20]. They reported that the
complexity of software tools [16], installability of tools
and packages [17]–[20] are the root causes of the end-
users struggle during application development and mainte-

Fig. 3 Percentage of PM issues by their underlying cause. We find that
‘Package management tool usage’ is the most dominant underlying cause.

nance. In detail, we find that Package management tool
usage (72.25%) is most dominant underlying cause for
Maven, followed by General dependency practices
(10.73%). The same trend is also evident in the other
two PMs, namely, npm and NuGet. In npm, Package
management tool usage (70.71%) is most dominant
underlying cause, followed by General dependency
practices (5.80%). In NuGet, Package management
tool usage (63.51%) is most dominant underlying cause,
followed by General dependency practices (18.65%)
and Specific migration (13.51%). These findings indi-
cate the necessity of making it easier for end-users to find
the information they need to resolve PM tool usage issues,
for example, by providing good error messages or intuitive
instructions.

3.3 Information Need to Resolve PM Issues (RQ3)

Approach. To answer RQ3, we conducted a mixed method
analysis (i.e., both qualitative and quantitative) to explore
useful information patterns between PM questions and their
accepted answers. This process was completed through two
consecutive steps i.e., (i) Identify the most dominant at-
tribute from PM posts, and (ii) Discover the useful infor-
mation patterns from most dominant attribute. We have ex-
plained each step below.

• Step 1: Identify the most dominant attribute from PM
posts. We conducted a qualitative analysis of sta-
tistically representative sample questions included in
dataset D2 (see Table 2) for three PM tools. An open
coding strategy was adopted to identify the most dom-
inant PM post attributes. The open coding process
consists of three steps. Initially, the first author of
this paper derived a draft list of attributes based on
30 randomly sampled posts. Then the two authors
used the draft list to label the sample questions col-
laboratively. During this step, the attributes were re-
vised. The output of this step was 6 attributes. In
the next step, the same two authors performed man-
ual analysis on another 30 samples to make sure that
no new causes appeared. The output of this step was
the same 6 attributes as the previous step. Finally, two
authors discussed the coding results and measured au-
thors agreement using Kappa score [14]. In our an-
notation guidelines, we allowed multiple attribute an-
notations for one question post. The overall kappa
score among two authors for PM question posts at-



ISLAM et al.: AN EMPIRICAL STUDY OF PACKAGE MANAGEMENT ISSUES VIA STACK OVERFLOW
143

Fig. 4 Attribute analysis between PM question and their associated accepted answer posts. External
link is the most dominant attribute in the accepted answer of PM issues.

Table 3 Aggregated association rules for the external link attribute extracted from PM questions
(Q domain) and their accepted answers (A domain). We find that links refer to useful information’s
such as official documentations, tutorials, GitHub resources, and screenshots are most frequently shared
by end-users to resolve PM issues.

Association rule Confidence Support

Q maven.apache.org→A maven.apache.org 49.67% 300
Q maven.apache.org, Q i.stack.imgur.com→A maven.apache.org 56.00% 14
Q code.google.com, Q stackoverflow.com→A github.com 50.00% 9

Maven Q docs.gradle.org→A docs.gradle.org 50.00% 7
Q www.oracle.com→A stackoverflow.com 53.85% 7
Q www.jfrog.com→A www.jfrog.com 58.33% 7
Q code.google.com, Q github.com→A github.com 50.00% 6

Q github.com→A github.com 51.73% 359
Q www.npmjs.com, Q github.com→A github.com 58.62% 34
Q i.stack.imgur.com, Q github.com→A github.com 52.83% 28
Q gist.github.com→A github.com 51.72% 15
Q npmjs.org→A github.com 53.85% 14
Q pastebin.com→A github.com 58.33% 14

npm Q www.npmjs.org→A github.com 60.00% 12
Q medium.com→A github.com 66.67% 10
Q yarnpkg.com→A github.com 50.00% 7
Q nodejs.org, Q github.com→A github.com 75.00% 6
Q www.typescriptlang.org→A github.com 62.50% 5
Q yeoman.io→A github.com 62.50% 5
Q registry.npmjs.org, Q github.com→A github.com 62.50% 5
Q ionicframework.com→A github.com 71.43% 5
Q travis-ci.org→A github.com 83.33% 5

Q i.stack.imgur.com, Q docs.microsoft.com→A i.stack.imgur.com 76.47% 13
Q github.com, Q www.nuget.org→A github.com 50.00% 11

NuGet Q docs.microsoft.com, Q stackoverflow.com→A i.stack.imgur.com 50.00% 8
Q i.stack.imgur.com, Q docs.nuget.org→A i.stack.imgur.com 60.00% 6
Q i.stack.imgur.com, Q docs.microsoft.com, Q stackoverflow.com→A i.stack.imgur.com 85.71% 6

tribute coding were source code 100%, build configu-
ration file 84.62%, textual content 100%, external link
93.33%, cmd/log/output files 84.62%, version informa-
tion 76.92%, respectively. Given reliability of the an-
notation guidelines, the first author annotated remain-
ing sample posts. The 6 attributes of PM posts are sum-
marized below:

– Source code: The post includes code snippets as
part of the information.

– Build configuration file: The post includes build
configuration files as a part of information.

– cmd/log/output file: The post includes log files or
output from the program.

– External link: The post includes external links as



144
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

a part of information.
– Version information: The post includes version in-

formation of a package or any software.
– Textual content only: The post includes only text

as information.

After completing the annotation process, we analyzed
the annotated samples to identify the most dominant
attribute. The output of this step was the most dominant
attribute from the PM posts.
• Step2: Discover the useful information patterns from

most dominant attribute. We conducted a quantitative
analysis on dataset D1 (see Table 2) to discover use-
ful information patterns for the most dominant attribute
(i.e., output of step 1) between PM questions and their
accepted answers. Here, we applied association rule
mining on dataset D1 in order to increase the chance of
discovering more useful information patterns. First, we
extracted most dominant attribute information’s from
PM questions and their associated accepted answers by
using regular expression. Next, we performed neces-
sary pre-processing on the extracted information such
as removing special characters, backslash etc. After-
ward, we applied the apriori algorithm as implemented
in the python package mlxtend†. Finally, we filtered
all rules with at least 5 data points and 45% confidence.
The output of this step was useful information patterns
from most dominant attribute.

Results. Fig. 4 shows that external link sharing is the most
common practice to resolve PM issues by end-users. This
finding is consistent with several previous studies [21], [22],
that also reported how external links connect to the existing
information’s and extend the crowd-sourced knowledge. In
detail, Fig. 4 (b) shows that the external links (i.e., Maven:
45.09%, npm: 44.37%, and NuGet: 42.86%) are the most
frequent attributes in the accepted answers. Taking a closer
look on the external links as shown in Table 3, we observe
that end-users share official website links of PMs followed
by github and image screenshots as part of information to
describe PM issues and accepted answers. Moreover, we
observed that links referring to the useful resources (i.e., of-
ficial documentation websites, tutorial etc.) are most fre-
quently shared. This analysis on both PM questions and
their accepted answers reveal the opportunities for tool sup-
port and strategies to find the information needed for end-
users to resolve their issues while dealing with PM.

†Mlxtend Package: http://rasbt.github.io/mlxtend/
api subpackages/mlxtend.frequent patterns/

4. Implications

The results of this study can help PM communities better
focus their efforts on important issues relating to PM tool
usage. In the following paragraphs, we describe how the
results can be used to better guide PM end-users, PM de-
signers, and researchers.

In terms of PM issues and their underlying causes,
we find that most issues are raised by end-users due to a
lack of instructions and error messages from PM tools us-
age. In light of these findings, it is necessary to better un-
derstand what technical background knowledge end-users
should have concerning PMs. The end-users should look for
PM that supports more than just managing packages such as
listing available/installed packages, searching, filtering, in-
stalling remotely/locally, supporting wildcards, publishing
packages easily and learning to deal with packages. More-
over, the target PM should be checked to determine whether
it supports customization, including interactive mode that
allows the end-user to decide what steps to take during the
installation process. The designers of PM are advised to
develop a graphical user interface that is intuitive and sim-
ple for end-users. For example, when designing a command
line interface, end-user commands should be as intuitive as
possible. In order to facilitate end-user troubleshooting, the
PM designers should provide more working examples along
with relevant troubleshooting information. In addition, they
need to make it easy for end-users to locate the information
need to resolve problems, for example by providing good
error messages. Further research in these areas may also
contribute to the improvement of PM tool development pro-
cess. Our study seeks to identify the challenges faced by
end-users of PM tools in order to guide future research.

Regarding PM issue resolution, we have discovered
that sharing external links appears to be the most common
practice among Stack Overflow users responding to PM is-
sues. We observed that links pointing to useful resources
such as official documentations and tutorials are most fre-
quently shared. This finding reveals the opportunities for
tool support and strategies to find useful information for ad-
dressing PM issues. Researchers could develop approaches
that suggest useful information links by automatically an-
alyzing stack traces and logs to help speed up the issue-
resolution process. Furthermore, it would be interesting to
gain more insights into how PM end-users discover and dis-
seminate knowledge through better understanding of exter-
nal link sharing practice. We also encourage future research
to focus on domain-specific automated question answering
by utilizing such crowd-sourced knowledge.

5. Threats to Validity

This section describes the internal, external, and construct
validity threats of our study.
Internal Validity. Threats to internal validity relate to ex-
perimental bias and error in conducting the analysis. We



ISLAM et al.: AN EMPIRICAL STUDY OF PACKAGE MANAGEMENT ISSUES VIA STACK OVERFLOW
145

perform manual analysis on random sample since the PM
dataset size is large. Our data sampling strategy may pose
threat to the study findings. We adopted a random sampling
approach since it has been used in many previous publica-
tions that also used the same Stack Overflow dataset, includ-
ing studies on mobile [13] and chatbot [12]. Additionally,
an alternative data sampling strategy such as selecting the
most popular question posts (those with the highest number
of votes), or only focusing on those with answers, may pro-
duce more reliable results. To mitigate this challenge, we
prepare representative samples for three PMs, with a confi-
dence level of 95% and a interval of 5. Thus, we believe that
experimental bias and error in conducting the analysis were
reduced.
External Validity. Threats to external validity relate to the
generalizability of findings. In our study, we focused only
on Stack Overflow which is the largest and most popular
question-and-answer platform among end-users. The find-
ings of our study may not generalize to other question-
and-answer platforms. However, our study is consis-
tent with previous works that also utilized Stack Overflow
dataset [12], [13].
Construct Validity. Threats to construct validity are related
to potential errors that can occur when extracting data about
PMs. The first threat is the construct validity of the col-
lected data. We used Stack Overflow tags to identify posts
related to the PMs, but some posts may be incorrectly la-
beled with PM related tags or missing tags. To reduce this
threat, we filtered the list of tags by following state-of-the-
art approaches [12], [13].

In the qualitative analysis of classifying PM issues and
their underlying causes, the questions may be miscoded due
to the subjective nature of our coding approach. To miti-
gate this threat, we took a systematic approach to validate
the taxonomy and the comprehension understanding by the
three authors in several rounds. Only until the Kappa score
reaches 0.87 and 0.96, indicating that the agreement is al-
most perfect (0.81-1.00), we were able to complete the rest
of the sample dataset. A further risk is the difficulty in
obtaining information from PM question and their associ-
ated accepted answer posts using regular expressions. With
our defined regular expression, we may not be able to filter
out all possible information patterns from PM questions and
their accepted answers, which could lead to biased results.

6. Related Works

Complementary related works are presented throughout this
paper. This section describes some additional related re-
search works.
PM Studies. The prior studies on PM showed that end-
users struggled to manage their software dependencies [3],
[6], [8], [23]–[26]. In detail, Bogart et al. [23], performed
multiple case studies on a set of PMs with different tooling
policies. They found that end-user practices differ signif-
icantly between PMs. Kikas et al. [24], analyzed the de-
pendency network of three PMs (i.e., JavaScript, Ruby, and

Rust). They reported that there exist significant difference in
dependency network structure across language ecosystems.
Decan et al. [8] studied several PMs and report that depen-
dency network tend to grow over time in term of size and the
number of packages. Lungu et al. [25] investigated issues
related to dependency graphs and dependency management
specifications. They reported that dependencies also exist
between projects in a ecosystem. Raemaekers et al. [26]
showed that dependency management involves making cost-
benefit decisions related to keeping package dependencies
up to date. Kula et al. [6], mined end-user responsiveness
to existing security awareness mechanisms on 850K library
dependency migrations from 4,659 GitHub projects. They
found that end-users were particularly reluctant to update
third-party libraries to fix vulnerabilities. Dietrich et al. [3]
studied seventeen different PMs. Their findings reveal that
end-users struggle to find a sweet spot between fixed version
dependency predictability and flexible dependency agility.

While these studies have shown that end-users struggle
to migrate their dependent packages, the common assump-
tion is that PMs broker dependencies without any issues. In
this paper, we examine the issues confronted by end-users
when using PM tool to manage third-party package depen-
dencies.
Stack Overflow Studies. Question-and-Answer platform
like Stack Overflow has gained huge research interest, with
topics relating to community dynamics, technical issues
of programmers and human factors [27]. Several empiri-
cal case studies were performed using Stack Overflow data
such as improving API documentation and usage scenar-
ios [28], new programming language (Go, Rust, and Swift)
related discussion [29], privacy [30] etc. Some studies were
done on human factors like IT skill [31], programmers ex-
pertise [32], etc. Several tool supports and recommendation
models were developed using Stack Overflow data resources
such as PostFinder [33], bug severity prediction model [34]
etc. These studies reported that Stack Overflow data re-
sources are useful to solve developers challenges.

In this paper, the same data source (i.e, Stack Overflow)
is used but different from the above mentioned empirical
studies. To the best of our knowledge, there is no prior work
that conducted study on PM issues from Stack Overflow. We
extracted PM question-and-answer posts from Stack Over-
flow and perform a series of empirical studies. In this study,
we hope to highlight the challenges and information needs
associated with using PM for end users, package manager
designers, and researchers.

7. Conclusion and Future Work

In this study, we have explored issues faced by end-users
when using PMs through an empirical study of content on
Stack Overflow question and accepted answer posts. We
carried out a qualitative analysis of 1,131 question and their
accepted answer posts from the Maven, npm, and NuGet
dependency ecosystems to identify issue types, underlying
causes, and their resolutions. We observe that most issues



146
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

arise from the lack of understanding PM tool usage infor-
mation rather than specific version updates and compatibil-
ity issues. To resolve PM issues, we observed that sharing
external links was the most common practice. Furthermore,
we noticed that the most common links shared were those
which pointed to useful materials (such as the official docu-
mentation websites, tutorials, etc.). In conclusion, this study
opens up opportunities for future research in the PM area,
such as investigating tool support for novice PM end-users,
intuitive PM configuration options, and intuitive error mes-
sages through stack traces and log files.

Acknowledgments

This work is supported by the Japanese Society for the
Promotion of Science (JSPS) KAKENHI Grant Numbers
JP20K19774 and JP20H05706.

References

[1] libraries.io, “Helping you make more informed decisions about
the software you use,” https://libraries.io/about, 2020 (Accessed on
05/20/2020).

[2] the npm blog, “npm blog: Next Phase Montage,” https://blog.npmjs.
org/post/612764866888007680/next-phase-montage, 2020 (Ac-
cessed on 05/20/2020).

[3] J. Dietrich, D. Pearce, J. Stringer, A. Tahir, and K. Blincoe, “Depen-
dency versioning in the wild,” 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp.349–359,
IEEE, 2019.

[4] J. Cox, E. Bouwers, M. Eekelen, and J. Visser, “Measuring de-
pendency freshness in software systems,” 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE),
pp.109–118, 2015.

[5] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break
an api: cost negotiation and community values in three software
ecosystems,” Proceedings of the 2016 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering,
pp.109–120, 2016.

[6] R.G. Kula, D.M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?,” Empirical Software
Engineering, vol.23, no.1, pp.384–417, 2018.

[7] A. Decan, T. Mens, and E. Constantinou, “On the impact of secu-
rity vulnerabilities in the npm package dependency network,” Pro-
ceedings of the 15th International Conference on Mining Software
Repositories, pp.181–191, 2018.

[8] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosys-
tems,” Empirical Software Engineering, vol.24, no.1, pp.381–416,
2019.

[9] S. Islam, R.G. Kula, C. Treude, B. Chinthanet, T. Ishio, and K.
Matsumoto, “Contrasting third-party package management user ex-
perience,” 2021 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp.664–668, IEEE, 2021.

[10] C. Treude, O. Barzilay, and M.-A. Storey, “How do program-
mers ask and answer questions on the web?(nier track),” Proceed-
ings of the 33rd international conference on software engineering,
pp.804–807, 2011.

[11] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “Sotorrent: recon-
structing and analyzing the evolution of stack overflow posts,” Pro-
ceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
ed. A. Zaidman, Y. Kamei, and E. Hill, pp.319–330, ACM, 2018.

[12] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab,

“Challenges in chatbot development: A study of stack overflow
posts,” Proceedings of the 17th International Conference on Mining
Software Repositories, pp.174–185, 2020.

[13] C. Rosen and E. Shihab, “What are mobile developers asking about?
a large scale study using stack overflow,” Empirical Software Engi-
neering, vol.21, no.3, pp.1192–1223, 2016.

[14] A.J. Viera, J.M. Garrett, et al., “Understanding interobserver agree-
ment: the kappa statistic,” Fam med, vol.37, no.5, pp.360–363,
2005.

[15] H. Hata, C. Treude, R.G. Kula, and T. Ishio, “9.6 million links in
source code comments: Purpose, evolution, and decay,” Proceed-
ings of the 41st International Conference on Software Engineering,
p.1211–1221, 2019.

[16] B. Nagaria and T. Hall, “How software developers mitigate their er-
rors when developing code,” IEEE Transactions on Software Engi-
neering, vol.48, no.6, pp.1853–1867, 2020.

[17] S. Mangul, T. Mosqueiro, R.J. Abdill, D. Duong, K. Mitchell, V.
Sarwal, B. Hill, J. Brito, R.J. Littman, B. Statz, A.K.-M. Lam,
G. Dayama, L. Grieneisen, L.S. Martin, J. Flint, E. Eskin, and R.
Blekhman, “Challenges and recommendations to improve the instal-
lability and archival stability of omics computational tools,” PLoS
biology, vol.17, no.6, p.e3000333, 2019.

[18] J. Argelich and I. Lynce, “Cnf instances from the software package
installation problem,” RCRA, 2008.

[19] A. Decan, T. Mens, and M. Claes, “An empirical comparison of de-
pendency issues in oss packaging ecosystems,” 2017 IEEE 24th In-
ternational Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp.2–12, IEEE, 2017.

[20] P. Abate, R. Di Cosmo, L. Gesbert, F. Le Fessant, R. Treinen, and
S. Zacchiroli, “Mining component repositories for installability is-
sues,” 2015 IEEE/ACM 12th Working Conference on Mining Soft-
ware Repositories, pp.24–33, IEEE, 2015.

[21] C. Gómez, B. Cleary, and L. Singer, “A study of innovation diffusion
through link sharing on stack overflow,” 2013 10th Working Con-
ference on Mining Software Repositories (MSR), pp.81–84, IEEE,
2013.

[22] J. Liu, H. Zhang, X. Xia, D. Lo, Y. Zou, A.E. Hassan, and S. Li, “An
exploratory study on the repeatedly shared external links on stack
overflow,” Empirical Software Engineering, vol.27, no.1, pp.1–32,
2022.

[23] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and how
to make breaking changes: Policies and practices in 18 open source
software ecosystems,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol.30, no.4, pp.1–56, 2021.

[24] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and
evolution of package dependency networks,” 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR),
pp.102–112, IEEE, 2017.

[25] M. Lungu, R. Robbes, and M. Lanza, “Recovering inter-project
dependencies in software ecosystems,” Proceedings of the IEEE/
ACM international conference on Automated software engineering,
pp.309–312, 2010.

[26] S. Raemaekers, A. Van Deursen, and J. Visser, “Measuring soft-
ware library stability through historical version analysis,” 2012 28th
IEEE International Conference on Software Maintenance (ICSM),
pp.378–387, IEEE, 2012.

[27] S. Meldrum, S.A. Licorish, and B.T.R. Savarimuthu, “Crowd-
sourced knowledge on stack overflow: A systematic mapping study,”
Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, pp.180–185, 2017.

[28] P.K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A.E. Hassan, “What
do client developers concern when using web apis? an empirical
study on developer forums and stack overflow,” 2016 IEEE Inter-
national Conference on Web Services (ICWS), pp.131–138, IEEE,
2016.

[29] P. Chakraborty, R. Shahriyar, A. Iqbal, and G. Uddin, “How do de-
velopers discuss and support new programming languages in techni-

http://dx.doi.org/10.1109/msr.2019.00061
http://dx.doi.org/10.1109/icse.2015.140
http://dx.doi.org/10.1145/2950290.2950325
http://dx.doi.org/10.1007/s10664-017-9521-5
http://dx.doi.org/10.1145/3196398.3196401
http://dx.doi.org/10.1007/s10664-017-9589-y
http://dx.doi.org/10.1109/icsme52107.2021.00077
http://dx.doi.org/10.1145/1985793.1985907
http://dx.doi.org/10.1145/3196398.3196430
http://dx.doi.org/10.1145/3379597.3387472
http://dx.doi.org/10.1145/3379597.3387472
http://dx.doi.org/10.1007/s10664-015-9379-3
http://dx.doi.org/10.1109/icse.2019.00123
http://dx.doi.org/10.1109/tse.2020.3040554
http://dx.doi.org/10.1371/journal.pbio.3000333
http://dx.doi.org/10.1109/saner.2017.7884604
http://dx.doi.org/10.1109/msr.2015.10
http://dx.doi.org/10.1109/msr.2013.6624011
http://dx.doi.org/10.1007/s10664-021-10028-y
http://dx.doi.org/10.1145/3447245
http://dx.doi.org/10.1109/msr.2017.55
http://dx.doi.org/10.1145/1858996.1859058
http://dx.doi.org/10.1109/icsm.2012.6405296
http://dx.doi.org/10.1145/3084226.3084267
http://dx.doi.org/10.1109/icws.2016.25
http://dx.doi.org/10.1016/j.infsof.2021.106603


ISLAM et al.: AN EMPIRICAL STUDY OF PACKAGE MANAGEMENT ISSUES VIA STACK OVERFLOW
147

cal q&a site? an empirical study of go, swift, and rust in stack over-
flow,” Information and Software Technology, vol.137, p.106603,
2021.

[30] M. Tahaei, K. Vaniea, and N. Saphra, “Understanding privacy-
related questions on stack overflow,” Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pp.1–14,
2020.

[31] J.E. Montandon, C. Politowski, L.L. Silva, M.T. Valente, F. Petrillo,
and Y.-G. Guéhéneuc, “What skills do it companies look for in new
developers? a study with stack overflow jobs,” Information and Soft-
ware Technology, vol.129, p.106429, 2021.

[32] A. Diyanati, B.S. Sheykhahmadloo, S.M. Fakhrahmad, M.H.
Sadredini, and M.H. Diyanati, “A proposed approach to determining
expertise level of stackoverflow programmers based on mining of
user comments,” Journal of Computer Languages, vol.61, p.101000,
2020.

[33] R. Rubei, C. Di Sipio, P.T. Nguyen, J. Di Rocco, and D. Di Ruscio,
“Postfinder: Mining stack overflow posts to support software devel-
opers,” Information and Software Technology, vol.127, p.106367,
2020.

[34] Y. Tan, S. Xu, Z. Wang, T. Zhang, Z. Xu, and X. Luo, “Bug sever-
ity prediction using question-and-answer pairs from stack overflow,”
Journal of Systems and Software, vol.165, p.110567, 2020.

Syful Islam received the M.E., and
PhD degree in Engineering from Nara Insti-
tute of Science and Technology, Japan. At
present, he is working as an assistant professor
at Noakhali Science and Technology University,
Bangladesh. His research interests include soft-
ware ecosystem, mining Stack Overflow, etc.

Raula Gaikovina Kula is currently an as-
sistant professor at Nara Institute of Science and
technology. In 2013, he graduated with a Ph.D.
from Nara Institute of Science and Technology,
Japan. He is currently an active member of the
IEEE Computer Society and ACM. His research
interests include repository mining, code review,
software libraries and visualizations.

Christoph Treude is a Senior Lecturer in
Software Engineering in the School of Comput-
ing and Information Systems at the University
of Melbourne. His research combines empiri-
cal studies with the innovation of tools and ap-
proaches that take the wide variety of natural
language artefacts in software repositories into
account.

Bodin Chinthanet is currently a Specially
Appointed Assistant Professor in Software En-
gineering Laboratory under the supervision of
Professor Kenichi Matsumoto, Nara Institute of
Science and Technology (NAIST). His research
interests include empirical software engineering
and mining software repositories.

Takashi Ishio received the Ph.D. degree in
information science and technology from Osaka
University in 2006. He was a JSPS Research
Fellow from 2006-2007. He was an assistant
professor at Osaka University from 2007-2017.
He is now an associate professor of Nara Insti-
tute of Science and Technology. His research in-
terests include program analysis, program com-
prehension, and software reuse. He is a member
of the IEEE, ACM, IPSJ and JSSST.

Kenichi Matsumoto received the B.E.,
M.E., and Ph.D. degrees in Engineering from
Osaka University, Japan, in 1985, 1987, 1990,
respectively. Dr. Matsumoto is currently a pro-
fessor in the Graduate School of Information
Science at Nara Institute Science and Technol-
ogy, Japan. His research interests include soft-
ware measurement and software process. He is
a senior member of the IEEE and a member of
the IPSJ and SPM.

http://dx.doi.org/10.1016/j.infsof.2021.106603
http://dx.doi.org/10.1145/3313831.3376768
http://dx.doi.org/10.1016/j.infsof.2020.106429
http://dx.doi.org/10.1016/j.cola.2020.101000
http://dx.doi.org/10.1016/j.infsof.2020.106367
http://dx.doi.org/10.1016/j.jss.2020.110567

