
148
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

PAPER Special Section on Empirical Software Engineering

An Exploration of Cross-Patch Collaborations via
Patch Linkage in OpenStack

Dong WANG†a), Patanamon THONGTANUNAM††, Raula GAIKOVINA KULA†††, Nonmembers,
and Kenichi MATSUMOTO†††, Fellow

SUMMARY Contemporary development projects benefit from code re-
view as it improves the quality of a project. Large ecosystems of inter-
dependent projects like OpenStack generate a large number of reviews,
which poses new challenges for collaboration (improving patches, fixing
defects). Review tools allow developers to link between patches, to indicate
patch dependency, competing solutions, or provide broader context. We
hypothesize that such patch linkage may also simulate cross-collaboration.
With a case study of OpenStack, we take a first step to explore collabo-
rations that occur after a patch linkage was posted between two patches
(i.e., cross-patch collaboration). Our empirical results show that
although patch linkage that requests collaboration is relatively less preva-
lent, the probability of collaboration is relatively higher. Interestingly, the
results also show that collaborative contributions via patch linkage are non-
trivial, i.e, contributions can affect the review outcome (such as voting) or
even improve the patch (i.e., revising). This work opens up future direc-
tions to understand barriers and opportunities related to this new kind of
collaboration, that assists with code review and development tasks in large
ecosystems.
key words: collaboration, human aspects, code review

1. Introduction

Software development teams nowadays benefit from on-
line code review tools (e.g., Gerrit, Codestriker, and Re-
viewBoard) to effectively inspect patches and improve the
code quality of their software systems, while enabling the
teams to perform asynchronous code reviews that are more
lightweight and flexible [1], [2]. On the other hand, a large
number of code reviews are being performed by software
teams as new patches (i.e., a set of code changes) frequently
occur in a contemporary code review setting [3]. For ex-
ample, the 2018 OpenStack User Survey report∗showed that
about 70,000 patches were reviewed, with an average of 182
code reviews changes per day. Such the large number of
code reviews potentially poses a new challenge for collabo-
ration (e.g., improving the patch, fixing defects) during code
reviews and development tasks.

More specifically, recent studies have highlighted evi-
dence of why developers should collaborate across code re-
view tasks. Zhang et al. [4] found that redundant patches

Manuscript received March 30, 2022.
Manuscript revised August 18, 2022.
Manuscript publicized November 18, 2022.
†The author is with Kyushu University, Fukuoka-shi, 819–

0395 Japan.
††The author is with The University of Melbourne, Australia.
†††The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
a) E-mail: d.wang@ait.kyushu-u.ac.jp

DOI: 10.1587/transinf.2022MPP0002

Fig. 1 A conceptual illustration that describes (1) a linkage between two
patches is identified and (2) a collaboration activity happens where a devel-
oper on one patch contributes to the review of the other patch.

(i.e., patches that address the same task or problem) are of-
ten submitted for a review in software projects hosted in
GitHub. Ebert et al. [5] observed that the inclusion of more
people in the code review increases their awareness of the
code change, i.e., confusion resolution contributes to knowl-
edge sharing. Recently, Wang et al. [6] observed that devel-
opers are likely to share links during review discussions with
several intentions to fulfill information needs. Meanwhile,
Hirao et al. [7] shed light that the patch linkage (i.e., post-
ing a patch link to another patch) is used to indicate patch
dependency, competing solutions, or provide broader con-
text. As recent work has shown that patch linkage can in-
crease the awareness of the related patches, we further in-
vestigate to what extent developers collaborate across these
linked patches.

Figure 1 illustrates a motivating scenario where col-
laboration occurs after the patch linkage. As shown in the
figure, a reviewer Pink in Patch A posted a patch link to
Patch B in the review discussion. In this patch linkage, we
consider Patch A as a source patch and Patch B as a target
patch. After the patch link is posted, a developer Green who
participated in the Patch A discussion votes and leaves re-
view comments in Patch B. At the same time, a developer
Blue who participated in the Patch B discussion before the
linking time could also provide comments in Patch A dis-
cussion. We consider either of these two cases as a collabo-
ration occurrence.

∗https://www.openstack.org/user-survey/2018-user-survey-report/

Copyright c⃝ 2023 The Institute of Electronics, Information and Communication Engineers

WANG et al.: AN EXPLORATION OF CROSS-PATCH COLLABORATIONS VIA PATCH LINKAGE IN OPENSTACK
149

Fig. 2 A real example from OpenStack that illustrates the cross-patch collaborations after the patch
linkage is posted. Note that to avoid ethical issues, the real developer names are anonymous.

In a realistic scenario (i.e., review at https://review.
openstack.org/#/c/211019), as shown in Fig. 2, we observed
that a reviewer (Reviewer #1) posted a comment with a col-
laboration request to the patch author (Author #1):

‘Could you please sync your efforts with another
patch [https://review.openstack.org/#/c
/209612/]?’

After the patch link is posted, we observe that the author
(Author #1) and one of the reviewers (Reviewer #2) from
Patch 211019, who were not involved in Patch 209612 be-
fore, made the specific review comments related to the code
changes in Patch 209612. Inspired by the realistic sce-
nario, we hypothesize that there exist collaborations across
patches (we called cross-patch collaborations, henceforth)
after the patch linkage.

In this work, we conduct an empirical study of 368
patch linkages from a total of 8,612 linked patches to better
understand the intentions of the patch linkage (e.g., request-
ing a collaboration) and statistically analyze to what extent
collaboration will occur after the patch linkage. Specifically,
we investigate how different kinds of linkage sharing lead

to collaboration opportunities and characterize the contribu-
tion kinds that follow after the link is identified. Thus, three
research questions are formulated to guide our study:

• RQ1: To what degree do developers request collab-
orations when posting patch linkages?
Motivation. Although Hirao et al. [7] have shown that
patch linkage is mainly for team awareness (i.e., in-
dicating dependency, providing broader context, and
pointing out an alternative solution), we hypothesize
that patch linkage could have an association with the
developer collaboration across the patches. Thus, we
would like to first understand how often developers
request collaborations accompanied with shared patch
linkages.

• RQ2: How likely will collaborations occur after
patch linkages are posted?
Motivation. Prior work sheds light that patch linkage
can increase awareness [7]. Yet, little is known about
whether developers are likely to contribute to another
via the patch linkage. To better understand this, we in-
vestigate to what degree collaboration will occur after

150
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

a patch link is posted.
• RQ3: What are the kinds of cross-patch collabora-

tion activities?
Motivation. To gain an in-depth insight, we would like
to understand what kinds of collaborations developers
do after the awareness of patch linkages. Answering
this question would help researchers and practitioners
better understand the role of patch linkages.

The empirical results lead us to conclude that the patch
linkage requesting collaboration is relatively less frequent.
In addition, the delay exists before a patch linkage is posted
(RQ1). We observe that a cross-patch collaboration is more
likely to occur when the intention of a request for collab-
oration is accompanied with the patch linkage (RQ2). Spe-
cially, four kinds of collaboration activities are classified, in-
cluding voting, writing specific and general comments, and
a revision of linked patches (RQ3).

The remainder of this paper is organized as follows.
Section 2 describes the empirical study design, including
data preparation and approaches for each RQ. Section 3
presents the results of our empirical study, while Sect. 4 dis-
cusses our findings and challenge. Section 5 discloses the
threats to validity. Section 6 discusses the related work re-
garding link sharing and reviewer participation in code re-
views. Finally, we conclude the paper in Sect. 7.

2. Empirical Study Design

2.1 Data Collection

In this study, we use OpenStack as a case ecosystem.
OpenStack is an open-source software ecosystem where
many well-known organizations and companies, e.g., IBM,
VMware, and NEC, collaboratively develop a platform for
cloud computing. OpenStack actively performs code re-
views through Gerrit, a tool-based code review tool, and is
widely studied in the prior work [6], [8], [9].

Clean Dataset. For our experiments, we used the
OpenStack review dataset provided by Thongtanunam and
Hassan [10]. The dataset includes 58,212 patches dated
from November 2011 to July 2019. Since we focus on the
collaboration and contributions done by patch authors or re-
viewers, we exclude the comments that are posted by auto-
mated tools in the discussion threads. To do so, we refer to
the documentation of the studied system† to identify the au-
tomated tools that are integrated with the code review tools.
Specifically, we use the list of the automated tools that is
provided in the work of Thongtanunam et al. [10]

Extract Patch Linkage. To identify the patch links,
similar to prior work [6], we applied the regular ex-
pression to search all messages in the review discus-
sions that include a patch URL in the following format:
https?://review.openstack|opendev.org/#/c/[1-9]+[0-9]*. A
total of 8,944 pairs of patches are retrieved. Then we ex-
clude the case where the source and target patches are the

†https://docs.openstack.org/infra/manual/developers.html

Table 1 Summary of dataset used in the study.

Ecosystem Time Window Linkage Dataset Sample Dataset

OpenStack 2011.11 - 2019.7 8,612 368

same. In our study, we keep the cases where (i) the patch
linkages are written by the same patch authors and (ii) the
patch authors post links by themselves, as we assume that
collaboration could occur between the reviewers of both
patches. Finally, we obtain 8,612 pairs of patches that met
our experiment criteria. Table 1 shows the summary of the
dataset used in the study.

2.2 RQ1 Analysis

To answer RQ1: To what degree do developers request
collaborations when posting patch linkages?, we investi-
gate the intention of posting patch linkages in the aspect of
collaborations. In addition, we conduct a statistical analy-
sis to investigate the timeline of patch linkages (e.g., when
the linkage is posted and how long it takes the review to be
completed after the linkage is posted). Such timeline analy-
sis could highlight the necessity of tool support for in-time
linkage recommendations. Below, we describe these two
analysis approaches in detail.

Requesting collaboration. We perform a manual anal-
ysis to investigate the intention behind the patch linkage.
More specifically, our analysis mainly focuses on how often
the patches are linked to request collaboration. Below, we
describe our manual coding based on a statistically repre-
sentative sample of our patch linkage dataset:

Representative dataset construction. As the full set of
our constructed data is too large to manually examine their
collaboration intention, we then draw a statistically repre-
sentative sample. The calculation of statistically significant
sample sizes based on population size, confidence interval,
and confidence level is well established [11], with a confi-
dence level of 95% and a confidence interval of 5. In the
end, we randomly sample 368 patch linkages.††

Manual coding. In this step, we classify whether the
patch linkage is for requesting collaboration or not. Based
on the finding of prior work [7], patch linkage can be also for
sharing information or pointing out an alternative solution.
Hence, we classify the intention of patch linkages into three
main kinds:

• Requesting collaboration: Patch linkage for requesting
collaboration is the linkage where a developer (either a
patch author or reviewer) posts a link with a message
that explicitly requests other developers to collaborate
in the target patch. In this case, developers often write
message which includes words such as ‘help’, ‘collab-
orate’, ‘integrate’ or ‘rebase on’. For example, “Patch
Set 1: Code-Review-1 Can we please rebase this on
https://review.openstack.org/#/c/93842/ that review en-
sures specific values is present in the string for the flag

††https://www.surveysystem.com/sscalc.htm

WANG et al.: AN EXPLORATION OF CROSS-PATCH COLLABORATIONS VIA PATCH LINKAGE IN OPENSTACK
151

to be switched on. thanks, dims”.
• Sharing information: Patch linkage for sharing infor-

mation is the linkage where a developer posts a link to
increase team awareness (e.g., indicating patch depen-
dency, providing broader context)

• Pointing out an alternative solution: Patch linkage for
pointing out an alternative solution is the linkage where
a developer posts a link to mention that the target patch
attempts to explicitly address the same or similar ob-
jective as the source patch.

To classify the patch linkages into a category, we consider
the whole textual message that comes with the link. In some
cases, we also read the whole review discussion to under-
stand the context. To test the comprehensive understand-
ing of the constructed schema, we randomly select 30 sam-
ples from our representative dataset, and the three authors of
this paper independently coded these samples. Among the
three coders, we obtain a Kappa agreement score of 0.77
(i.e., substantial). The three coders then discussed the sam-
ples with inconsistent codes to reach a consensus. Encour-
aged by the promising Kappa agreement score, the remain-
ing data was then coded by one coder.

Timeline of patch linkage. To understand the timeline
of patch linkage, we measure patch-linked time and patch-
closed time. The patch-linked time is the duration from
when reviews start on a patch to the time when the patch
link is posted into the review discussion. The patch-closed
time is the duration from when a patch link is posted to the
time when the review is closed. We assume that patch-linked
time and patch-closed time significantly differ among link-
age categories (i.e., requesting collaboration, sharing infor-
mation, and pointing out an alternative solution), and specif-
ically a relatively longer time is likely taken for the linkage
of requesting collaboration to be linked and closed. Then,
we perform a statistical analysis to examine our assumption.
To do so, we use a Kruskal-Wallis test, i.e., a non-parametric
test, to compute the statistical significance.

2.3 RQ2 Analysis

To answer RQ2: How likely will collaborations occur af-
ter patch linkages are posted?, we investigate how fre-
quently the collaboration will occur after the patch linkage.
Below, we describe how we measure the collaboration oc-
currence.

Collaboration occurrence. We analyze the set of ad-
ditional developers who newly join and contribute to the
patch after the patch link is posted. We consider both di-
rections of collaboration, i.e., developers who participate in
the source patch contribute to the target patch (Source →
Target) and developers who participate in the target patch
contribute to the source patch (Source← Target).

To identify the additional developers and direction of
collaboration, we first identify the set of developers who
contribute (e.g., providing a comment, voting) to the source
patch before the patch link is posted (S) and the set of other

developers who *only* contribute after the link is posted
(S’). Note that S includes the developer who posted the
patch link. Similarly, we identify the set of developers who
contribute to the target patch based on the time point when
the patch link is posted (T and T’). Then, we identify the
set of developers in the source patch who contribute to the
target patch after the patch link is posted (i.e., Source →
Target = S ∩ T’) and the number of developers in the target
patch who contribute to the source patch after the patch link
is posted (i.e., Source← Target = T ∩ S’).

For example, in Fig. 1, we will identify the following
sets of developers: S = {Green, Pink}, S’ = {Blue}, T =
{Blue, Orange}, and T’ = {Green}. Therefore, in this ex-
ample, the developer Green is considered as the one who
is from the source patch and contributes to the target patch.
Similarly, the developer Blue is considered as the one who
is from the target patch and contributes to the source patch.
Note that since we will analyze the collaboration occurrence
across the three link kinds, we perform this analysis based
on the labeled 368 patch linkages.

2.4 RQ3 Analysis

To answer RQ3: What are the kinds of cross-patch col-
laboration activities?, we conduct a semi-automatic analy-
sis to further investigate the kinds of collaboration activities
of developers who newly join and contribute to the patch.
Below, we describe the approach to identify collaboration
activities.

Collaborative contribution kinds. In addition to the
occurrence analysis, we examine what collaborative contri-
butions were made by the additional developers (i.e., S ∩ T’
and S’ ∩ T). In this work, based on an open discussion with
ten random samples and the OpenStack documentation by
the first three authors of this paper, we focus on four kinds
of contributions: 1) Vote, 2) Specific Comments, 3) General
Comments, and 4) Revise. Table 3 describes the definition
of four contribution kinds.

To identify the contribution kinds, we extract the
contribution information recorded in the review message,
i.e., 1,898 contributions are retrieved from the 368 la-
beled patch linkages. We classify the collaborative con-
tribution kinds in two rounds. In the first round, we
use a regular expression to automatically identify each
kind of contribution. Specifically, we use the ex-
pressions (?:.*(Workflow[\+|\-][0-9]|Code-Review[\+|\-][0-
9]).*), (?:\(.*?comment.*?\)), and (?:uploaded patch
set) to identify Vote, Specific Comments, and Revise, re-
spectively. The rest of them are classified as General
Comments. In the second round, we manually validate
the identified candidates to reduce the potential threats
caused by false positives. In addition, we highlight those
general comments that are not trivial. For instance, a not
trivial general comment is left with “Patch Set 2: Code-
Review-1 i think you should update this file https://github.
com/openstack/neutron/blob/master/doc/requirements.txt be-
cause after the new PTI, doc requirements are moved here.”

152
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

Table 2 (RQ1) The prevalence of linkage kinds and their timing nature. Requesting collaboration
accompanied with links is less common.

Table 3 The definition of contribution kinds and their distribution across
the link kinds. Note that one review message can be labeled with more than
one contribution kind.

Contribution Kind Definition
Vote Collaborator votes whether to merge or

abandon the patch, i.e., “Code-Review
+1”.

Specific Comments Collaborator posts a comment that is
directly related to patch change, i.e.,
typically an inline comment to refer-
ence a line of code in the patch.

General Comments Collaborator posts a generic comment
that does not directly relate to or refer-
ence any line of code in the patch.

Revise Collaborator uploads revised patches,
i.e., “Uploaded patch set 3”.

3. Empirical Results

In this section, we present the results for each of our research
questions.

3.1 RQ1: To What Degree Do Developers Request Col-
laborations When Posting Patch Linkages?

Results: We observe two main findings. First, patch link-
age for requesting collaboration is relatively less frequent
than others. Table 2 shows that only 57 patch linkages (15%)
where developers post a patch link with an explicit request
for collaboration. Most patch linkages (i.e., 211 patch link-
ages) are posted for sharing information such as patch de-
pendency and broader context, while the other 100 patch
linkages are for pointing out an alternative solution.

Second, we observe around 4 to 14 days (median) be-
fore a review member posts a patch linkage. Regarding the
patch-linked time, we find that it takes a relatively long time
for review teams to post patch linkage. The median of 14.1,
11.6, and 4.0 days are taken for requesting collaboration,
sharing information, and pointing out an alternative solu-
tion, respectively, as shown in Table 2. Related to the patch-
closed time, we find that the patch with the linkage indicat-
ing an alternative solution is more likely to be closed quicker
than the other categories. Interestingly, we find that the link-
age for requesting collaboration takes a longer time to be
closed compared with other categories. It is also important
to note that we do not aim to draw a causal relationship, but
only observe a trend. Several confounding factors may also
play a role, such as the patch size, the patch complexity, and
the extent of the change impacts made by the patch. For in-
stance, if a patch is complex to be understood, it may require

more collaboration and further take a longer review time.
The Kruskal-Wallis test confirms that there is a significant
difference (p-value < 0.001) in the patch-linked time and
patch-closed time among different linkage kinds. Moreover,
our assumption that a relatively longer long time is taken
for the linkage of requesting collaboration to be linked and
closed is established.

3.2 RQ2: How Likely Will Collaborations Occur after
Patch Linkages are Posted?

Results: Patch linkage with requesting collaboration has a
relatively higher percentage of collaboration than the other
two kinds. Table 4 shows the percentage of patch linkages
that have at least one developer from the source patch who
contributes to the target patch or vice versa. We find that on
average, 72% of the patch linkages for requesting collabora-
tion have at least one developer from the source patch who
contributes to the target patch (Source→ Target). Similarly,
62% of the patch linkages for requesting collaboration have
at least one developer from the target patch contributing to
the source patch (Source← Target). On the other hand, the
percentages of collaboration in the other two link kinds are
relatively lower than the percentage of the patch linkages for
requesting collaboration (i.e., 34%–57%).

3.3 RQ3: What are the Kinds of Cross-Patch Collabora-
tion Activities?

Results: Among four kinds of collaboration activities, vote
is the most frequent contribution kind. Table 5 shows the
distribution of contribution kinds across the link kinds. We
find that among four contribution kinds, Vote is the most
common kind (i.e., 56% for requesting collaboration, 59%
for sharing information, and 61% for pointing out an alter-
native solution). The following common contribution kind

WANG et al.: AN EXPLORATION OF CROSS-PATCH COLLABORATIONS VIA PATCH LINKAGE IN OPENSTACK
153

Table 4 (RQ2) Collaboration occurrence between the source patch and target patch. Collaboration is
more likely to occur when the request is provided.

Table 5 (RQ3) The frequency of four kinds of cross-patch collaborations. Vote and general comments
are more common contributions.

is General Comments. Based on our manual validation, we
observe that 19.7% of these comments are left with not triv-
ial information. For instance, one comment provides advice
to fix up the eventlet change, i.e., “Patch Set 4: OK, fix up
the docstring on run vios command as root and I think the
commit message should mention the eventlet change, and
then I’m +1.”. Interestingly, we find that Revise contribu-
tion kind is relatively more frequent in the patch linkage
for requesting collaboration (15%) than the other two link
kinds (9% and 5%, respectively). This result suggests that
the patch linkage for requesting collaboration is more likely
to trigger the collaborative activity related to the patch qual-
ity (i.e., where the collaborator uploads revised patches).

4. Threats to Validity

We now discuss the threats to the validity of our empirical
study.

External Validity. External validity is concerned with
our ability to generalize based on our results. Our study only
focuses on the OSS ecosystem (i.e., where multiple projects
develop software collaboratively) using a tool-based code
review. We understand that there are not many multi-project
review ecosystems similar to OpenStack. However, as open
source adoption has grown significantly in the last decade,
and numerous companies have built business models around
OSS ecosystems [12], we believe it is important to study the
OSS ecosystem.

Internal Validity. Internal validity is the approximate
truth about inferences regarding cause-effect or causal rela-
tionships. In our empirical study, we employ manual analy-
sis for classifying linkage kinds. The label might be mis-
coded due to the subjective nature of understanding. To
eliminate such a threat, we use the Kappa agreement to
measure inter-rater reliability. Only until the Kappa score

154
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

reaches more than 0.7 (i.e., the score in classifying inten-
tions is 0.77, indicating substantial agreement), we were
able to complete the rest of the samples. Another threat may
occur in the choice of selecting statistical test techniques.
To address the statistical significance of the timeline, we ap-
ply the Kruskal-Wallis test, a non-parametric test. While,
we are confident with this test, which is widely used in the
previous work [13].

Construct Validity. Construct validity is concerned
with the degree to which our measurements capture what we
aim to study. This threat potentially occurs in the extraction
of identifying patch linkages. In our study, we only extract
patch links from the general code review discussions, how-
ever, the patch links may also appear in inline review discus-
sions. We believe this will not affect our observations, since
we use qualitative analysis to investigate the patch links in
this study. Another threat could be concerning the validity of
the categorization in RQ1. We classify three intentions be-
hind the patch linkage, i.e., requesting collaboration, sharing
information, and pointing out an alternative solution. Shar-
ing information may be a part of collaboration. To ensure
that there is no orthogonality between them, we only clas-
sify the comment that provides actionable collaboration in-
tention (e.g., ‘help’, ‘collaborate’, and so on) as requesting
collaboration; otherwise, we classify it as sharing informa-
tion.

5. Challenges and Opportunities

We now discuss our empirical findings and challenges, as
well we provide several possible opportunities to guide fu-
ture research.

The empirical results show the potential for this new
kind of collaboration that is triggered by a patch linkage.
Hence, the study calls for new avenues for research into this
kind of collaboration. In fact, we show that cross-patch col-
laborative contributions via the patch linkage are non-trivial,
with key contributions like voting which affects the review
outcome of the target patch, or revising which improves the
patch. In terms of the timeline of patch linkage, our empiri-
cal study provides evidence that to be aware of the existence
of patch linkage takes a relatively longer time.

There are still open challenges that remain. For in-
stance, the current approach has the threat to include col-
laborations that may have not been triggered by the patch
linkage. Hence, future work needs to address the soundness
of our approach. Another challenge may include capturing
cross-patch collaborations that do not have patch linkage.
This can also be addressed in a bigger study. Furthermore,
we would need a developer study to validate the practical
implications of the study.

Our work lays out future opportunities for directions
on how patch linkage sharing can lead to these new kinds of
collaboration. We highlight three below to name a few:

• Identify heuristics and the information required for a
reviewer to contribute to a linked patch. To gain more

practical insights, a survey or interview of the reviewer
who posts the link could reveal collaboration barriers
and opportunities

• Investigate the impact of the collaboration on patch
quality and code review quality. To further understand
the impact of the collaboration, one promising direc-
tion is to explore if the patch involved with contribu-
tion via the linkage is likely to decrease the probability
of defects.

• Automatic recovery of links (especially for Dupli-
cate/Alternative Solution Detection). Provide tool sup-
port to early detect or recommend patches to reduce the
time taken to identify the link, especially since we find
that pointing out an alternative solution earlier leads to
a shorter review time compared to the other link kinds.

6. Related Work

In this section, we position our work with literature reviews
in terms of the practice of link sharing in software engineer-
ing and the reviewer participation in the context of code re-
view settings.

6.1 The Practice of Link Sharing

Link sharing has become a popular activity in software engi-
neering, which enables developers to share knowledge and
mitigate potential issues. The value of link sharing has been
commonly addressed in question-and-answer forums like
Stack Overflow and tool-based code reviews like GitHub
and Gerrit. Goemz et al. [14] reported that link sharing
is a significant phenomenon on Stack Overflow, referring
readers to software development innovations like libraries
and tools. Ye et al. [15] generated the structural and dy-
namic properties of the emergent knowledge network, us-
ing shared URLs in Stack Overflow. With the popularity of
GitHub, Hata et al. [16] found that 9.6 million links exist in
source code comments across 25,925 repositories. Within
Gerrit based reviews, Wang et al. [6] observed seven inten-
tions behind link sharing and their developer survey results
suggested that link sharing is useful. At the same time, Hi-
rao et al. [7] categorized five kinds of review linkage, such as
patch dependency, broader context, and alternative solution.
To aid such practice, Wang et al. [13] proposed a linkage
detection using textual contents and file location.

Our work expanded upon the work of Wang et al. [6]
and Hirao et al. [7] to investigate the aspect of collaboration
across patch linkages.

6.2 Reviewer Participation

The reviewer participation becomes one of the main chal-
lenges in the tool-based code review process, since unlike
formal code review, reviewers can decide whether or not
to participate in a review. A large body of studies has

WANG et al.: AN EXPLORATION OF CROSS-PATCH COLLABORATIONS VIA PATCH LINKAGE IN OPENSTACK
155

found that reviewer participation is associated with soft-
ware quality and code review time [8], [17], [18]. For in-
stance, Kononenko et al. [19] observed that the number of
invited reviewers have a statistically significant impact on
review bugginess. Moreover, Ruangwan et al. [20] reported
that human factors play an important role in predicting
whether or not an invited reviewer will participate in a re-
view. To relieve the challenges of reviewer participation,
many reviewer recommendation systems have been pro-
posed. Thongtanunam et al. [9] introduced REVFINDER,
a file location-based code-reviewer recommendation ap-
proach. Xia et al. [21] put textual information and file lo-
cation analyses together to recommend reviewers more ac-
curately. Hannebauer et al. [22] recommended code review-
ers based on their expertise. Most recently, Al-Zubaidi et
al. [23] developed a novel approach that leverages a multi-
objective meta-heuristic algorithm to search for reviewers
guided by two objectives.

Similarly, the ultimate goal of our study is to improve
the reviewer participation by understanding the developer
collaboration activities across patch linkages.

7. Conclusion and Future Work

The growing number of reviews in open source projects
poses a new challenge for collaboration during the review
process and development tasks. In this paper, we perform
an empirical study on OpenStack to investigate the cross-
collaborations via patch linkages. Our results show that re-
questing collaboration accompanied with shared patch links
is less common, while cross-patch collaboration is more
likely to occur once the request is provided. Moreover, four
kinds of collaboration activities are classified and the re-
sults suggest that cross-collaborations are not trivial. Future
research directions include the causality analysis between
patch linkage and collaboration, perceptions and collabora-
tion barriers from real developers, and tool development for
link recovery.

Acknowledgments

This work has been supported by JSPS KAKENHI Grant
Numbers JP20K19774, and JP20H05706. P. Thongtanunam
was supported by the Australian Research Council’s Dis-
covery Early Career Researcher Award (DECRA) funding
scheme (DE210101091).

References

[1] D. Wang, Y. Ueda, R.G. Kula, T. Ishio, and K. Matsumoto, “Can
we benchmark code review studies? a systematic mapping study
of methodology, dataset, and metric,” J. Syst. Softw, vol.180,
p.111009, Oct. 2021.

[2] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at Google,” Proc. 39th Int. Conf.
Softw. Eng.: Software Engineering in Practice Track, pp.181–190,
May 2018.

[3] P.C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” Proc. 9th Joint Meeting on Found. Softw. Eng.,

pp.202–212, Aug. 2013.
[4] X. Zhang, Y. Chen, Y. Gu, W. Zou, X. Xie, X. Jia, and J. Xuan,

“How do Multiple Pull Requests Change the Same Code: A Study of
Competing Pull Requests in GitHub,” Proc. 34th Int. Conf. Software
Maintenance and Evolution, pp.228–239, 2018.

[5] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in
code reviews: Reasons, impacts, and coping strategies,” Int. Conf.
Software Analysis, Evolution and Reengineering, pp.49–60, 2019.

[6] D. Wang, T. Xiao, P. Thongtanunam, R.G. Kula, and K. Matsumoto,
“Understanding shared links and their intentions to meet informa-
tion needs in modern code review,” Empir. Softw. Eng., vol.26, no.5,
p.96, July 2021.

[7] T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto, “The review
linkage graph for code review analytics: A recovery approach and
empirical study,” Proc. Int. Symp. Found. Softw. Eng., pp.578–589,
Aug. 2019.

[8] M. Chouchen, A. Ouni, R.G. Kula, D. Wang, P. Thongtanunam,
M.W. Mkaouer, and K. Matsumoto, “Anti-patterns in modern code
review: Symptoms and prevalence,” IEEE Int. Conf. Software Anal-
ysis, Evolution and Reengineering (SANER), pp.531–535, IEEE,
2021.

[9] P. Thongtanunam, C. Tantithamthavorn, R.G. Kula, N. Yoshida, H.
Iida, and K. Matsumoto, “Who should review my code? a file
location-based code-reviewer recommendation approach for modern
code review,” IEEE 22nd Int. Conf. Software Analysis, Evolution,
and Reengineering (SANER), pp.141–150, 2015.

[10] P. Thongtanunam and A.E. Hassan, “Review dynamics and their im-
pact on software quality,” IEEE Trans. Softw. Eng., vol.47, no.12,
pp.2698–2712, Dec. 2021.

[11] R.V. Krejcie and D.W. Morgan, “Determining sample size for
research activities,” Educational and Psychological Measurement,
vol.30, no.3, pp.607–610, 1970.

[12] Y. Zhang, M. Zhou, K.J. Stol, J. Wu, and Z. Jin, “How do compa-
nies collaborate in open source ecosystems?: an empirical study of
openstack,” IEEE/ACM 42nd Int. Conf. Softw. Eng., pp.1196–1208,
June 2020.

[13] D. Wang, R.G. Kula, T. Ishio, and K. Matsumoto, “Automatic patch
linkage detection in code review using textual content and file loca-
tion features,” Inf. Softw. Technol., vol.139, no.C, Nov. 2021.

[14] C. Gómez, B. Cleary, and L. Singer, “A study of innovation diffusion
through link sharing on stack overflow,” Int. Working Conf. Mining
Software Repositories, pp.81–84, 2013.

[15] D. Ye, Z. Xing, and N. Kapre, “The structure and dynamics of
knowledge network in domain-specific q&a sites: A case study of
stack overflow,” Empir. Softw. Eng., p.375–406, Feb. 2017.

[16] H. Hata, C. Treude, R.G. Kula, and T. Ishio, “9.6 Million links in
source code comments: Purpose, evolution, and decay,” Proc. Int.
Conf. Softw. Eng., 2019.

[17] S. McIntosh, Y. Kamei, B. Adams, and A.E. Hassan, “The impact
of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects,” Proc. 11th
Working Conf. Mining Software Repositories, MSR 2014, pp.192–
201, May 2014.

[18] P. Thongtanunam, S. Mcintosh, A.E. Hassan, and H. Iida, “Review
participation in modern code review,” Empir. Softw. Eng., pp.768–
817, April 2017.

[19] O. Kononenko, O. Baysal, and M.W. Godfrey, “Code review qual-
ity: How developers see it,” 38th Int. Conf. Softw. Eng. (ICSE),
pp.1028–1038, May 2016.

[20] S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto, “The
impact of human factors on the participation decision of reviewers in
modern code review,” Empir. Softw. Eng., p.973–1016, Sept. 2018.

[21] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change?: Putting text and file location analyses together for more
accurate recommendations,” IEEE Int. Conf. Software Maintenance
and Evolution (ICSME), pp.261–270, Sept. 2015.

[22] C. Hannebauer, M. Patalas, S. Stünkel, and V. Gruhn, “Automat-

http://dx.doi.org/10.1016/j.jss.2021.111009
http://dx.doi.org/10.1016/j.jss.2021.111009
http://dx.doi.org/10.1016/j.jss.2021.111009
http://dx.doi.org/10.1016/j.jss.2021.111009
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1109/ICSME.2018.00032
http://dx.doi.org/10.1109/ICSME.2018.00032
http://dx.doi.org/10.1109/ICSME.2018.00032
http://dx.doi.org/10.1109/ICSME.2018.00032
http://dx.doi.org/10.1109/SANER.2019.8668024
http://dx.doi.org/10.1109/SANER.2019.8668024
http://dx.doi.org/10.1109/SANER.2019.8668024
http://dx.doi.org/10.1007/s10664-021-09997-x
http://dx.doi.org/10.1007/s10664-021-09997-x
http://dx.doi.org/10.1007/s10664-021-09997-x
http://dx.doi.org/10.1007/s10664-021-09997-x
http://dx.doi.org/10.1145/3338906.3338949
http://dx.doi.org/10.1145/3338906.3338949
http://dx.doi.org/10.1145/3338906.3338949
http://dx.doi.org/10.1145/3338906.3338949
http://dx.doi.org/10.1109/SANER50967.2021.00060
http://dx.doi.org/10.1109/SANER50967.2021.00060
http://dx.doi.org/10.1109/SANER50967.2021.00060
http://dx.doi.org/10.1109/SANER50967.2021.00060
http://dx.doi.org/10.1109/SANER50967.2021.00060
http://dx.doi.org/10.1109/SANER.2015.7081824
http://dx.doi.org/10.1109/SANER.2015.7081824
http://dx.doi.org/10.1109/SANER.2015.7081824
http://dx.doi.org/10.1109/SANER.2015.7081824
http://dx.doi.org/10.1109/SANER.2015.7081824
http://dx.doi.org/10.1109/TSE.2020.2964660
http://dx.doi.org/10.1109/TSE.2020.2964660
http://dx.doi.org/10.1109/TSE.2020.2964660
http://dx.doi.org/10.1177/001316447003000308
http://dx.doi.org/10.1177/001316447003000308
http://dx.doi.org/10.1177/001316447003000308
http://dx.doi.org/10.1145/3377811.3380376
http://dx.doi.org/10.1145/3377811.3380376
http://dx.doi.org/10.1145/3377811.3380376
http://dx.doi.org/10.1145/3377811.3380376
http://dx.doi.org/10.1016/j.infsof.2021.106637
http://dx.doi.org/10.1016/j.infsof.2021.106637
http://dx.doi.org/10.1016/j.infsof.2021.106637
http://dx.doi.org/10.1109/MSR.2013.6624011
http://dx.doi.org/10.1109/MSR.2013.6624011
http://dx.doi.org/10.1109/MSR.2013.6624011
http://dx.doi.org/10.1007/s10664-016-9430-z
http://dx.doi.org/10.1007/s10664-016-9430-z
http://dx.doi.org/10.1007/s10664-016-9430-z
http://dx.doi.org/10.1109/ICSE.2019.00123
http://dx.doi.org/10.1109/ICSE.2019.00123
http://dx.doi.org/10.1109/ICSE.2019.00123
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1007/s10664-016-9452-6
http://dx.doi.org/10.1007/s10664-016-9452-6
http://dx.doi.org/10.1007/s10664-016-9452-6
http://dx.doi.org/10.1145/2884781.2884840
http://dx.doi.org/10.1145/2884781.2884840
http://dx.doi.org/10.1145/2884781.2884840
http://dx.doi.org/10.1007/s10664-018-9646-1
http://dx.doi.org/10.1007/s10664-018-9646-1
http://dx.doi.org/10.1007/s10664-018-9646-1
http://dx.doi.org/10.1109/ICSM.2015.7332472
http://dx.doi.org/10.1109/ICSM.2015.7332472
http://dx.doi.org/10.1109/ICSM.2015.7332472
http://dx.doi.org/10.1109/ICSM.2015.7332472
http://dx.doi.org/10.1145/2970276.2970306

156
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.2 FEBRUARY 2023

ically recommending code reviewers based on their expertise: An
empirical comparison,” Proc. Int. Conf. Autom. Softw. Eng., pp.99–
110, Aug. 2016.

[23] W.H.A. Al-Zubaidi, P. Thongtanunam, H.K. Dam, C.
Tantithamthavorn, and A. Ghose, “Workload-aware reviewer rec-
ommendation using a multi-objective search-based approach,” Proc.
Int. Conf. Predictive Models and Data Analytics in Software Engi-
neering, pp.21–30, Nov. 2020.

Dong Wang is currently a specially ap-
pointed assistant professor at Kyushu Univer-
sity. He received Ph.D. from Nara Institute of
Science and Technology, Japan. He is a mem-
ber of the IEEE Computer Society. His research
interests include mining software repositories,
empirical software engineering, and human as-
pects. More about his information is available
online at https://dong-w.github.io/.

Patanamon Thongtanunam is an ARC
DECRA awardee and a lecturer at the School
of Computing and Information System, the Uni-
versity of Melbourne, Australia. She received
Ph.D. from Nara Institute of Science and Tech-
nology, Japan. Her research interests include
empirical software engineering, mining soft-
ware repositories, software quality, and human
aspect. Her research has been published at
top-tier software engineering venues like ICSE,
TSE, and EMSE.

Raula Gaikovina Kula is an assistant pro-
fessor at Nara Institute of Science and Tech-
nology. In 2013, he graduated with a Ph.D.
from Nara Institute of Science and Technology,
Japan. He is currently an active member of the
IEEE Computer Society and ACM. His research
interests include repository mining, code review,
software libraries and visualizations.

Kenichi Matsumoto received the B.E.,
M.E., and Ph.D. degrees in Engineering from
Osaka University, Japan, in 1985, 1987, 1990,
respectively. Dr. Matsumoto is currently a pro-
fessor in the Graduate School of Information
Science at Nara Institute Science and Technol-
ogy, Japan. His research interests include soft-
ware measurement and software process. He is
a senior member of the IEEE and a member of
the IPSJ and SPM.

http://dx.doi.org/10.1145/2970276.2970306
http://dx.doi.org/10.1145/2970276.2970306
http://dx.doi.org/10.1145/2970276.2970306
http://dx.doi.org/10.1145/2970276.2970306
http://dx.doi.org/10.1145/3416508.3417115
http://dx.doi.org/10.1145/3416508.3417115
http://dx.doi.org/10.1145/3416508.3417115
http://dx.doi.org/10.1145/3416508.3417115
http://dx.doi.org/10.1145/3416508.3417115

