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SUMMARY  Cluster systems are prevalent infrastructures for offering
e-services because of their cost-effectiveness. The objective of our research
is to enhance their cost-effectiveness by reducing the minimum number of
nodes to meet a given target performance. To achieve the objective, we
propose a load balancing algorithm, the Nearest Underloaded algorithm
(N algorithm). The N algorithm aims at quick solution of load imbalance
caused by request departures while also preventing herd effect. The perfor-
mance index in our evaluation is the xth percentile capacity which we define
based on throughputs and the xth percentile response times. We measured
the capacity of 8- to 16-node cluster systems under the N algorithm and
existing Least-Loaded (LL) algorithms, which dispatch or transfer requests
to the least-loaded node. We found that the N algorithm could achieve
larger capacity or could achieve the target capacity with fewer nodes than
LL algorithms could.
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1. Introduction

Cluster systems are prevalent infrastructures for offering
e-services because of their cost-effectiveness.  Cluster
systems are typically composed of computing nodes and
switching fabrics. Cost-effectiveness of cluster systems de-
rives from their components, which have become cheaper
while being drastically improved. On the other hand, per-
formance of cluster systems is not as simple as to be given
as the product of the number of nodes and a single node per-
formance. The performance also depends on many factors
which do not exist on single node systems. One of the major
factors, for example, is load balancing.

The objective of our research is to enhance cost-
effectiveness of cluster systems by reducing the minimum
number of nodes to meet a given target performance. A clus-
ter system has to offer sufficient performance to handle in-
coming requests. Insufficient performance results in exces-
sively long response times that prevent clients from being
served. This leads to lost opportunities. A cluster system,
on the other hand, should consist of as few nodes as possi-
ble to achieve the target performance to reduce system costs.
Therefore, the minimum number should be reduced.

To achieve the objective, we propose a load balanc-
ing algorithm, the Nearest Underloaded algorithm (N algo-
rithm). The algorithm aims at quick solution of load im-
balance caused by request departures while also preventing
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herd effect [10]. Load imbalance is caused by request ar-
rivals and departures. Imbalances due to both arrivals and
departures should be solved as quickly as possible because
computing power is not fully utilized while the load is im-
balanced. Clearly, request dispatching cannot solve imbal-
ance due to departures immediately. Therefore, imbalance
due to departures should be solved by transferring requests
on overloaded nodes to underloaded ones, which is called
request transfer.

Merely transferring requests to the least-loaded node
cannot solve the imbalance due to departures. Many over-
loaded nodes are likely to transfer requests to a few under-
loaded nodes independently. As a result, the underloaded
nodes become overloaded and request transfers cannot bal-
ance the load. This is called herd effect. To prevent herd
effect, the N algorithm employs a virtual distance.

The performance index in our evaluation is the xth per-
centile capacity which we define based on throughputs and
the xth percentile response times. We define the xth per-
centile capacity as the number of requests a system can han-
dle per unit of time while retaining the xth percentile re-
sponse time within a given upper limit. We adopt the capac-
ity because all response times are not necessarily within the
limit. Some parts of the requests, which may be 5%, 1%, or
0.5%, are likely to be negligible depending on the circum-
stances. The average response time does not indicate which
parts of the requests will be handled within the limit.

We measured the xth percentile capacity of 8- to
16-node cluster systems under the N algorithm and existing
Least-Loaded (LL) algorithms, which dispatch or transfer
requests to the least-loaded node. Three synthetic workloads
were used in the evaluations. Request sizes (service times
for requests) in the first workload followed a lognormal dis-
tribution. That in the second workload followed a lognormal
distribution which has a bigger standard deviation than that
in the first workload. Four requests were issued at the same
time in the third workload.

We found that the N algorithm could achieve larger
capacity or could achieve the target capacity with fewer
nodes than LL algorithms could. The capacity improve-
ment was expanded as the value of x became larger, as the
number of nodes increased, and as a workload became devi-
ated and bursty. The 99.5th percentile capacity on a 16-node
system for the third workload under the N algorithm was
44.6% larger than that under an LL algorithm which dis-
patches requests. Furthermore, the capacity on a 12-node
system under the N algorithm was almost equal to that on
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a 16-node system under the LL algorithm which dispatches
requests. This implied 25% of reduction of the minimum
number of nodes to meet a target performance. The LL al-
gorithm which transfers requests could not work normally
on a 16-node system because it caused too many request
transfers.

This paper is organized as follows. Section 2 describes
our problems in detail, Sect. 3 introduces the N algorithm,
and Sect. 4 presents the evaluation results and improvements
attained with the N algorithm. Section 5 concludes this

paper.
2. Problem Statement and Performance Index

It is easy to balance load if all request sizes (service times for
requests) are the same. We only have to dispatch requests in
a round robin fashion. It is not difficult to balance load if
the size of each request is different but predictable. We only
have to dispatch an arriving request to the least loaded node.
However, each request size is usually different and unpre-
dictable. There are early and late request departures, and
load tends to be measured only by the number of requests.
We dealt with this case.

Load imbalance is caused by request arrivals and de-
partures. While imbalance due to arrivals can be solved by
dispatching requests, imbalance due to departures cannot be
solved quickly by doing this because a certain number of
request arrivals are needed to solve this imbalance. In ad-
dition, the response times of requests on overloaded nodes,
which have many requests, cannot be shortened by dispatch-
ing requests. Imbalance due to departures occurs when the
number of departures on each node is different with few re-
quest arrivals. Unpredictable and small request sizes, wide
deviations in request sizes, and bursty arrivals of requests
tend to cause imbalance due to departures. HTTP requests,
for instance, have these characteristics.

To improve the capacity of a system and to reduce the
nodes needed to achieve the target capacity, the imbalance
due to departures should be resolved quickly. Transferring
requests on overloaded nodes to underloaded nodes is one
approach to the problem. However, request transfer is gener-
ally difficult to control because each overloaded node trans-
fers requests to underloaded ones independently. As a re-
sult, many overloaded nodes are likely to transfer requests to
a few underloaded nodes when transfers occur almost simul-
taneously. This is called herd effect [10], being an example
of incorrect request transfers.

Figure 1 shows an example of herd effect when each
overloaded node transfers requests to the least-loaded node
so that the transferring and transferred nodes have the same
number of requests. We can alleviate herd effect by reducing
the number of requests transferred, although more activa-
tions of the load balancing algorithm are needed to balance
the load. This implies that transition to a balanced state be-
comes slower. Slow transition as well as herd effect can be
regarded as a result of incorrect request transfers from the
capacity point of view. We need a load balancing algorithm
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Fig.1  Example of herd effect.

that will produce quick transitions to a balanced state.

We define and adopt the xth percentile capacity as
a performance index. We define the xth percentile capac-
ity as the number of requests a system can handle per unit of
time while retaining the xth percentile response time within
a given upper limit. We adopt the capacity because all re-
sponse times are not necessarily within the limit. Some parts
of the requests, which may be 5%, 1%, or 0.5%, are likely
to be negligible depending on the circumstances. The aver-
age response time is one of the most important performance
indices as Menasce et al. showed by examples of capacity
planning in [1]. However, this does not indicate which parts
of the requests will be handled within the limit. Imbalance
due to departures tends to be caused when workloads have
wide distributions in request sizes and produce bursty re-
quest arrivals. The wide distributions increase differences
between early and late request departures. Bursty arrivals
cause lengthy periods where no request arrives or is dis-
patched. The workloads should be characterized by param-
eters that affect the xth percentile capacity, to put it more
concretely, parameters that affect load imbalance due to re-
quest departures. Therefore, we employed variations in the
sizes of requests and the burstiness of arrivals as parameters
for workloads.

3. Load Balancing in a Cluster System

This section describes existing load balancing algorithms
and our assumptions on the system. We then describe our
load balancing algorithm, the Nearest Underloaded algo-
rithm (N algorithm).

3.1 Classification of Load Balancing Algorithms

We considered a load balancing algorithm to be com-
posed of five components based on Milojicic et al. [2] and
Cardellini et al. [3]. These were:

o Initiation policy: Who decides which node requests are
processed on?
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e Activation policy: When are load balancing algorithms
activated?

e Information policy: What are load indices and when
are they updated?

e Transfer policy: Which requests are transferred?

e Placement policy: On which nodes is load information
available and requests processed?

To clarify the differences between load balancing algo-
rithms, we will describe existing policies and not the algo-
rithms themselves in this section.

Initiation policies can roughly be classified into cen-
tralized or decentralized [4]. With a centralized policy,
a node or a load balancing fabric dispatches each arriving
request, while each node transfers requests with a decentral-
ized policy. Decentralized policies can further be classified
into sender-initiated or receiver-initiated policies [5]; how-
ever, we have only addressed sender-initiated policies be-
cause the differences between sender and receiver-initiated
policies are outside the scope of this paper.

Activation policies fall into time-driven or event-driven
policies. A time-driven policy usually implies periodic acti-
vations. An event-driven policy often triggers load balanc-
ing when the load state changes. The changes are caused by,
for example, request arrivals or departures.

A major index of load is the length of the request
queue [6]. CPU utilization or utilization of other resources
can also be adopted as a load index according to the circum-
stances. Load information is updated in the same way as the
activation policies that were previously described.

Transfer policies determine how many requests are
transferred when all requests are regarded as being identi-
cal. The number of requests to be transferred has been de-
termined by static thresholds and the difference in load on
the sender node and receiver node under decentralized load
balancing algorithms in Stankovic[7] and Eager et al. [8].
The thresholds have been empirically determined. When re-
quests are not regarded as being identical, they are usually
preemptively migrated as described by Harchol-Balter and
Downey [9]. To focus on herd effect, we have only dealt
with non-preemptive transfer, and have regarded requests as
being identical as Stankovic [7] and Zhou [4] did.

Most placement policies choose the least-loaded node
in a node scope, which is composed of nodes with which
a sender node shares load information. One of the simplest
scopes includes all nodes. Eager et al.’s [8], Dahlin’s [10],
and Mitzenmacher’s[11] node scopes were randomly se-
lected nodes. Kremien et al.’s [12] scope was composed of
a group of nodes. In Kremien et al.’s scope, an overloaded
node probes randomly selected nodes and forms a group
with them if they are underloaded. An underloaded node
also forms a group with randomly probed overloaded nodes.

Based on classification, we will explain the algorithm
we propose and compare it with existing ones in the follow-
ing sections. Classification helps to compare the algorithms
because a load balancing algorithm has many parameters
and design choices.

3.2 System Assumptions

Our targeted cluster systems are homogeneous stateless
kinds such as Web server clusters or various scientific com-
puting clusters. More concretely, the following assumptions
hold with our targeted systems:

1. A cluster system contains identical computing nodes,
and these are bottlenecks,

Single server software works on a cluster system,

The software does not have any state,

There are no dependencies among requests,

Less than or equal to m requests are processed on
a node simultaneously for a given m (> 1), and

6. Request transfers incur little cost.

ke

Note that Web servers do not have a state (cookies are
in Web requests), and Web requests never depend on one an-
other if cookies are processed in the same way on all nodes.
Assumption 5 implies that (k—m) requests can be transferred
when there are k (> m) requests on a node. A Web request is
only a short message, so its transfer consumes limited CPU
time and network bandwidth.

3.3 Nearest Underloaded Algorithm

We will now describe each policy for the N algorithm in
detail. The initiation policy for the N algorithm is decen-
tralized and sender-initiated. The activation policy is peri-
odic. The information policy is that each node disseminates
the number of requests on it to all nodes periodically. Even
though these three policies are existing ones, the transfer
policy is characterized by employing a dynamic threshold.
The placement policy can choose multiple nodes based on
virtual distance between nodes.

The transfer policy of the N algorithm is based on a dy-
namic threshold, an average number of requests. Only over-
loaded nodes, which have more than the average number
of requests, transfer requests under the N algorithm. The
number of requests transferred is the difference between the
number of requests on the overloaded node and the average
number. Therefore load is balanced if the requests are trans-
ferred to underloaded nodes without overloading them. We
employ the dynamic threshold though most existing policies
employ empirical and static thresholds.

The dynamic threshold aims at quick solution of
short-term load imbalance. Even though the imbalance
could scarcely deteriorate the average response time or the
throughput, it should deteriorate the xth percentile response
time and capacity. This is because a few response times de-
cide the xth percentile response time. The short-term imbal-
ance is usually caused by request departures especially when
request sizes are small and widely distributed and request
arrivals are bursty. Consequently, we have to quickly find
an appropriate threshold which indicates whether a node is
overloaded or underloaded and transfer requests on over-
loaded nodes to underloaded ones.



Under the N algorithm, a node has an absolute node ID
and relative node IDs. Let n denote the number of nodes in
a cluster system. The nodes are numbered O to n — 1, which
are called absolute node IDs. A relative node ID, on the
other hand, is calculated from a pair of absolute node IDs.
Node j considers node i to have relative node ID (i — j + n)
% n. For example, node 3 considers node 5 to have relative
node ID 2, and node 7 considers node 5 to have relative
node ID 6 when n is 8. The fewer relative node IDs it has,
the nearer the node is.

A relative node ID denotes a virtual distance between
two nodes. The distance is statically given because a relative
node ID is calculated from two absolute node IDs which are
also statically given. On a flat network, we assign the ab-
solute node IDs to nodes in an arbitrary way, and our main
target is a cluster system on a flat network. A typical ex-
ample is a system which is composed of identical stateless
nodes and one gigabit Ethernet switch.

The N algorithm, however, should be effective where
example cluster systems are connected via a high-speed net-
work. Suppose that we assign consecutive absolute node
IDs to nodes in a cluster, and that the placement policy
of the N algorithm transfers requests to near underloaded
nodes. Then, transfers to nodes of another cluster incur lim-
ited cost because few requests are transferred to nodes of
another cluster and network is high-speed.

The placement policy of the N algorithm chooses the
nearest underloaded node as a destination of request trans-
fers. Most placement policies choose the least-loaded node
in a node scope and intend to balance load among the nodes
in the scope. A wide scope produces herd effect because
many overloaded nodes choose the same node as a destina-
tion of transfers. To alleviate herd effect, they usually em-
ploy narrow scopes even though it does not always balance
load among all nodes. To prevent herd effect, we transfer re-
quests to the nearest underloaded node. An overloaded node
regards a node as the nearest underloaded when the average
number of requests on nodes between the overloaded one
and the node is less than that on all nodes and when the
node is the nearest. For example, node 0 regards node 4 as
the nearest underloaded if the average number of requests
on node 14 is less than that on all nodes but that on node
1-3 is more than or equal to that on all nodes. An over-
loaded node assesses, starting from the nearest to furthest,
whether a node is the nearest underloaded. Therefore, over-
loaded nodes may choose different nodes as the nearest un-
derloaded among all nodes.

The placement policy can choose multiple nodes as
destinations of request transfer. Most existing transfer poli-
cies transfer few requests to alleviate herd effect. This re-
sults in slow transition to a balanced state even though the
imbalance is short-term. As has been mentioned, the dy-
namic threshold enables solving the short-term imbalance
if the requests are transferred to underloaded nodes without
overloading them. Aiming at quick transition to a balanced
state, the placement policy chooses multiple nodes be-
cause one underloaded node cannot always accept excessive
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requests on an overloaded node without overloading itself.

Let a, o, and u be the average number of requests, the
number of requests on an overloaded node, and the num-
ber of requests on the underloaded node nearest the over-
loaded one, respectively. When (o — a) is less than or equal
to (a—u), the overloaded node can transfer (o —a) requests to
the nearest underloaded one without overloading the nearest
underloaded one. And then, the overloaded one becomes
balanced. When (o0 — a) is more than (a — u), the overloaded
node transfers (a — u) requests to the nearest underloaded
one. We note that the nearest underloaded node become bal-
anced but does not remain the nearest underloaded after the
transfer. Then, the overloaded one finds the new nearest un-
derloaded node and transfers requests to that node as long
as the overloaded node remains overloaded.

The placement policy does not make underloaded
nodes overloaded; in other words, it prevents herd effect.
Each overloaded node can transfer its excessive requests and
becomes balanced because it transfers (o0 — a) requests and
an overloaded one never chooses any other overloaded ones
as destinations of transfer. Therefore, all overloaded nodes
get balanced after request transfer. An overloaded node
does not transfer requests to underloaded nodes that nearer
overloaded nodes are going to transfer requests to when the
transfers are going to make the underloaded ones balanced.
Therefore, underloaded nodes, which are going to be bal-
anced, will never be overloaded.

The steps involved in the N algorithm are summarized
as follows. Although a load index can be an integer or a real
number, we will only describe the N algorithm when it is
an integer because there is no intrinsic difference between
them. We note that the number of requests on a node is the
load index and that nodes are specified by relative node IDs
in the steps below.

1. Calculate the mean load index value a from shared load
information.

2. Let over be the difference between its own load index

value and ceil(a).

. If over is not positive, finish this algorithm.

4. Initialize ¢ with 1 and under with 0. ¢ denotes the rela-
tive node ID of a candidate node. An overloaded node
determines how much load is transferred to the candi-
date node.

5. Add the difference between a and the load index value
of node c to under.

6. If floor(under) is positive, transfer load by the smaller
over or floor(under).

7. If over is smaller than floor(under), finish this algo-
rithm.

8. Decrease over and under by floor(under) and incre-
ment c. If c is equal to n — 1, finish this algorithm.

9. Go to step 5.

W

Once the N algorithm is activated on each node in
a cluster system at the same time, the load index val-
ues or the numbers of requests on each node are aver-
aged. Although the load index value can be inaccurate and



SASAKI and TANAKA: CLUSTER SYSTEM CAPACITY IMPROVEMENT BY TRANSFERRING LOAD IN VIRTUAL NODE DISTANCE ORDER

The mean load index value = 2.5

éﬁgﬁga,

wotc |[node | node2 [ no |[ e |[odes | swtes | wove7 ]

[ requests

under: 0.5 2 0.5 -1 1.5
(over: 3 3 1 1 1 0)

.
cEEEEEERE

[ode0 |[[node s |[wde |[ nodes ][ nodes | e |[ modes [ nose7

Fig.2  Transition to balanced state under N algorithm.

simultaneous activation may not always hold, we did not in-
clude them within the scope of this section. The effects of
accuracy and simultaneity are evaluated from the point of
view of the xth percentile capacities in Sect. 4.

To simplify our understanding of the transition to a bal-
anced state under the N algorithm, we included an example
of the algorithm’s behavior in Fig. 2. We can see an 8-node
cluster and 20 requests waiting to be processed. The nodes
are specified by absolute IDs. The load index is the num-
ber of requests on a node, and the mean load index value is
2.5 in the figure. The numbers below nodes 2—6 give us the
values of under when node 1 has calculated under on the
nodes.

On node 1, there are 6 requests and over equals to 3
(= 6—ceil(2.5)). On node 2, there are 2 requests and under is
equal to 0.5 (= 2.5-2+0). On node 3, there is 1 request and
under is equal to 2 (= 2.5—-1+0.5). Because floor(under) is
positive and floor(under) is less than over, node 1 transfers 2
(= floor(under)) requests to node 3. Then, under becomes 0
(= 2 —2) and over becomes 1 (= 3 — 2). On node 4, there
are 2 requests and under is equal to 0.5 (= 2.5 =2 + 0).
On node 5, there are 4 requests and under is equal to —1
(=2.5-4+0.5). On node 6, there is no request and under is
equal to 1.5 (= 2.5-0+(-1)). Because floor(under) is more
than or equal to over, node 1 transfers 1 (= over) request to
node 6. We note that node O transfers one request to node 7
because the value of under is not positive on node 1-6.

4. Evaluation

We will present two evaluation results in this section that
demonstrate centralized request dispatching has more influ-
ence on the mean response time than decentralized request
transfer, and that request transfer, especially the N algo-
rithm, can increase the xth percentile capacity significantly
in some circumstances.

4.1 Environment

We used 16 nodes for this evaluation. Each node contained
a Xeon 2.4-GHz and 4-GB RAM, and ran on Linux 2.4.7.
The nodes were connected via a gigabit Ethernet. A Server
Wrapper Daemon (SWD), the load balancing daemon we
implemented, and a dummy application ran on each node.
A simple workload generator was also implemented and
ran on another node. This section describes the imple-
mented software, synthetic workloads, and load balancing
algorithms.

4.1.1 Implemented Software

An SWD enables us to transfer requests. This works on
each node and intercepts requests from clients to an appli-
cation running on the same node as the SWD. Intercepted
requests are forwarded to the application or to another SWD
that works on another node. An SWD receives replies from
the application or from other SWDs; it then forwards replies
to clients or other SWDs that send requests to itself. An
SWD forwards requests to SWDs running on other nodes
selected by a given load balancing algorithm. An SWD has
a request queue. The request at the head of the queue is
the only one that is forwarded to the application, and it can-
not be transferred to another node. Requests are transferred
from the tail of the queue. In addition to the request trans-
fer facility, an SWD has a facility to share the number of
requests in its queue with other SWDs.

A workload generator was substituted for clients in this
evaluation. This made HTTP requests and received replies.
It had the facility of dispatching requests under various cen-
tralized load balancing algorithms. We used a dummy ap-
plication to accept HTTP requests, and this went into a busy
loop for a specified period of time during a request, and then
sent a reply.

4.1.2 Workloads

Three synthetic workloads were used in this evaluation. The
mean request size was 40 ms for the workloads, which was
between the mean request size in the fine-grain trace and
that in the medium-grain trace described by Shen et al. [13].
The first workload was called a standard workload where
requests arrived according to a Poisson process and the
distribution of request sizes was lognormal. The ratio of
the standard deviation and the mean of request sizes was
2.16 : 1, which was modeled on the file size distribution in
SURGE [14].

The second workload was called a wide deviation
workload, which was different from the standard workload
in its ratio of standard deviation to mean for request sizes.
The ratio in the wide deviation workload was 3.06, which
was the product of 2.16 and the square root of 2. The third
workload was called a bursty workload, which was differ-
ent from the wide deviation workload in terms of the arrival
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Table1  Policies for four algorithms. Table3 Mean response times for wide deviation workload.
RR__ | cT [N I N 20 80 120 160 200 240 280 320 360
initiation policy centralized distributed RR 4453 6757 93.09| 127.81] 165.11 223.2| 327.89| 610.25| 1253.95
activation policy event—driven (request arrivals; time—driven (each 40ms) CT 38.8 39.8| 39.81 4043, 4231 45.74) 5338 71.56| 119.59
information policy N/A the length of the request queue LL 43.22] 5061 55.52| 60.48| 65.37) 72.54| 88.12] N/A N/A
(index & update) N/A event—driven time—driven (each 20ms) N 39.79] 4223| 4405 4749 5251 62.08 77.39] 109.95] 210.84
transfer policy N/A the request at the tail of the queue
(which & how many) difference based| described in
placement policy round robin | least—loaded _| Section 3.3
Table4  Mean response times for bursty workload.
40 80 120 160 200 240 280 320 360
Table 2 Mean response times for standard workload. RR 52.86 73.82| 108.24 154.8) 202.57| 273.44| 378.96) 568.99| 1156.83
CT 39.99 40.72 44.75 49.5 55.26 64.74 78.15| 100.45] 157.49
40 80 120 160 200 240 280 320 360 LL 46.42 50.71 57.16 63.12 69.5 81.05/ 101.83] N/A N/A
RR 41.6 52.74 64.88 83.49] 105.68| 139.73| 198.63] 345.53] 728.39 N 41 41.71 45.12 49.75 56.84 69.88 87.5| 123.91] 226.31
CT 39.16 40.12 40.03 40.28 41.36 44.29 50.08 62.09 97.01
LL 41.68 4714 51.53 56.25 60.92 67.83 79.84| 112.13] N/A
N 39.8 42.06 43.53 46.65 50.87 59 70.99 94.55| 162.17

process. Four requests arrived at the same time with an ex-
ponential inter-arrival time in the bursty workload. This was
a simplified model that reflected short-term fluctuations in
arrival rate.

4.1.3 Load Distribution Algorithms

Four load distribution algorithms were employed in this
evaluation. They were RR (round robin), CT (centralized al-
gorithm), LL (least-loaded algorithm), and N (N algorithm).
Their policies are listed in Table 1. The upper row for in-
formation policy describes the load index and the lower row
describes how information is updated. Note that CT updates
load information when requests arrive and depart. The up-
per row for transfer policy describes which request is to be
transferred and the lower row describes how many requests
are to be transferred. Note that the number of requests trans-
ferred under LL is equal to half the difference between the
queue length on a sender node and that on the least-loaded
node.

RR and CT do not have a transfer policy because they
do not transfer requests. Request dispatches under LL and
N are done in a RR fashion. The nodes in a scope are all
other nodes under LL and N.

4.2 Mean Response Times

We measured the mean response times on a 16-node clus-
ter using the four algorithms, increasing each request arrival
rate from 40 req/sec to 360 req/seq in 40 req/sec increments.
The arrival rates yielded approximately 10% to 90% CPU
utilization with increases of 10% because the mean request
size was 40 ms and there were 16 nodes in the cluster.
Table 2 lists the mean response times for the standard
workload. The reason CT performed best was due to rela-
tively accurate load information that the workload generator
had acquired by counting how many requests were on each
node. Moreover, there were fewer overheads under CT than
under LL and N because no load information was shared
and no request transfers occurred. RR was worst because it
never utilized dynamic load information. The N algorithm
performed close to CT because it quickly solved load im-
balance caused by RR. With LL, the mean response time at

360 req/sec was not measured because LL could not with-
stand such a heavy load. We ceased measurements when
the workload generator had more than 16,384 connections
to the cluster system.

Table 3 lists the mean response times for the wide de-
viation workload. These are greater than the corresponding
response times in Table 2 although there are no significant
changes in the relations of the mean response times under
the four algorithms. The wide distribution in request sizes
deteriorated the mean response times with both centralized
and decentralized algorithms. LL could not withstand the
load even at 320 req/sec.

Table 4 lists the mean response times for the bursty
workload. Note that the mean response times under CT
have deteriorated more in comparison with the correspond-
ing ones in Table 3, although this did not happen with the
other algorithms. Bursty arrivals prohibited us from acquir-
ing knowledge on request sizes at the time of dispatch from
completed requests during inter-arrivals. The mean response
times under RR did not change much because bursty arrivals
did not affect which node a request was dispatched to un-
der static request dispatches. The reason the mean response
times under N and LL did not deteriorate much is that in-
appropriate dispatches could be compensated for by request
transfers.

4.3  xth Percentile Capacity

The xth percentile capacity of cluster systems under algo-
rithms CT, LL, and N is discussed in this section. What
were, or could actually be, measured were the response
times of requests with several arrival rates on systems that
had 8 to 16 nodes. Therefore, we calculated the xth per-
centile response time from the response times actually mea-
sured, and assumed a linear increase or decrease in the xth
percentile response time for two adjacent arrival rates. The
following evaluation results indicate the xth percentile ca-
pacity under CT, LL, and N for three synthetic workloads
with an upper limit for the xth percentile response time; this
upper limit equals that under N on a 16-node cluster for each
workload.

In Fig.3, we can see the 95th percentile capacity of
the systems. The upper limit for the 95th percentile re-
sponse time was 279 ms. CT performed best under these cir-
cumstances. On a 16-node system, for example, CT could
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Fig.5  95th percentile capacity for bursty workload (391 ms).

achieve a 4.7% larger capacity than N could, and the ca-
pacity under LL was 8.8% smaller than that under N. Fig-
ure 4 plots the 95th percentile capacity for the wide devia-
tion workload where the upper limit was 341 ms. Although
CT performed best, the difference in the capacity under CT
and N was smaller than the difference plotted in Fig. 3. Fig-
ure 5 plots the 95th percentile capacity for the bursty work-
load where the upper limit was 391 ms. In the figure, the
capacity under N was almost the same as that under CT.
The capacity under LL for the wide deviation workload and
the bursty one was not plotted when the 16-node system was
highly loaded. LL caused incorrect request transfers due to
its transfer and placement policies. These transfers made the
system unstable.
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Fig.6  99th percentile workload for standard workload (517 ms).
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Fig.7  99th percentile workload for wide deviation workload (700 ms).

The 95th percentile response time as a restriction im-
plies that 5% of the response times do not matter, however
long they are. Although the 95th percentile response time
can be an appropriate restriction, more response times must
be restricted in some circumstances. Therefore, we calcu-
lated the 99th and 99.5th percentile capacities. The calcula-
tions were based on the same response times as those for the
95th percentile ones.

Figure 6 plots the 99th percentile capacity for the stan-
dard workload where the upper limit on the 99th percentile
capacity was 517 ms. The figure shows that the N algorithm
performed best because it solved the imbalance due to re-
quest departures. The simple transfer and placement poli-
cies of LL. worsened performance as the number of nodes
in the system increased, and CT, which did not transfer re-
quests, outperformed LL when the system had more than
12 nodes. Figure 7, which plots the 99th percentile capacity
for the wide deviation workload where the upper limit was
700 ms, resembles Fig. 6. Figure 8 plots the 99th percentile
capacity for the bursty workload where the upper limit was
737 ms. In the figure, we can see that the capacity under CT
deteriorated significantly and that the capacity under N was
21.9% larger than that under CT on a 16-node system.

Figure 9 plots the 99.5th percentile capacity for the
standard workload where the upper limit for the 99.5th per-
centile response time was 643 ms. Figure 10 plots the capac-
ity for the wide deviation workload where the upper limit
was 900ms and Fig. 11 plots the capacity for the bursty
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Fig.8  99th percentile workload for bursty workload (737 ms).

350
300 ﬁ

250 /f,, il
200 =

150 gt

100

req/sec
\
\
°
|
o
]
-
=

50

8 10 12 14 16

nodes

Fig.9  99.5th percentile workload for standard workload (643 ms).

workload where the upper limit was 927 ms. In these fig-
ures, we can see that the N algorithm could achieve the
prominent capacity. In Fig. 11, we can see that the capacity
under N was 44.6% larger than that under CT on a 16-node
system, and that the capacity under N on a 12-node sys-
tem was almost the same as that under CT on the 16-node
system.

The wide deviations in request sizes created larger
differences between actual request sizes and the mean re-
quest size. This caused load imbalance after requests were
dispatched and deteriorated response times on overloaded
nodes. Because there were a relatively small number of de-
teriorated response times, the deviations did not increase the
mean response time under CT more than those under N or
LL. However, this increased the xth percentile response time
under CT more than those under N and LL. Bursty arrivals
greatly reduced the capacity under CT because requests
were dispatched before preceding requests had been com-
pleted. The high x value made the capacity sensitive to
load imbalance because a few deteriorated response times
on overloaded nodes affected the capacity. On the other
hand, the N algorithm significantly outperformed LL when
the system contained many nodes because the behavior of
the decentralized algorithms had a much greater impact on
capacity in many nodes.

The number of nodes used in our evaluation was small
because we did not have enough hardware resource. How-
ever, these evaluation results indicate that load imbalance
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Fig.11  99.5th percentile workload for bursty workload (927 ms).

due to request departure has more significance when we in-
tend to achieve the high xth percentile capacity than when
we do high throughputs. We note that Dynamo [15] is built
for latency sensitive applications that require at least 99.9%
of read and write operations to be performed within a few
hundred milliseconds.

The short-term imbalance due to departure should be
solved quickly because few long response times deteriorate
the capacity. The N algorithm could quickly solve the im-
balance and achieved higher capacity when the imbalance
was caused.

Once the N algorithm is activated, excessive requests
on overloaded nodes are transferred to underloaded nodes
without overloading them. While existing algorithms bal-
ance load in narrow node scopes such as randomly selected
nodes, the N algorithm includes all nodes in scope. In
the system-wide scope, the proposed algorithm dynamically
calculates how much nodes are overloaded or underloaded
and solves the imbalance. The algorithm employs a virtual
distance to determine destinations of request transfer appro-
priately to balance multiple overloaded nodes, which have
to transfer multiple requests to be balanced, and multiple
underloaded nodes.

5. Conclusion

We propose a load balancing algorithm, the Nearest Under-
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loaded algorithm (N algorithm), in an effort to improve cost-
effectiveness of cluster systems. The N algorithm transfers
requests to other nodes in order of virtual node distance, and
reduces the minimum number of nodes to meet a target per-
formance. The performance index in this paper is the xth
percentile capacity, which denotes the number of requests
a system can handle per unit of time while retaining the xth
percentile response time within a given upper limit. The
maximum improvement in the 99.5th percentile capacity we
measured is 44.6% and the maximum reduction in the num-
ber of nodes is 25%. These improvements were achieved
by employing the N algorithm instead of an existing least-
loaded algorithm which dispatches requests on a 16-node
system for bursty requests.
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