
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.11 NOVEMBER 2022
1845

PAPER Special Section on Next-generation Security Applications and Practice

Aggregate Signature Schemes with Traceability of Devices
Dynamically Generating Invalid Signatures∗

Ryu ISHII†,††, Kyosuke YAMASHITA††,†††, Yusuke SAKAI††, Nonmembers, Tadanori TERUYA††, Member,
Takahiro MATSUDA††, Nonmember, Goichiro HANAOKA††, Member, Kanta MATSUURA†, Senior Member,

and Tsutomu MATSUMOTO††,††††a), Member

SUMMARY Aggregate signature schemes enable us to aggregate mul-
tiple signatures into a single short signature. One of its typical applications
is sensor networks, where a large number of users and devices measure
their environments, create signatures to ensure the integrity of the measure-
ments, and transmit their signed data. However, if an invalid signature is
mixed into aggregation, the aggregate signature becomes invalid, thus if an
aggregate signature is invalid, it is necessary to identify the invalid signa-
ture. Furthermore, we need to deal with a situation where an invalid sensor
generates invalid signatures probabilistically. In this paper, we introduce
a model of aggregate signature schemes with interactive tracing function-
ality that captures such a situation, and define its functional and security
requirements and propose aggregate signature schemes that can identify
all rogue sensors. More concretely, based on the idea of Dynamic Traitor
Tracing, we can trace rogue sensors dynamically and incrementally, and
eventually identify all rogue sensors of generating invalid signatures even
if the rogue sensors adaptively collude. In addition, the efficiency of our
proposed method is also sufficiently practical.
key words: sensor networks, aggregate signature schemes, fault-tolerant
aggregate signature schemes, dynamic traitor tracing

1. Introduction

Aggregate signature schemes allow multiple signatures to
be aggregated into a short signature. In information sys-
tems with a large number of signed data, aggregate signa-
ture schemes enable us to aggregate the signatures on the
communication channel into a single short signature, thus
significantly reduce the communication cost. As observed in
[2], [3], one example of such information systems is a sensor
network where a large number of users and devices measure
their environments and generate signatures to ensure the in-
tegrity of the measurements and transmit their signed data.
However, if invalid signatures are produced due to a fail-

Manuscript received February 17, 2022.
Manuscript revised May 6, 2022.
Manuscript publicized August 4, 2022.
†The authors are with the University of Tokyo, Tokyo, 153–

8505 Japan.
††The authors are with the National Institute of Advanced In-

dustrial Science and Technology (AIST), Tokyo, 135–0064 Japan.
†††The author is with the Osaka University, Suita-shi, 565–0871

Japan.
††††The author is with the Yokohama National University,

Yokohama-shi, 240–8501 Japan.
∗This paper is based on results obtained from a project,

JPNP16007, commissioned by the New Energy and Industrial
Technology Development Organization (NEDO). A preliminary
version of this paper was presented at ACNS SCI 2021 [1]. This pa-
per is added new results and the difference is described in Sect. 1.5.

a) E-mail: tsutomu@ynu.ac.jp
DOI: 10.1587/transinf.2022NGP0010

ure or a replacement of a sensor, an aggregate signature be-
comes invalid. If such a case, it is necessary to identify (and
repair/exclude) a sensor that generated an invalid signature.
At this point, if we know that there is only one such sen-
sor, and that it always issues an invalid signature, it is trivial
to identify the sensor. In practice, however, it is conceiv-
able that multiple sensors that have failed or been replaced
work in conjunction with each other to probabilistically gen-
erate invalid/valid signatures. At first glance, it seems trivial
to detect invalid signatures if an aggregator verifies individ-
ual signatures before aggregation. In practice, however, ag-
gregators are assumed to be relatively small devices on the
communication path. In such a case, it would be difficult
to verify many signatures sufficiently fast. For example, in
Boneh-Gentry-Lynn-Shacham (BGLS) aggregate signature
scheme [4], we need two pairing computations to verify a
signature, which is the dominant factor of the computational
cost. A pairing computation takes approximately 400 times
as much as an addition on an elliptic curve.∗∗ If there are N
signatures to be aggregated, 2N pairing operations are re-
quired to verify each of these signatures, but N − 1 elliptic
addition operations are sufficient just to aggregate them. We
assume the aggregator as an inexpensive device that can ag-
gregate fast but cannot verify sufficiently fast, and therefore
cannot run individual signature verification before aggrega-
tion.

In this paper, we propose an aggregate signature
scheme that can identify all rogue sensors even in such a
case. More concretely, based on the idea of Dynamic Traitor
Tracing [5], we can trace rogue sensors dynamically and in-
crementally, and finally identify all rogue sensors that gen-
erate invalid signatures.

1.1 Problem Setting

When we consider a sensor network in which a large num-
ber of devices send signed data periodically, it is natural to
assume that the devices that generate invalid signatures may
change from time to time due to failures. However, in pre-
vious works, the signature set to be aggregated is assumed
to be constant during tracing, and there has been no method
that can capture the situation where the devices generating
invalid signatures could change from time to time. In this

∗∗In the setting shown in Sect. 5.4, it takes 0.679 microseconds
per group operation and 286 micorseconds per pairing.

Copyright c⃝ 2022 The Institute of Electronics, Information and Communication Engineers

1846
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.11 NOVEMBER 2022

paper, we consider the situation where many users/devices
send signed data periodically, an adversarial user/device set
(that may generate invalid signatures) consists of multiple
devices, and the user/device that generates the invalid signa-
ture could change dynamically from time to time. However,
we assume that, when an aggregate signature is generated,
at least one of the attackers sends an invalid signature.

Hartung et al. [6] proposed fault-tolerant aggregate sig-
natures that allow a verifier to trace a certain number of in-
valid signatures. At first glance, it might seem that [6] can be
used in our setting, but this is not the case. When [6] is used
in the above setting, we need to assume that either (i) all
rogue sensors always produce invalid signatures, or (ii) all
signatures are temporarily stored before aggregation. Note
that an adversary that captures the first condition does not
meet our setting. Thus, the setting described above cannot
be solved by a naive application of the method in [6].

1.2 Our Contribution

In this paper, we introduce aggregate signature schemes
with interactive tracing functionality (ASIT scheme for
short) that captures our problem setting, and define its func-
tional and security requirements. In addition, we propose a
generic construction of an ASIT scheme that combines an
ordinary aggregate signature scheme and a dynamic traitor
tracing (DTT) scheme [5]. A DTT is a method to trace ad-
versaries who commit piracy in a contents distribution ser-
vice. Since the definition in the original paper [5] is not so
easy to work with, we also give a formalization of the syntax
and security notions for DTT that is suitable and convenient
for our purpose.

Our security definitions of ASIT scheme take into ac-
count all the situations of our problem setting mentioned
earlier. Namely, it is possible to trace an adaptive collusion
of rogue sensors. This situation was not captured in the pre-
vious work [6]. As an additional feature, the efficiency of
our scheme is also sufficiently practical. For example, when
d = 10 rogue sensors are mixed among n = 100000 sensors,
each of which sends signed data every minute, they can al-
ways be traced within R = d log2(n) + d ≈ 176 minutes.
Furthermore, since our generic construction can be instan-
tiated with any aggregate signature scheme and DTT, many
different instantiations of an ASIT scheme can be obtained.
We implement our scheme and conduct a preliminary exper-
iment to confirm that the proposed scheme is indeed able to
deal with the adaptive collusion.

1.3 Basic Idea of the Proposed Method

In the proposed ASIT scheme, we assume that a user/device
periodically sends signed data to an aggregator. The aggre-
gator generates an aggregate signature based on the feed-
back received from the verifier in the previous round for
the signed data periodically sent by the user/device. The
verifier, which has an internal state, verifies the aggregate
signature from the aggregator, runs a tracing algorithm, up-

dates the internal state and outputs a feedback and a set of
excluded users/devices. This feedback is sent to the aggre-
gator. These processes are repeated to finally find out all the
users/devices that generated invalid signatures. The tracing
algorithm of the proposed ASIT scheme is based on the trac-
ing algorithm of the underlying DTT.

We consider two types of attacks on an ASIT scheme:
a forgery of (aggregate) signatures and a generation of in-
valid signatures. The security notions against these attacks
are EUF-CMA security and R-identifiability respectively,
where the latter notion intuitively ensures that the set of
users/devices that generated invalid signatures will be even-
tually identified within R rounds of interaction between the
aggregator and the verifier. The security notion that guaran-
tees that legitimate users/devices are not mistakenly traced
is called correctness. The proposed method satisfies all
of these security notions. For the formal definitions, see
Sect. 4.

1.4 Related Work

The first aggregate signature scheme was proposed by
Boneh et al. [4], which is in the random oracle model and
uses bilinear maps. Hohenberger et al. [7] gave an aggregate
signature scheme using multilinear maps in the standard
model. These schemes can aggregate individual signatures
as well as already aggregate signatures in any order. There
are other types of aggregate signature schemes. One is se-
quentially aggregate signature, first proposed by Lysyan-
skaya et al. [8] in the random oracle model. Since then, a
number of schemes have been proposed both in the random
oracle model [8]–[10] and in the standard model [11], [12].
Another type is aggregate signature with synchronized ag-
gregation, first proposed by Gentry and Ramzan [13] (in
the identity-based setting) in the random oracle model.
Again, since then, several constructions have been proposed
both in the random oracle model [2], [13] and the standard
model [2].

Hartung et al. [6] proposed fault-tolerant aggregate sig-
natures that allow a verifier to trace a certain number of in-
valid signatures using a cover-free family. Sato et al. [14]–
[16] proposed an aggregate message authentication code and
an aggregate signature scheme with interactive tracing func-
tionality using adaptive group tests.

1.5 Outline

In Sect. 2, we define basic notation and review standard ag-
gregate signature schemes. In Sect. 3, we review and formu-
late DTT. In Sect. 4, we define the functional and security
requirements of ASIT scheme that captures the problem set-
ting of this study. In Sect. 5, we give a generic construction
of an ASIT scheme combining a standard aggregate signa-
ture scheme and a DTT, prove its security and implement
the proposed scheme. Finally, in Sect. 6, we conclude this
work and discuss future works.

An additional result from the preliminary version is

ISHII et al.: AGGREGATE SIGNATURE SCHEMES WITH TRACEABILITY OF DEVICES DYNAMICALLY GENERATING INVALID SIGNATURES
1847

given in Sect. 5.4: We add an experimental result for the pro-
posed scheme and show that our implementation efficiently
traces devices that dynamically generate invalid signatures.

2. Preliminaries

2.1 Notation

Throughout this paper, we let λ ∈ N be a security parameter,
n ∈ N be the number of users, [n]B{1, . . . , n}, ϵ be an empty
string, ∅ be an empty set, poly(·) be a polynomial function,
negl(·) be a negligible function, and M = M(λ) be a mes-
sage space. We say an algorithm is probabilistic polynomial
time (PPT) if it is a probabilistic algorithm and its running
time is polynomial in λ. We denote a subroutine func of an
algorithm X by X.func.

Let U be a set. We say P is a partition of the set U if P
satisfies the followings: P = (S 1, . . . , S p) where p ∈ [|U |],
S 1, . . . , S p ∈ 2U \ {∅}, ∪i∈[p] S i = U, and for every i , j
(i, j ∈ [p]), it holds that S i ∩ S j = ∅. We denote by |P| = p.

2.2 Aggregate Signature Schemes

Here we review the syntax, correctness, and security defini-
tions of aggregate signature schemes. We focus on an aggre-
gate signature scheme which aggregates only one message
and signature pair per one verification key†.

Definition 2.1 (Aggregate Signature): An aggregate signa-
ture scheme consists of the five PPT algorithms (KeyGen,
Sign,Verify,Agg,AggVerify) that work as follows:

KeyGen(1λ)→ (pk, sk): KeyGen is the key generation al-
gorithm that takes a security parameter 1λ as input, and
outputs a public/secret key pair (pk, sk).

Sign(sk,m)→ σ: Sign is the signing algorithm that takes
a secret key sk and a message m ∈ M as input, and
outputs a signature σ.

Verify(pk,m, σ)→ 1/0: Verify is the verification algorithm
for non-aggregate signatures: It that takes a public key
pk, a message m, and a signature σ as input, and out-
puts 1 (valid) or 0 (invalid).

Agg({(pki,mi, σi)}i)→ τ: Agg is the aggregation algorithm
that takes a set of triplets of a public key, a message
and a signature {(pki,mi, σi)}i as input, and outputs an
aggregate signature τ.

AggVerify({(pki,mi)}i, τ)→ 1/0: AggVerify is the verifica-
tion algorithm for aggregate signatures: It takes a set
of pairs of a public key and a message {(pki,mi)}i and
an aggregate signature τ as input, and outputs 1 (valid)
or 0 (invalid).

†In general, aggregate signature schemes can aggregate multi-
ple signatures even if they are generated under the same key, but
for simplicity, we do not introduce such version in this paper.

Definition 2.2 (Correctness):An aggregate signature scheme
ΣAS = (KeyGen,Sign,Verify,Agg,AggVerify) satisfies cor-
rectness if for any λ ∈ N, any n = poly(λ), and any
m1, . . . ,mn ∈ M, it holds that

Pr

 1← AggVerify({(pki,mi)}i∈[n], τ)

∣∣∣∣∣∣∣∣
∀i ∈ [n], (pki, ski)← KeyGen(1λ),

andσi ← Sign(ski,mi);
τ← Agg({(pki,mi, σi)}i∈[n])

 = 1.

For security, we consider EUF-CMA (Existential Un-
Forgeability against Chosen Message Attacks) security in
the model where all generated key pairs are generated hon-
estly (honest-key model).

Definition 2.3 (EUF-CMA security): An aggregate signa-
ture scheme ΣAS = (KeyGen,Sign,Verify,Agg,AggVerify)
satisfies EUF-CMA security if for any λ ∈ N,
any n = poly(λ) and any PPT adversary A, it
holds that Pr

[
ExpASEUF-CMA

ΣAS,A (λ, n) = 1
]
= negl(λ) where

ExpASEUF-CMA
ΣAS,A (λ, n) is the following experiment:

ExpASEUF-CMA
ΣAS,A (λ, n)

∀i ∈ [n], (pki, ski)← ΣAS.KeyGen(1λ);
QB ∅;

({mi}i∈S , τ, S)←
AΣAS.Sign(sk1,·)(pk1, {(pki, ski)}i∈[n]\{1}) :
Output 1 if S ⊆ [n], 1 ∈ S , m1 < Q and
ΣAS.AggVerify({(pki,mi)i∈S , τ}) = 1,

else output 0

where when A makes a query m ∈ M to the signing oracle
ΣAS.Sign(sk1, ·), it computes σ← ΣAS.Sign(sk1,m), sends
σ toA, and sets Q← Q ∪ {m}.
Note that in the experiment, the user index 1 is used as a
challenger user whose secret key is unknown to an adver-
sary, and the remaining keys (pki, ski)i∈[n]\{1} are directly
given to A. Thus, the signing oracle is provided only for
the index 1.

3. Dynamic Traitor Tracing

A Dynamic Traitor Tracing (DTT) [5] is a method for trac-
ing piracy by having a distributor of a video or another dis-
tribution service that delivers a variant of the content with a
(generally) different digital watermark for each user. The
distributor adaptively generates new watermarks when it
finds a pirate version, repeats this process until it traces all
of the pirates, and when the distributor finally identifies a
pirate, it excludes the pirate from the user set.

In this section, we give our own formalization of DTT
that is suitable and convenient for our purpose, based on
the treatment in [5]. For DTT, we define the following two
security requirements: R-identifiability, which ensures that
the distributor can identify all pirates with R or fewer deliv-
eries, and completeness, which ensures that the distributor
does not exclude legitimate users. After defining the syntax

1848
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.11 NOVEMBER 2022

of DTT in Sect. 3.1, we define these two security notions
in Sect. 3.2. Finally, we present two concrete schemes pro-
posed by Fiat and Tassa [5] in Sect. 3.3.

3.1 Syntax

We define the syntax of a DTT as follows.

Definition 3.1 (Dynamic Traitor Tracing):A dynamic traitor
tracing (DTT) scheme consists of the two PPT algorithms
(Initialize,Trace) that work as follows:

Initialize(1λ, 1n)→ (α, P): Initialize is the initialization al-
gorithm that takes the security parameter 1λ and the
number of users 1n (in the unary form) as input, and
outputs an internal state α and a partition P of the user
set [n].

Trace(α, i)→ (α′, P′,V): Trace is the tracing algorithm
that takes an internal state α and an index i as input,
and outputs the new internal state α′ and set partition
P′ for the next round, and a traced pirate set V .

This syntax captures the following usage scenario:
First, the distributor executes Initialize to generate the ini-
tial partition P = (S 1, . . . , S p) (for some p) of the user set
[n] (and initial internal state α), generates different water-
marks for each element S i in the partition P, and sends each
user a watermarked content that corresponds to a subset S i

in P to which the user belongs. † Note that each subset S i in
the partition P is uniquely indexed. The collusion of pirate
users chooses one of the watermarked contents sent by the
distributor, and delivers it as a pirated version. The distrib-
utor identifies which watermark is embedded to the pirated
version, and executes Trace based on the index of the pirate
version and the distributor’s internal state to determine the
new partition for the next round. If a subset in the partition
consists of only a single user (in other words, the distribu-
tor identifies a pirate), then Trace excludes the pirate. These
procedures are repeated to exclude all pirates.

3.2 Security Requirements

Here, we formally define security requirements of DTT. In
our model, we assume that an adversary declares a set C
(where |C| ≤ d) of pirates at first. Therefore, we consider
DTTs that only excludes the pirates in this set. Furthermore,
we assume that a pirate rebroadcasts the content that it re-
ceives. In other words, we do not consider the case where
a pirate eavesdrops other user’s content and rebroadcasts it.
We remark that the same restrictions were implicitly put in
[5]. We leave a definition of DTTs in the model where the
set of traitors dynamically changes as an interesting future
work.

As mentioned earlier, we define two security notions

†The mechanism for watermarking contents is detached from
the syntax and beyond the scope of this primitive, which is the
same treatment as in [5].

for DTT: R-identifiability, which ensures that a distributor
can identify all the pirates within R (or less) rounds, and
completeness, which ensures that a distributor does not trace
legitimate users as pirates. These are defined using the fol-
lowing experiment ExpDTTΣDTT,A(λ, n) in which a stateful
adversaryA is executed.

ExpDTTΣDTT,A(λ, n)
(α1, P1)← ΣDTT. Initialize(1λ, 1n);

C ← A(α1, P1); t := 1; WB ∅; run AOT (·)(α1, P1) :
Output (W,C)

whereAmay adaptively make multiple queries it to the trac-
ing oracle OT . However, A’s t-th OT query it must satisfy
it ∈ [|Pt |] and S it ,t ∩C , ∅, where αt is the internal state and
Pt = (S 1,t, . . . , S pt ,t) (for some natural number pt) denotes
the partition afterA’s (t−1)-th OT query is answered. Given
the t-th OT query it from A, OT runs (αt+1, Pt+1,Vt) ←
ΣDTT.Trace(αt, it), and returns (αt+1, Pt+1,Vt) to A. Then,
OT updates W ← W ∪ Vt and t ← t + 1. We remark that W
in the output of the experiment is that at the pointA halts.

Definition 3.2 (R-Identifiability): A DTT ΣDTT satisfies R-
identifiability if for any λ ∈ N, any n = poly(λ), and any
PPT adversaryA, it holds that

Pr
[
C ⊈ W

∣∣∣ (W,C)← ExpDTTΣDTT,A(λ, n) ∧ t ≥ R
]

= negl(λ).

where t is the value of the counter whenA stops.

Definition 3.3 (Completeness): A DTT ΣDTT satisfies com-
pleteness if for any λ ∈ N, any n = poly(λ), and any PPT
adversaryA, it holds that

Pr
[
([n] \C) ∩W , ∅

∣∣∣ (W,C)← ExpDTTΣDTT,A(λ, n)
]

= negl(λ).

3.3 Instantiations

Fiat and Tassa [5] proposed three concrete DTT. Here, we
present the second scheme (FT-2) and the third scheme (FT-
3) of [5], which are binary search-based methods. The DTT
FT-2 and FT-3 are described in Fig. 1. Observe that in each
algorithm, I is the set of users that are not in the tracing
process. We call such a set as an innocent set. For these
schemes, Fiat and Tassa [5] showed the following theorems.

Theorem 3.1: Let n be the number of users and d be the
number of pirates. Then, FT-2 excludes all of the pirates
within d log2 n + d rounds. Furthermore, FT-2 uses at most
2d + 1 variants in each round.

Theorem 3.2: Let n be the number of users and d be the
number of pirates. Then, FT-3 excludes all of the pirates
within 2 · 3dd log2 n + d rounds. Furthermore, FT-3 uses at
most d + 1 variants in each round.

We now show that FT-2 and FT-3 satisfy the security
notions formalized in this paper, namely R-identifiability
and completeness, with an appropriate choice of R for each

ISHII et al.: AGGREGATE SIGNATURE SCHEMES WITH TRACEABILITY OF DEVICES DYNAMICALLY GENERATING INVALID SIGNATURES
1849

Fig. 1 The descriptions of the DTT by Fiat and Tassa [5]: FT-2 (left-top), FT-3 (right), and the subal-
gorithm Halve used in both of the schemes (left-bottom).

scheme.

Lemma 3.1: FT-2 satisfies both (d log2 n+d)-identifiability
and completeness.

Proof 3.1: Due to Theorem 3.1 and the assumption that at
least one pirate does piracy in each round, (d log2 n + d)-
identifiability is trivial if completeness is satisfied. Thus,
we only prove completeness. It is sufficient to prove that
FT-2 never excludes a valid user. Let Li and Ri be sin-
gleton sets that appear during the execution of FT-2 (i.e.,
|Li| = |Ri| = 1). Since we are assuming that a pirate does
not rebroadcast other user’s content, the users in the sets
are excluded if and only if the corresponding variants are
detected by the distributor. (Note that if they never rebroad-
cast the content anymore, we regard them as valid users.)
Therefore, FT-2 never excludes a valid user, which guaran-
tees completeness. □

Lemma 3.2: FT-3 satisfies both (2 · 3dd log2 n + d)-
identifiability and completeness.

We skip the proof of Lemma 3.2, since it is almost the same
as the proof of Lemma 3.1.

4. Aggregate Signature with Interactive Tracing Func-
tionality

In this section, we give formal definitions for aggregate sig-
nature schemes with interactive tracing functionality (ASIT
scheme). We define the syntax of ASIT scheme and the cor-
rectness of subalgorithms in Sect. 4.1. We then define the

security and functionality requirements for ASIT scheme in
Sect. 4.2, which include EUF-CMA security (in the honest-
key model), R-identifiability, and correctness.

4.1 Syntax

Definition 4.1 (ASIT): An ASIT scheme consists of the
six PPT algorithms (KeyGen,Sign,Agg,Verify,PartVerify,
Trace) that work as follows:

KeyGen(1λ)→ (pk, sk): KeyGen is the key generation al-
gorithm that takes a security parameter 1λ as input, and
outputs a public/secret key pair (pk, sk).

Sign(sk,m)→ σ: Sign is the signing algorithm that takes
a secret key sk and a message m ∈ M as input, and
outputs a signature σ.

Verify(pk,m, σ)→ 1/0: Verify is the verification algorithm
(for a non-aggregated signature) that takes a public key
pk, a message m, and a signature σ as input, and out-
puts either 1 (valid) or 0 (invalid).

Agg(f , {(pki,mi, σi)}i)→ τ: Agg is the aggregation algo-
rithm: It takes as input a feedback f (from the previous
round) and a set of triplets of a public key, a message
and a signature {(pki,mi, σi)}i. Then, it outputs an ag-
gregate signature τ.

PartVerify(β, {(pki,mi)}i, τ, j)→ 1/0: PartVerify is the “par-
tial verification” algorithm that is used for defining
EUF-CMA security. It takes as input an internal state β,

1850
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.11 NOVEMBER 2022

Fig. 2 The experiments used for defining the correctness of an ASIT scheme.

a set of tuples of a public key and a message {(pki,mi)}i,
an aggregate signature τ, and a user index j. Then, it
outputs either 1 (indicating that τ is valid with respect
to the user index j) or 0 (indicating that τ is invalid with
respect to the user index j).

Trace(β, {(pki,mi)}i, τ)→ (β′, f ,V): Trace is the tracing al-
gorithm: It takes as input an internal state β, a set of
tuples of a public key and a message {(pki,mi)}i, and
an aggregate signature τ. It then outputs the new in-
ternal state β′ (for the next round), a feedback f , and
a traced user set V (which could be empty). It is re-
quired that a feedback f and a traced user set V can be
uniquely retrieved from an internal state β.

This syntax captures the following usage scenario: First,
all signers execute KeyGen. Next, each signer periodically
runs Sign, and sends signed data to the aggregator. The ag-
gregator executes Agg on the signed data periodically re-
ceived from the signers, based on the feedback received
from the verifier in the previous round. The verifier executes
Trace on the aggregate signature received from the aggrega-
tor, updates the internal state, and outputs the feedback and
the traced user set V . (Note that V is the set of users provid-
ing an invalid signature that the verifier identifies and thus
the users in V are excluded from the user set used in the ag-
gregation from the next round.) This feedback is sent to the
aggregator.

Readers may wonder that the above definition lacks the
verification algorithm AggVerify for an aggregate signature.
However, we implicitly assume that Trace works as the veri-
fication algorithm. That is, if Trace outputs V , ∅, it implies
that the given aggregate signature τ is invalid. We remark
that PartVerify is an algorithm that is used only to define
EUF-CMA security.

Definition 4.2 (Correctness of Trace): Let ΣASIT be an
ASIT scheme. The algorithm ΣASIT.Trace satisfies correct-
ness if for any λ ∈ N, any n = poly(λ), any t ∈ N, and any
m1, . . . ,mn ∈ M, it holds that Pr[Vt = ∅] = 1 where Vt is
the value in the experiment ExpASITTrace

ΣASIT
(λ, n, {mi}i∈[n]) de-

scribed in Fig. 2.

Definition 4.3 (Correctness of PartVerify): Let ΣASIT be an
ASIT scheme. The algorithm ΣASIT.PartVerify satisfies cor-
rectness if for any λ ∈ N, any n = poly(λ), any possible form
of internal state β, any j ∈ [n], and any m1, . . . ,mn ∈ M, it

holds that Pr[v = 1] = 1 where v is an output of the experi-
ment ExpASITPartVrf

ΣASIT
(λ, n, β, j, {mi}i∈[n]) described in Fig. 2.

4.2 Security Notions

We define three security properties: EUF-CMA security, R-
identifiability, which means that the verifier traces all attack-
ers within R executions, and correctness, which means that
the verifier does not trace legitimate users.

4.2.1 EUF-CMA Security

We define EUF-CMA security for an ASIT scheme. A po-
tential adversary in this security notion includes all signers
apart from an honest one and an aggregator. Note that we
regard the aggregator as a potential adversary as in the same
manner as in ordinary aggregate signature schemes.

Definition 4.4: An ASIT scheme ΣASIT satisfies EUF-
CMA security if for any λ ∈ N, any n = poly(λ), and any
PPT adversary A, it holds that Pr[ExpASITEUF-CMA

ΣASIT,A (λ, n) =
1] = negl(λ) where ExpASITEUF-CMA

ΣASIT,A is the following exper-
iment.

ExpASITEUF-CMA
ΣASIT,A (λ, n)

∀i ∈ [n], (pki, ski)← ΣASIT.KeyGen(1λ);
tB 1; QB ∅; W1B ∅;

run AOS (·),OV (·)(pk1, {(pki, ski)}i∈[n]\{1}) :
Output 0 when A halts

whereA can halt at an arbitrary point,A is allowed to make
arbitrarily polynomial many queries to the signing oracle OS

and the verification oracle OV , which work as follows:

OS : Given a query m ∈ M, OS runs σ ←
ΣASIT.Sign(sk1,m), returns σ to A, and updates Q ←
Q ∪ {m}.

OV : Given a set of pairs of an index and a message and an
aggregate signature ({(i,mi,t)}i∈It , τt), OV outputs 1 (in-
dicating that A wins) and terminates the experiment if
ΣASIT.PartVerify(βt, {(pki,mi,t)}i∈It , τt, 1) = 1, 1 < Wt,
and m1,t < Q. Otherwise, OV executes (βt+1, ft,Vt)
← ΣASIT.Trace(βt, {(pki,mi,t)}i∈It , τt), returns (ft,Vt) to
A, and updates Wt = Wt ∪ Vt and t ← t + 1.

Note that the user index 1 is treated as the challenge user,
and an adversary is given the secret keys for the remaining

ISHII et al.: AGGREGATE SIGNATURE SCHEMES WITH TRACEABILITY OF DEVICES DYNAMICALLY GENERATING INVALID SIGNATURES
1851

users with index 2 to n, and thus the signing oracle is neces-
sary only for the user index 1. Note also that the experiment
can output 1 only if A makes an OV -query that contains a
forged signature with respect to the user index 1 (judged us-
ing the algorithm PartVerify).

PartVerify is introduced for readability, and it is indeed
possible to define EUF-CMA security without PartVerify.
However, without PartVerify, representing the definition of
EUF-CMA security needs a combination of the verification
algorithm of the underlying aggregate signature scheme and
the structure of DTT, which is too complicated.

4.2.2 R-Identifiability and Correctness

Similar to DTT, we define R-identifiability and correctness
of ΣASIT. A potential adversary in these security notions is
a set of users C ⊆ [n] that may generate invalid signatures.
Thus, an aggregator and the verifier behave honestly. These
security notions are defined based on the following experi-
ment ExpASITΣASIT,A(λ, n) in which a stateful adversary A
is executed:

ExpASITΣASIT,A(λ, n)
∀i ∈ [n], (pki, ski)← ΣASIT.KeyGen(1λ);

C ← A({(pki, ski)}i∈[n]); tB 1; rB 0; W1B ∅;
β1B ϵ; f0B ϵ; I1B[n]; J1BC;

run AOT (·)({(pki, ski)}i∈[n]) :
Output (W :=

∪t
t′=1 Vt′ ,C, r) when A halts

where A can halt at an arbitrary point, and A is allowed to
make arbitrarily (polynomially) many queries to the tracing
oracle OT . Let Wt :=

∪t
t′=1 Vt, It := [n]\Wt, and Jt :=

C \Wt. Given a query ({mi,t}i∈It , {(m j,t, σ j,t)} j∈Jt) fromA, OT

operates as follows:

1. If there exists j ∈ Jt s.t. ΣASIT.Verify(pk j,m j,t, σ j,t) =
0, then set r ← r + 1.

2. For every i ∈ It, compute σi,t ← ΣASIT.Sign(ski,mi,t).

3. Compute
τt ← ΣASIT.Agg(ft−1, {(pki,mi,t, σi,t)}i∈It∪Jt).

4. Compute
(βt+1, ft,Vt)←ΣASIT.Trace(βt, {(pki,mi,t)}i∈It∪Jt , τt).

5. Return (ft,Vt) toA and set t ← t + 1.

We define R-identifiability and correctness of an ASIT
scheme as follows.

Definition 4.5 (R-Identifiability): An ASIT scheme ΣASIT

satisfies R-identifiability if for any λ ∈ N, any n = poly(λ),
and any PPT adversaryA, we have

Pr[(C ⊈ W) | (W,C, r)← ExpASITΣASIT,A(λ, n) ∧ (r ≥ R)]

= negl(λ).

Definition 4.6 (Correctness): An ASIT scheme ΣASIT sat-
isfies correctness if ΣASIT.Trace and ΣASIT.PartVerify sat-
isfy correctnesses respectively, and for any λ ∈ N, any

n = poly(λ), and any PPT adversaryA, we have

Pr[([n]\C) ∩W , ∅ | (W,C, r)← ExpASITΣASIT,A(λ, n)]

= negl(λ).

5. A Generic Construction of an ASIT from an Aggre-
gate Signature Scheme and a DTT

In this section, we first present our generic construction of
an ASIT scheme based on an aggregate signature scheme
and a DTT, along with its security proofs and theoretical
comparison with the existing schemes. Finally, we demon-
strate an experimental result for the proposed scheme.

5.1 Construction

Let ΣAS = (KeyGen,Sign,Verify,Agg,AggVerify) be an ag-
gregate signature scheme, and let ΣDTT = (Initialize,Trace)
be a DTT. Using ΣAS and ΣDTT as building blocks, we con-
struct an ASIT scheme ΣASIT = (KeyGen,Sign,Verify,Agg,
PartVerify,Trace) as described in Fig. 3.

A verifier in ΣASIT maintains an internal state and a
user partition of ΣDTT. The algorithms ΣASIT.KeyGen,
ΣASIT.Sign and ΣASIT.Verify are the same as those in ΣAS.
The verifier initially executes ΣDTT. Initialize, and in subse-
quent rounds the aggregator execute ΣAS.Agg based on the
verifier’s feedback from the previous round. The algorithm
ΣASIT.Agg generates aggregate signatures for each subset
of the user partition generated by the use of ΣDTT. When
ΣASIT.Trace finds that an invalid signature is contained in τ,
ΣASIT uses the index of the corresponding subset in the user
partition to run ΣDTT.Trace (and does not verify the rest of
the aggregate signatures).

Theorem 5.1 (Correctness of ΣASIT.Trace): If ΣAS satis-
fies correctness, then ΣASIT.Trace also satisfies correctness.

Proof 5.1: Observe that an output of ΣASIT.Agg consists
of multiple (polynomially many) aggregate signatures of
the underlying scheme ΣAS.Agg. Furthermore, ΣASIT.Trace
outputs a traced user set V , ∅ if and only if ΣAS.AggVerify
outputs 0. Since each algorithm in ExpASITTrace

ΣASIT
is ex-

ecuted honestly and ΣAS is correct, the probability that
ExpASITTrace

ΣASIT
outputs V , ∅ is 0, which guarantees the cor-

rectness of ΣASIT.Trace. □

Theorem 5.2 (Correctness of ΣASIT.PartVerify): If ΣAS sat-
isfies correctness, then ΣASIT.PartVerify also satisfies cor-
rectness.

Proof 5.2: Observe that an output of ΣASIT.Agg con-
sists of multiple (polynomially many) aggregate signa-
tures of the underlying scheme ΣAS.Agg, and an output of
ΣASIT.PartVerify is that of ΣAS.AggVerify. Since each al-
gorithm in ExpASITPartVrf

ΣASIT
is executed honestly and ΣAS is

correct, ExpASITPartVrf
ΣASIT

outputs 1 with probability 1, which
guarantees the correctness of ΣASIT.PartVerify. □

1852
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.11 NOVEMBER 2022

Fig. 3 Our generic construction of an ASIT scheme ΣASIT from an aggregate signature scheme ΣAS

and a DTT ΣDTT. (†) End the for loop and proceed to the next line.

Discussion on The Construction
In Fig. 3, ΣASIT.Trace executes DTT to generate new parti-
tions, and sends them to ΣASIT.Agg. This aims to capture
the situation where a verifier has a plenty of computational
resource, but an aggregator does not. For instance, in IoT, it
may be the case that a cloud server runs ΣASIT.Trace and an
edge device runs ΣASIT.Agg. However, if we allow an aggre-
gator to have sufficient computational resource (and assume
that the aggregator is honest), we might be able to reduce
network bandwidth. That is, we let ΣASIT.Agg to run DTT
by itself. Observe that DTT is just a deterministic combina-
torial algorithm. Hence, if ΣASIT.Trace sends information
about in which position to execute DTT to ΣASIT.Agg, then
the both algorithms can obtain the same partitions. Namely,
since ΣASIT.Trace is not necessary to send partitions, we can
reduce network bandwidth.

We note that the number of rounds that is necessary for
ΣASIT to trace all adversaries could depend on the order of
the verification. For instance, if ΣASIT.Trace always verifies
an aggregate signature of an innocent set first (if exists), then
the set is kept to be small, which might result in an efficient
tracing. However, we leave the description abstract, because
for any construction, there might exist a strategic adversary
that abuses such a construction.

5.2 Security Proofs

5.2.1 EUF-CMA Security

We first show the EUF-CMA security of ΣASIT.

Theorem 5.3: If ΣAS satisfies EUF-CMA security, then
ΣASIT satisfies EUF-CMA security.

Proof 5.3: We assume for contradiction that there exists
a PPT adversary AASIT that breaks EUF-CMA security of
ΣASIT with non-negligible probability, and construct a PPT

adversary AAS that breaks EUF-CMA security of ΣAS. We
first describe how our adversary AAS works in the experi-
ment ExpASEUF-CMA

ΣAS,AAS
, and then show thatAAS indeed breaks

EUF-CMA security of ΣAS.

In ExpASEUF-CMA
ΣAS,AAS

, the challenger generates (pki, ski)←
ΣAS.KeyGen(λ) for all i ∈ [n], gives pk1 and
{(pki, ski)}i∈[n]\{1} to AAS, and sets QB ∅. Next, AAS sets
W1B ∅. Then, AAS, who is given access to the signing
oracle ΣAS.Sign(sk1, ·), runs AOS ,OV

ASIT (pk1, {(pki, ski)}i∈[n]\{1})
with simulating OS and OV as follows.

OS : WhenAASIT makes an OS -query m,AAS makes a sign-
ing query m to its own oracle, receives σ from the sign-
ing oracle, and returns σ to AASIT. AAS also updates
Q← Q ∪ {m}.

OV : When AASIT makes a query ({(i,mi,t)}i∈It , τt) to OV ,
AAS responds as follows (where we implicitly assume
that It ⊆ [n]):

• If ΣASIT.PartVerify(βt, {(pki,mi,t)}i∈It , τt, 1) = 1,
1 < Wt, and m1,t < Q, then halt the simulation,
output τt, {mi,t}i∈It and S B It toAAS’s EUF-CMA
experiment, and terminate.

• Otherwise, execute (βt+1, ft,Vt) ← ΣASIT.Trace
(βt, {(pki,mi,t)}i∈It , τt), return (ft,Vt) toAASIT, and
set Wt+1 = Wt ∪ Vt and t ← t + 1.

WhenAASIT halts,AAS also halts. (Note thatAAS perfectly
simulates the EUF-CMA experiment forAASIT.)

We argue that AAS satisfies the winning condition
in the EUF-CMA experiment with non-negligible prob-
ability. Suppose that AAS outputs τt, {mi,t}i∈It and S
(i.e., AASIT makes a query to OV on ({(i,mi,t)}i∈It , τt)
s.t. ΣASIT.PartVerify(βt,{(pki,mi,t)}i∈It , τt,1) = 1, 1 < Wt and
m1,t < Q). As ΣASIT.PartVerify(βt,{(pki,mi,t)}i∈It , τt,1)= 1, it

ISHII et al.: AGGREGATE SIGNATURE SCHEMES WITH TRACEABILITY OF DEVICES DYNAMICALLY GENERATING INVALID SIGNATURES
1853

holds that 1 ∈ S ⊆ [n]. Thus, AAS wins in this case. Ob-
serve that ifAASIT makes such a query, it means thatAASIT

breaks the EUF-CMA security of ΣASIT. Hence, if AASIT

breaks the EUF-CMA security of ΣASIT with non-negligible
probability, thenAAS also breaks the EUF-CMA security of
ΣAS with non-negligible probability. □

5.2.2 R-Identifiability and Correctness

Here, we show R-identifiability and correctness of
ΣASIT. Note that the correctness of ΣASIT.Trace and
ΣASIT.PartVerify are already done.

Theorem 5.4: If ΣDTT satisfies R-identifiability, then ΣASIT

satisfies R-identifiability.

Proof 5.4: To prove the theorem, we demonstrate security
reductions from ΣASIT to ΣDTT. In what follows, we describe
the adversary ADTT in ExpDTTΣDTT,ADTT

that simulates the
experiment ExpASITTrace

ΣASIT,AASIT
for an adversaryAASIT.

In ExpDTTΣDTT,ADTT
, the challenger computes (α1, P1)

← ΣDTT. Initialize(1λ, 1n), and gives (α1, P1) toADTT. ADTT

first runs (pki, ski) ← ΣASIT.KeyGen(1λ) for i ∈ [n], and
then gives {(pki, ski)}i∈[n] toAASIT, which in turn outputs the
set of users C ⊆ [n]. Then,ADTT outputs C toADTT’s exper-
iment as a traitor set. ADTT then sets t′B 1, rB 0, W1B ∅,
β1B ϵ, f0B ϵ, I1B[n], and J1BC, and continues the execu-
tion ofAASIT that now may start making OT queries. When
AASIT makes an OT -query ({mi}i∈It , {(m j,t, σ j,t)} j∈Jt), ADTT

proceed as follows:

1. If there exists j ∈ Jt s.t. ΣASIT.Verify(pk j,m j,t, σ j,t) =
0, then r ← r + 1.

2. For every i ∈ It, compute σi,t ← ΣASIT.Sign(ski,mi,t).

3. Compute
τt ← ΣASIT.Agg(ft−1, {(pki,mi,t, σi,t)}i∈It∪Jt).

4. Simulate
(βt+1, ft,Vt) ← ΣASIT.Trace(βt,{(pki,mi,t)}i∈It∪Jt , τt) s.t.
when ΣDTT.Trace(αt, i) needs to be executed, ADTT

makes a query i toADTT’s own tracing oracle OT to ob-
tain (αt+1, Pt+1,Vt) instead of running ΣDTT.Trace(αt, i)
by itself. Note that in our construction ΣASIT, the up-
date of the internal state β = (α, P) occurs only when
ΣDTT.Trace(α, i) is executed, and thus the internal state
used by ADTT to simulate the tracing oracle for AASIT

and the internal state used inADTT’s tracing oracle are
always synchronized.

5. Return (ft,Vt) toAASIT, and set Wt+1 ← Wt∪Vt, It+1 ←
It \Wt, Jt+1 ← C \Wt, and t ← t + 1.

When AASIT halts, ADTT also halts. (Note that ADTT cor-
rectly simulates the tracing oracle OT for AASIT. Further-
more, bothADTT andAASIT run on the same traitor set C.)

Observe that ADTT makes a query to OT if and only
if there exists j ∈ Jt s.t. ΣASIT.Verify(pk j,m j,t, σ j,t) = 0,

due to the design of ΣASIT.Trace. Thus, letting t′ denote
the counter denoting the number of OT queries in ADTT’s
R-identifiability experiment, it holds that t′ = r when ADTT

halts the simulation ofAASIT’s R-identifiability experiment.
Obviously, if AASIT results in a set W < C, then so does
ADTT. Therefore, if there exists a PPT adversaryAASIT that
breaks the R-identifiability of ΣASIT, then there exists a PPT
adversaryADTT that violates the R-identifiability of ΣDTT.

□

Theorem 5.5: If ΣDTT satisfies completeness, then ΣASIT

satisfies correctness.

Proof 5.5: (of Theorem 5.5) Given an adversaryAASIT at-
tacking the correctness of ΣASIT, we consider exactly the
same reduction algorithm ADTT as in the proof of Theo-
rem 5.4. Obviously, if AASIT results in a set Wt s.t. ([n] \
C)∩Wt , ∅, then so doesADTT. Therefore, the existence of
such AASIT means the existence of a PPT adversary ADTT

that violates the completeness of ΣDTT. □

5.3 Theoretical Comparison

We theoretically compare our schemes with the existing
schemes by Hartung et al. [6] which we denote by HKK+,
and by Sato et al. [15]. In [6], they proposed a so-called
a fault-tolerant signature scheme, which can be understood
as an ASIT scheme with a one-round tracing algorithm.
However, since this scheme can be trivially extended to
a multi-round setting, for the comparison in this section,
we use such this extension which we hereafter refer to as
multi-HKK+. For completeness, we give the description of
multi-HKK+ in Appendix Appendix. We remark that HKK+

is able to detect at most d invalid signatures in a single
round, where d is a fixed value hard-wired in the scheme.
However, the correctness of HKK+ is compromised if more
than d invalid signatures are involved. multi-HKK+ inherits
this restricted form of correctness. AS-FT-2 and AS-FT-3
denote the ASIT schemes obtained from our generic con-
struction by instantiating the underlying DTT with FT-2 and
FT-3, respectively.

Table 1 shows the comparison among these schemes in
terms of the number of communication rounds, the maxi-
mum number of transmitted signatures per round, and the
types of traceability that each scheme achieves: An ASIT
scheme is statically traceable if it satisfies R-identifiability
for some R and correctness in a setting where the adversary
generates invalid signatures for all users in C (the adversar-
ial set of users) in every round. In contrast, an ASIT scheme
is dynamically traceable if it satisfies both of the security re-
quirements as defined in Sect. 4.2 where the adversary may
adaptively decide which user in C generates an invalid sig-
nature in each round. In Table 1, Rounds (R) is the maxi-
mum number of rounds that is necessary to trace all users
providing invalid signatures, and Sigs (max) is the maxi-
mum number of signatures that are aggregated (and thus cor-
responds to the partition of the user set) in a single round.

1854
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.11 NOVEMBER 2022

Table 1 Comparison among existing schemes and proposed schemes.
Each value represents the following: n is the number of users, and d is the
number of users providing invalid signatures.

Scheme Rounds (R) Sigs (max) Stat Dyn

multi-HKK+ 2d + 1 2d + 1 (fixed) ✓ ?
Sato et al. [15] d log2 n + d 2d + 1 ✓ ?
AS-FT-2 d log2 n + d 2d + 1 ✓ ✓
AS-FT-3 2 · 3dd log2 n + d d + 1 ✓ ✓

Stat and Dyn represent statically traceable and dynamically
traceable, respectively.

As indicated in Table 1, multi-HKK+ and the scheme in
[15] are statically traceable, but it is unclear if they are dy-
namically traceable. The maximum numbers of signatures
per round of these two schemes are the same (2d + 1), but
it is constantly 2d + 1 in every round in multi-HKK+, while
it can vary from 1 to 2d + 1 as the tracing proceeds in [15].
Comparing [15] and AS-FT-2, the number of rounds and the
number of signatures per round are the same, but AS-FT-2 is
traceable for both static and dynamic adversaries, while the
dynamic traceability of [15] is unclear.

Our schemes are able to trace both dynamic and static
adversaries, and the number of rounds required for tracing
does not increase compared to the existing method. We re-
mark that the number of rounds and signatures of AS-FT-2
and AS-FT-3 are due to Theorems 3.1 and 3.2, respectively.
Therefore, our proposed schemes are more suitable for prac-
tical usage scenario (e.g. sensor networks) for all situations
where invalid signatures could be generated constantly by
dynamically determined users/devices.

5.4 Experimental Result

We now provide an experimental result for out scheme;
namely we implement AS-FT-2 and compare AS-FT-2
against an adaptive adversary and a static adversary. We
choose the BGLS signature [4] as the underlying aggregate
signature scheme, and implement AS-FT-2 by C++ with us-
ing the mcl library for pairing-based cryptography by Mit-
sunari†. (Note that any aggregate signature scheme will do
for our construction.) We implement the tracing algorithm
so that it always verifies an aggregate signature of an inno-
cent set first, if exists. Table 2 illustrates our experimental
environment.

We compare our implementation in dynamic and static
settings. (We emphasize that our scheme is the first fault-
tolerant aggregate signature scheme that can efficiently deal
with adaptive adversary.) We fix the number of signers as
N = 1000, and set the number of adversaries as d = 10
or d = 100 for each experiment, where adversaries are ran-
domly chosen from the signers. In the dynamic setting, in
each round, exactly one adversary is randomly chosen and
only the chosen one generates an invalid signature, whereas
in the static setting, all adversaries send invalid signatures
every round.

In Table 3, Adv stands for the types of adversaries, d

†https://github.com/herumi/mcl.

Table 2 Experimental environment.

Host OS Windows10 Pro
Virtual OS ubuntu 18.04 LTS

CPU Intel Core i7-8550U @1.80GHz 4 cores 8 threads
Memory 16GB

c++ g++ 9.3.0
Elliptic curve BN254

Table 3 Experimental result for dynamic and static settings. Each value
is the average of one hundred executions.

Adv d R Sigs Partitions Time [s]
dynamic 10 101.2 1210.0 1210.0 33.7

100 917.7 52515.7 52515.7 240.4
static 10 90.7 709.9 709.9 21.6

100 614.2 24976.7 24976.7 94.4

stands for the number of adversaries, R stands for the num-
ber of rounds needed to trace all adversaries, Sigs stands for
the number of aggregate signatures that are created during
the entire tracing process, Partitions stands for the number
of partitions that are generated during the entire tracing pro-
cess, and Time [s] stands for the running time.

It takes more rounds (and thus, more aggregate signa-
tures and partitions) to trace all adversaries in the dynamic
setting than in the static setting. This is because only a sin-
gle randomly chosen adversary sends an invalid signature in
the dynamic setting, while every adversary sends an invalid
signature in every round in the static setting. Note that the
number of aggregate signatures is equal to the number of
partitions, because aggregate signatures are generated based
on partitions.

Recall that, as shown in Table 1, AS-FT-2 identifies all
adversaries within at most d log2 n + d rounds. Observe that
our result satisfies this constraint; 101.2 < 10 log2 1000 +
10 ≈ 110 for d = 10, and 917.7 < 100 log2 1000 + 100 ≈
1097 for d = 100. Hence, we argue that the implementation
efficiently cope with adaptive adversaries.

6. Conclusion and Future Work

We have proposed a new fault-tolerant aggregate signature
scheme [6], an Aggregate Signature scheme with Interactive
Tracing functionality (ASIT scheme for short), that can ef-
ficiently deal with adversaries who behaves adaptively. We
have provided a generic construction of an ASIT scheme,
defined and proved its security, and implemented it to con-
firm that it indeed copes with adaptive adversary.

However, there is still room for consideration. Re-
call that we only conducted preliminary experiments for our
scheme. Hence, we should use it in a concrete applications
such as sensor networks, which requires to settle network ar-
chitecture, message format for aggregate signature schemes
and so on.

Regarding the problem setting, we restricted ourself to
consider the situation where at least one adversary sends an
invalid signature every round. A more practical situation is
that we admit all adversaries not to send invalid signatures
(in other words, we accept a round that every individual sig-
nature is valid). Such a setting might capture, for instance, a

ISHII et al.: AGGREGATE SIGNATURE SCHEMES WITH TRACEABILITY OF DEVICES DYNAMICALLY GENERATING INVALID SIGNATURES
1855

sensor network where there is no malicious signer but some-
times a signer misbehaves probabilistically. Hence, we leave
it as an open problem to consider a fault-tolerant aggregate
signature scheme that can efficiently deal with such a situa-
tion.

References

[1] R. Ishii, K. Yamashita, Y. Sakai, T. Matsuda, T. Teruya, G.
Hanaoka, K. Matsuura, and T. Matsumoto, “Aggregate signature
with traceability of devices dynamically generating invalid signa-
tures,” ACNS 2021 Satellite Workshops, AIBlock, AIHWS, AIoTS,
CIMSS, Cloud S&P, SCI, SecMT, and SiMLA, Proceedings, LNCS,
vol.12809, pp.378–396, Springer, 2021.

[2] J.H. Ahn, M. Green, and S. Hohenberger, “Synchronized aggregate
signatures: new definitions, constructions and applications,” CCS
2010, pp.473–484, ACM, Oct. 2010.

[3] A. Makarov, “A survey of aggregate signature applications,” Ad-
vanced Technologies in Robotics and Intelligent Systems, pp.309–
317, Springer, 2020.

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” EUROCRYPT
2003, LNCS, vol.2656, pp.416–432, Springer, 2003.

[5] A. Fiat and T. Tassa, “Dynamic traitor tracing,” CRYPTO ’99,
pp.354–371, Springer, 1999.

[6] G. Hartung, B. Kaidel, A. Koch, J. Koch, and A. Rupp, “Fault-
tolerant aggregate signatures,” PKC 2016, LNCS, vol.9614, pp.331–
356, Springer, 2016.

[7] S. Hohenberger, A. Sahai, and B. Waters, “Full domain hash from
(leveled) multilinear maps and identity-based aggregate signatures,”

CRYPTO 2013, LNCS, vol.8042, pp.494–512, Springer, 2013.
[8] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham, “Sequential

aggregate signatures from trapdoor permutations,” EUROCRYPT
2004, LNCS, vol.3027, pp.74–90, Springer, 2004.

[9] G. Neven, “Efficient sequential aggregate signed data,”
EUROCRYPT 2008, ed. N.P. Smart, LNCS, vol.4965, pp.52–69,
Springer, 2008.

[10] M. Gerbush, A.B. Lewko, A. O’Neill, and B. Waters, “Dual form
signatures: An approach for proving security from static assump-
tions,” ASIACRYPT’ 12, LNCS, vol.7658, pp.25–42, Springer,
2012.

[11] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequen-
tial aggregate signatures and multisignatures without random ora-
cles,” EUROCRYPT 2006, LNCS, vol.4004, pp.465–485, Springer,
2006.

[12] K. Lee, D.H. Lee, and M. Yung, “Sequential aggregate signatures
with short public keys without random oracles,” Theor. Comput.
Sci., vol.579, pp.100–125, May 2015.

[13] C. Gentry and Z. Ramzan, “Identity-based aggregate signatures,”
PKC 2006, LNCS, vol.3958, pp.257–273, Springer, 2006.

[14] S. Sato and J. Shikata, “Interactive aggregate message authentication
scheme with detecting functionality,” AINA 2019, Advances in In-
telligent Systems and Computing, vol.926, pp.1316–1328, Springer,
2019.

[15] S. Sato, J. Shikata, and T. Matsumoto, “Aggregate signature with
detecting functionality from group testing,” IACR Cryptol. ePrint
Arch., vol.2020, p.1219, 2020.

[16] S. Sato and J. Shikata, “Interactive aggregate message authentication
equipped with detecting functionality from adaptive group testing,”
IACR Cryptol. ePrint Arch., vol.2020, p.1218, 2020.

Appendix: multi-HKK+

Here, we give the description of multi-HKK+ that is con-
structed based on an ordinary aggregate signature scheme
ΣAS and a cover free family. Recall that a d-cover free fam-
ily (d-CFF)F = (S,B) consists of a setS of m elements and
a setB of n subsets ofS, where d < m < n, s.t. for any d sub-
sets Bi1 , . . . , Bid ∈ B and for all distinct B ∈ B\{Bi1 , . . . , Bid },
it holds that B <

∪
j∈[d] Bi j .

Fig. A· 1 The ASIT scheme multi-HKK+ based on an ordinary aggregate signature scheme ΣAS and a
cover free family.

Let d be an integer s.t. there exists a prime q = 2d + 1.
Let F = (S,B) be a d-CFF based on quadratic polynomials
where S and B are defined as follows:
SB{(xi, yi) : i = 0, . . . , q2 − 1}, BB{B f0 , . . . , B fq3−1

} where
(xi, yi)B(⌊i/q⌋, i mod q),
B f j B{(0, f j(0)), . . . , (q − 1, f j(q − 1))},
and f j(X)B(⌊ j/q2⌋)X2 + (⌊(j mod q2)/q⌋)X + (j mod q).

Figure A· 1 describes multi-HKK+ where Ti = { j ∈
{0, . . . , qk+1 − 1} | f j(xi) = yi} (i = 0, . . . , q2 − 1).

http://dx.doi.org/10.1007/978-3-030-81645-2_22
http://dx.doi.org/10.1007/978-3-030-81645-2_22
http://dx.doi.org/10.1007/978-3-030-81645-2_22
http://dx.doi.org/10.1007/978-3-030-81645-2_22
http://dx.doi.org/10.1007/978-3-030-81645-2_22
http://dx.doi.org/10.1007/978-3-030-81645-2_22
http://dx.doi.org/10.1145/1866307.1866360
http://dx.doi.org/10.1145/1866307.1866360
http://dx.doi.org/10.1145/1866307.1866360
http://dx.doi.org/10.1007/978-3-030-33491-8_37
http://dx.doi.org/10.1007/978-3-030-33491-8_37
http://dx.doi.org/10.1007/978-3-030-33491-8_37
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-48405-1_23
http://dx.doi.org/10.1007/3-540-48405-1_23
http://dx.doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-642-40041-4_27
http://dx.doi.org/10.1007/978-3-642-40041-4_27
http://dx.doi.org/10.1007/978-3-642-40041-4_27
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1007/978-3-540-78967-3_4
http://dx.doi.org/10.1007/978-3-540-78967-3_4
http://dx.doi.org/10.1007/978-3-540-78967-3_4
http://dx.doi.org/10.1007/978-3-642-34961-4_4
http://dx.doi.org/10.1007/978-3-642-34961-4_4
http://dx.doi.org/10.1007/978-3-642-34961-4_4
http://dx.doi.org/10.1007/978-3-642-34961-4_4
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1007/11761679_28
http://dx.doi.org/10.1016/j.tcs.2015.02.019
http://dx.doi.org/10.1016/j.tcs.2015.02.019
http://dx.doi.org/10.1016/j.tcs.2015.02.019
http://dx.doi.org/10.1007/11745853_17
http://dx.doi.org/10.1007/11745853_17
http://dx.doi.org/10.1007/978-3-030-15032-7_110
http://dx.doi.org/10.1007/978-3-030-15032-7_110
http://dx.doi.org/10.1007/978-3-030-15032-7_110
http://dx.doi.org/10.1007/978-3-030-15032-7_110

1856
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.11 NOVEMBER 2022

Ryu Ishii received the B.E. degree from
Keio University and the M.E. degree from the
University of Tokyo, in 2019 and 2021, respec-
tively. As of 2022, he is a Ph.D. student at the
University of Tokyo, Graduate School of Infor-
mation Science and Technology. As of 2022, he
is a research assistant at the National Institute
of Advanced Industrial Science and Technology
(AIST), Japan.

Kyosuke Yamashita received the B.E., M.E.
and Ph.D. degrees from Kyoto University, in
2013, 2015 and 2021, respectively. Currently he
is a postdoctoral researcher at National Institute
of Advanced Industrial Science and Technology
(AIST), Japan. He received SCIS Paper Prize
from IEICE in 2019.

Yusuke Sakai received his B.E., M.E., and
Ph.D. degrees from the University of Electro-
Communications, Tokyo, Japan, in 2009, 2011,
and 2014, respectively. From 2012 to 2014, and
from 2014 to 2017, he was a research fellow
of Japan Society for the Promotion of Science
(JSPS). In 2017, he joined the National Institute
of Advanced Industrial Science and Technology
(AIST), Japan. He is presently engaged in re-
search on cryptography. He received SCIS Pa-
per Prize from IEICE in 2011 and the Best Stu-

dent Award in IWSEC 2010.

Tadanori Teruya received the M.E. de-
gree and the Ph.D. degree in engineering from
the University of Tsukuba, Japan, in 2009 and
2012, respectively. He worked as a postdoctoral
researcher in the Faculty of Engineering, In-
formation and Systems, University of Tsukuba,
Japan (2012–2013), and in the National Insti-
tute of Advanced Industrial Science and Tech-
nology (AIST), Japan (2013–2016), and then he
worked as a researcher in AIST (2016–2018).
He is currently a senior researcher in AIST since

2018. His research interests include cryptography, information security,
and privacy-enhancing technologies, in particular, practical aspects of cryp-
tography based on elliptic curves, lattices, and secure computation and their
applications.

Takahiro Matsuda received his bachelors,
masters, and Ph.D. degrees in Information and
Communication Engineering from the Univer-
sity of Tokyo in 2006, 2008, and 2011, respec-
tively. From 2009 to 2011 and from 2011 to
2013, he had been a Research Fellow of Japan
Society for the Promotion of Science (JSPS).
From 2011, he has been with the National In-
stitute of Advanced Industrial Science and Tech-
nology (AIST), Japan, where he currently works
as a senior research scientist. His research inter-

ests are in the areas of public key cryptography and theory of cryptography.

Goichiro Hanaoka graduated from the
Department of Engineering, the University of
Tokyo in 1997. He received the Ph.D. degree
from the University of Tokyo in 2002. Goichiro
joined AIST in 2005. Currently, he is a Prime
Senior Researcher, Cyber Physical Security Re-
search Center, AIST. He engages in the R&D
for encryption and information security tech-
nologies including the efficient design and se-
curity evaluation of public key cryptosystems.
He has received numerous awards including the

DoCoMo Mobile Science Award (2016), Mobile Communication Fund; the
Wilkes Award (2007), British Computer Society; Best Paper Award (2008,
2019), The Institute of Electronics, Information and Communication Engi-
neers (IEICE); and Innovative Paper Awards (2012, 2014), Symposium on
Cryptography & Information Security (SCIS), IEICE.

Kanta Matsuura received his Ph.D. de-
gree in electronics from the University of To-
kyo in 1997. He is currently a Professor of
Institute of Industrial Science at the Univer-
sity of Tokyo. His research interests include
cryptography, cybersecurity, and security man-
agement such as security economics. He was
an Associated Editor of IPSJ Journal (2001–
2005) and IEICE Transactions on Communi-
cations (2005–2008), and won Distinguished-
Service Award from the IEICE Communications

Society in 2008. He was Editor-in-Chief of Security Management (2008–
2012), and is an Editorial-Board member of Design, Codes, and Cryptogra-
phy (2010-present). He is a fellow of IPSJ, and a senior member of IEEE,
ACM, and IEICE. He is President of JSSM (Japan Society of Security Man-
agement) (2021-present). He is a member of Science Council of Japan
(2017-present).

Tsutomu Matsumoto is a professor of the
Faculty of Environment and Information Sci-
ences, Yokohama National University. He also
serves as the Director of the Cyber Physical
Security Research Center (CPSEC) at the Na-
tional Institute of Advanced Industrial Science
and Technology (AIST). Starting from Cryptog-
raphy in the early ’80s, Prof. Matsumoto has
opened up the field of security measuring for
logical and physical security mechanisms. He
received a Doctor of Engineering degree from

the University of Tokyo in 1986. He serves as the chair of the Japanese
National Body for ISO/TC68 (Financial Services) and the Cryptography
Research and Evaluation Committees (CRYPTREC) and as an associate
member of the Science Council of Japan (SCJ). He received the IEICE
Achievement Award, the DoCoMo Mobile Science Award, the Culture of
Information Security Award, the MEXT Prize for Science and Technology,
and the Fuji Sankei Business Eye Award.

