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Probabilistic Model Checking of the One-Dimensional Ising Model
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SUMMARY Probabilistic model checking is an emerging verification
technology for probabilistic analysis. Its use has been started not only in
computer science but also in interdisciplinary fields. In this paper, we show
that probabilistic model checking allows one to analyze the magnetic be-
haviors of the one-dimensional Ising model, which describes physical phe-
nomena of magnets. The Ising model consists of elementary objects called
spins and its dynamics is often represented as the Metropolis method. To
analyze the Ising model with probabilistic model checking, we build Dis-
crete Time Markov Chain (DTMC) models that represent the behavior of
the Ising model. Two representative physical quantities, i.e., energy and
magnetization, are focused on. To assess these quantities using model
checking, we devise formulas in Probabilistic real time Computation Tree
Logic (PCTL) that represent the quantities. To demonstrate the feasibility
of the proposed approach, we show the results of an experiment using the
PRISM model checker.
key words: verification, probabilistic model checking, the Ising model,
Discrete Time Markov Chain

1. Introduction

Model Checking [1] is a powerful technique for the auto-
matic verification of hardware and software systems. The
technique has successfully been applied to verify many sys-
tems. Probabilistic model checking is an extension of con-
ventional model checking to probabilistic systems and has
been studied for more than two decades [2]–[4]. Examples
of the applications of this technique include: randomized
distributed algorithms, distributed agreement protocol [5],
wireless LAN [6], etc. Early studies of probabilistic model
checking were mainly aimed at reasoning about asymptotic
behaviors when time goes to infinity, while recent work was
aimed at verifying qualitative properties. Many of these
studies are based on Markov chains [7], which are well-
known random processes extensively used in modeling and
analyzing probabilistic systems. A recent survey of proba-
bilistic model checking can be found in [8]. Several prob-
abilistic model checkers have been implemented and are
now publicly available. Examples include PRISM [9] and
MRMC [10].
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As many phenomena seen in fields other than computer
science also exhibit probabilistic behavior, the use of prob-
abilistic model checking has been started in an interdisci-
plinary manner. Analyses of molecular systems [11] and
systems biology [12] are such examples.

In this study, we show that probabilistic model check-
ing allows one to analyze magnetic dynamics. We deal with
the Ising model which is a simple model that describes phys-
ical magnetic dynamics. Normally, the Ising model is ana-
lyzed using computer simulations. The difference between
probabilistic model checking and computer simulation is
that model checking explores all possibilities, whereas com-
puter simulation is based on random sampling. One advan-
tage of probabilistic model checking is that various physi-
cal properties are expressible in temporal logics, and these
properties can be verified automatically. We demonstrate
that our approach can be used to verify physical properties
in various ways, including reachability checking, computing
probability, and computing transition time.

The main contribution of this study is the application
of probabilistic model checking to the analysis of magnetic
fields. To the best of our knowledge, our work is the first at-
tempt to investigate such an application∗. In recent years, as
stated above, probabilistic model checking has been applied
to fields other than computer science. However, such appli-
cations are still few and have not been sufficiently studied.
Our work is aimed at broadening the use of model checking
in this direction.

The roadmap of this paper is as follows. In Sect. 2,
we introduce the Ising model. Next in Sect. 3, we build
Discrete Time Markov Chain (DTMC) models of the one-
dimensional Ising model. In Sect. 4, we verify some physi-
cal properties using PRISM, a probabilistic model checker,
to show that probabilistic model checking has potential for
analyzing such probabilistic behaviors.

2. The Ising Model

Physics deals with nature to understand fundamental prin-
ciples underlying phenomena. Magnet behavior is a widely
known physical phenomenon. However its mechanism is
quite difficult to understand because its macroscopic behav-
ior is caused by a complex system. In fact, “real” magnet
behaviors are observed as a result of cooperative phenom-

∗The preliminary results of our work were presented in [13].
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ena of microscopic factors. For example, electrons’ spin act
as a representative factor of magnetization of iron. Although
much research has been devoted to understanding the mech-
anism through direct observation, there is also a different
approach that uses simplified models.

The Ising model [14], [15] is such a simplified model
for magnets named after a physicist, Ernst Ising, who pro-
posed the model in 1924. The Ising model is defined on a
collection of elementary objects called spins. Each spin is
located at a site of a lattice and can have only one of two
values; +1 (named up) or −1 (named down). A collection of
states of all spins is said to be a configuration. The energy
of the Ising model is defined as a function of the state of
spins. Interactions among spins are a fundamental element
of energy.

In the standard form of the Ising model, interactions
among spins are restricted to nearby spins. The energy E
is defined as the sum of two terms: 1) the sum of interac-
tions of spins, and 2) the interaction of spins with an external
magnetic field, that is,

E = −J
∑

〈i, j〉
σiσ j − H

∑

k

σk,

where σi is the value of the spin at the i-th site in the lattice,
J is the interaction coefficient, H is the external magnetic
field, and 〈i, j〉 denotes the interaction of two spins, σi and
σ j, located at nearby lattice sites.

When the interaction coefficient is negative, the system
is called anti-ferromagnetic. Anti-ferromagnetic interaction
tends to anti-align spins, that is, nearby spins become differ-
ent in value. The energy of an anti-ferromagnet decreases
if nearby spins have different values. In contrast, when the
interaction coefficient is positive, the systems is called fer-
romagnetic. The energy of a ferromagnet decreases if spins
are aligned and vice versa.

In the one-dimensional (1D) Ising model, spins are lo-
cated at sites of a line. We assume that a model consists of n
spins σ1, σ2, . . . , σn which are located in order at sites of a
line, and that there is no external magnetic field. We also as-
sume the periodic boundary condition such that σn+1 = σ1.
Figure 1 shows a 1D Ising model with a periodic boundary
condition for n spins. We express the energy E as

E(σ1, σ2, . . . , σn) = −J
n∑

i=1

σiσi+1.

The intended purpose of the Ising model is to elucidate
the phenomenon of magnetism. Magnetization is a physical
quantity that represents the material’s own magnetic field.

Fig. 1 One-dimensional Ising model with periodic boundary condition.

The magnetization M of the 1D Ising model is defined as

M(σ1, σ2, . . . , σn) =
n∑

i=1

σi.

The Ising model itself does not determine its dynam-
ics. The Metropolis method [16] serves as a standard dy-
namics model. The validity of the Metropolis method is
elaborated in [15]. The Metropolis method is an example of
the Monte Carlo method, a generic technique for simulating
the stochastic behavior of various systems. The Metropolis
method randomly selects an initial state and repeats proba-
bilistic transitions depending on temperature. A sufficiently
large number of transitions result in a thermal equilibrium.
When applied to the Ising model, this method is called ran-
dom spin flipping. In random spin flipping, probabilistic
transitions are performed as described below:

1. Choose a spin σi at random for each flipping.
2. Evaluate the change in energy ΔE = Eflipped − Ecurrent

caused by spin flipping from σi to σ′i = −σi,
where Ecurrent = E(σ1, . . . , σi, . . . , σn), and Eflipped =

E(σ1, . . . , σ
′
i , . . . , σn).

3. If ΔE ≤ 0, spin flipping is accepted. Otherwise, the
spin flipping is accepted with a probability e−ΔE/T ,
where T is the temperature.

4. Repeat steps 1 to 3 a sufficient number of times.

As can be seen, temperature T plays an important role in
spin flipping. That is, when the temperature is higher, a spin
has more chances of flipping. Note that the next configura-
tion obtained by spin flipping only depends on current con-
figuration, i.e., it is independent of past configurations. This
independence is called the memoryless property. We call a
series of n times of spin flipping an update.

One might think that a continuous model is better
suited for examining magnetic fields. Indeed, one of
the continuous models for magnetism is the Heisenberg
model [17]–[19], where each spin has a continuous value.
Such a model could be mechanically analyzed using a hy-
brid system consisting of finite discrete states and whose dy-
namics are specified by differential equations over continu-
ous variables. We however do not consider hybrid systems,
because i) the Ising model is widely accepted as an adequate
model of magnetic fields and ii) in general, hybrid systems
are more difficult to mechanically analyze than discrete sys-
tems.

3. Probabilistic Model Checking

Model checking is an automatic formal verification tech-
nique. Probabilistic model checking extends model check-
ing to probabilistic systems. Given a model that represents a
system under consideration, model checking automatically
determines whether or not the model satisfies a given speci-
fication by exhaustively searching for the state space of the
model.
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3.1 Discrete Time Markov Chain

We consider systems represented as Discrete Time Markov
Chains (DTMCs). The definition of a DTMC is as follows.
Let AP be a set of atomic propositions. A DTMC is a quadru-
pleM = (S , si,T ,L), where S is a finite set of states, si ∈ S
is the initial state, T : S × S → [0, 1] is a transition prob-
ability function such that ∀s ∈ S ,

∑
s′∈S T (s, s′) = 1, and

L : S → 2AP is a labeling function. The current state s ∈ S
at computational time t has a transition to state s′ ∈ S at t+1
with probability T (s, s′). A path is a sequence of states. The
probability of a path s0, s1, · · · is

∏
i≥0 T (si, si+1). DTMC

has the Markov property; that is, if we choose a state s at a
computational time t then the next state at t+1 depends only
on the current state and independent of the past states.

In a DTMC, time is modeled as discrete steps. There-
fore, a 1D Ising model with spin flipping is easily trans-
formed into a DTMC by representing configurations as
states and individual spin flippings as probabilistic transi-
tions [15]. Note that the Ising model satisfies the Markov
property, because the spin flipping algorithm is memoryless.

3.2 Probabilistic Real Time Computation Tree Logic

Probabilistic real time Computation Tree Logic (PCTL) [20]
is a probabilistic extension of the temporal logic Computa-
tion Tree Logic (CTL). It is interpreted on a DTMC. Us-
ing PCTL formulas, we can describe physical specifications.
The syntax of PCTL is defined as follows:

ϕ ::= � | ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ

| P∼λ (ψ)

ψ ::= ϕ U ϕ | ϕ U ≤t ϕ

where p is an atomic proposition in AP, ∼ ∈ {<,≤,≥, >} is
a relational operator, λ ∈ [0, 1] is a probability, and t is
a nonnegative integer or infinity. Intuitively, state formula
ϕ represents the conditions of states, and path formula ψ
represents the conditions of paths, which are sequences of
states. The symbols �,⊥,¬,∨,∧ and → have their usual
meanings. The symbol U is the “until” operator, and the
symbol U ≤t is the “bounded until” operator. Intuitively,
the formula ϕ1 U

≤tϕ2 expresses that ϕ2 holds at some point
within t computational steps, and ϕ1 holds until the point.
The formula P∼λ (ψ) is evaluated to be true with respect to a
given state v if and only if ψ holds for a path starting from
v with a probability of at least or at most λ. For example,
the specification that “the probability that a stable state is
reached within 10 steps is greater than 0.3” is written as the
PCTL formula P>0.3

(
� U ≤10stable

)
.

3.3 PRISM

In this work, we use a probabilistic model checker
PRISM [9], [21] which takes a DTMC as a model and PCTL
formulas as specifications. PRISM checks the truth value of

the PCTL formula with respect to the initial state. When no
initial state is specified, PRISM checks whether the PCTL
formula holds for all states in the given model. In such a
case, the output of PRISM will be “true” if and only if the
property holds for all states.

In addition to model checking against PCTL specifica-
tions, PRISM supports additional extended features. One
extension is actual probability measurement which is sup-
ported by the PRISM language expression P=?[ψ]. For
the formula P=?[ψ], PRISM calculates the actual proba-
bility that ψ holds in the model. Another useful feature
is transition rewards, which are nonnegative values asso-
ciated with certain transitions. When taking a transition
from state v to state v′ with a transition reward r, the re-
ward r is earned. Through a sequence of transitions, earned
rewards are accumulated. Such accumulated transition re-
wards allow us quantitative evaluations relating to model be-
haviors. The PRISM language expression of reachability re-
ward R=?[F ϕ {v}] returns the expected value of rewards ac-
cumulated during a sequence of transitions that occur from
a state v to a state where ϕ holds for the first time.

In this work, we use PRISM 3.2 beta 1. As the ver-
sion number suggests, this version of PRISM is still beta
released. However, it provides some useful enhancements.
We decided to use this version to achieve better perfor-
mance.

4. Model Checking the Ising Model

In this section, we describe how we represent and analyze
the Ising model using PRISM.

4.1 Building the 1D Ising Model on PRISM

Here, we show how to build a DTMC model for the 1D Ising
model using PRISM. In the following, we assume that the
1D Ising model consists of n spins σ1, σ2, . . . , σn which are
placed on a line in this order, that the periodic boundary
condition σn+1 = σ1 holds, that the interaction coefficient
J = −1, i.e., the Ising model is anti-ferromagnetic, and that
there is no external magnet field, i.e., H = 0.

The temperature T is fixed in a DTMC model of
PRISM (PRISM model, for short). Hence, the temperature
dependence can be analyzed by constructing a set of PRISM
models that have different temperatures.

One PRISM model consists of n modules, each of
which represents a spin. Then, the state of DTMC is
(σ1, σ2, . . . , σn). Because PRISM allows no integer vari-
ables to be negative, we represent the value of spin by 0
and 1, instead of −1 and +1. Figure 2 shows the relation-
ship between a configuration and a DTMC state represented
by PRISM modules. Using the value of a spin, we define
EP and MP as the energy and magnetization of the PRISM
model as follows: EP = (E + n)/2 and MP = (M + n)/2.
These linear transformations change the range of the quan-
tities from [−n, n] to [0, n]. It is clear that these transfor-
mations preserve a one-to-one correspondence. We assume
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Fig. 2 DTMC states and corresponding configurations. The value of a
spin is represented by a PRISM module.

that all spins are down in the initial state. It follows that the
energy EP = n and the magnetization MP = 0 in the initial
state.

The behavior of the random spin flipping algorithm is
specified as follows. In PRISM semantics, one of the mod-
ules is nondeterministically selected and is executed in each
step. This allows the non-deterministic choice of a spin in
Step 1 of the algorithm. The decision process of Steps 2
and 3, which determines whether or not to flip the spin,
is specified using case-splitting with respect to the selected
spin and its two nearby spins. The calculation of the energy
difference ΔE is implicitly performed by this case-splitting.
For example, if all the three spins have a value of 1, then
ΔE < 0 always holds, in which case the spin flipping is ac-
cepted with a probability of 1.

In our model, both the energy EP and the magnetization
MP are declared using a PRISM language “formula”, which
is a shorthand expression to prevent code duplication. We
can use these “formula” names in any places of a model or
properties. We also assign a transition reward of 1 to every
transition, so that the accumulated reward coincides with the
total number of random spin flipping judgments.

We show a fragment of the PRISM code for the 1D
Ising model in Appendix as an example. Readers are re-
ferred to Appendix for details.

4.2 Verifying Basic Specifications

To show the usefulness of our model checking approach,
here we demonstrate how one can verify important physi-
cal properties by reachability checking, computing proba-
bilities, and computing transition time. In this subsection,
unless otherwise noted, we fix the number of spins n to 12
and fix temperature T to 1.0.

Here, we focus our discussion on equilibria. Equi-
librium is a balanced state in which macroscopic physical
quantities do not change. Equilibrium is an important con-
dition when studying physical phenomena, because it rep-
resents the stable condition of the observed system. At
equilibrium, the energy is minimized because of the prin-
ciple of minimum energy, and it is well-known that sponta-
neous magnetization becomes zero. Therefore, EP = 0 and
MP = n/2 hold if and only if the state is at equilibrium.

We define the formula of equilibrium as follows:

equilibrium := EP = 0 ∧ MP = n/2

In PCTL formulas, we use equilibrium to represent the set
of states in which equilibrium holds. Defining equilibrium
using the keyword label allows us to do this in the PRISM
language for PCTL formulas.

Reachability Checking
We consider a specification, namely, the reachability of an
equilibrium from an arbitrary state. The following PCTL
formula expresses that equilibrium is reachable through
paths from a given state:

P≥1
[� U equilibrium

]

As stated in Sect. 3, PRISM simultaneously evaluate the for-
mula with respect to all states. The verification result ob-
tained was true. This result ensures that equilibrium is al-
ways reachable from every state in the model.

The above formula asserts reachability to equilibrium.
We next verify whether the equilibrium lasts with high prob-
ability even if the system fluctuates. To do this we introduce
the notion of the neighborhood of equilibrium. We define
the neighborhood of equilibrium as states in which the dif-
ferences in energy and magnetization from equilibrium are
ΔEP ≤ 2 and ΔMP ≤ ±1 respectively, i.e., the states where
0 ≤ EP ≤ 2 and 5 ≤ MP ≤ 7 hold. The following PCTL
formula shows that “equilibrium is reachable from an arbi-
trary state, and after reaching equilibrium, the system stays
in the neighborhood of equilibrium within 100 times of spin
flipping with a probability of more than 70%.”

P≥1
[� U (equilibrium ∧ ψin)

]

where ψin = P≤0.3

[
χlhs U

≤100χrhs

]
, χlhs = (EP ≤ 2) ∧ (5 ≤

MP ∧ MP ≤ 7), and χrhs = (2 < EP) ∨ (MP < 5 ∨ 7 < MP).
The result of verification indicates that this specification
holds for all states. Note that the probability 0.3 is required
to be constant from the definition of PCTL.

Computing Probability
Observable physical phenomena often show probabilistic
behaviors. To understand such systems, actual values of
probabilities give us much information. Therefore it is im-
portant to establish a method of obtaining such probabilities.

As an illustrative example, here, we consider the calcu-
lation of the probability p(T, n) of transitions from equilib-
rium to a state in which the largest magnetization MP

max = n
holds. For each transition, MP can be changed by +1, 0 or
−1. Therefore, it takes n/2 transitions if we look at a di-
rect transition to reach MP

max from MP = n/2. In this case,
it is already known that the probability p(T, n) is calculated
analytically as follows:

p(T, n) =
(n/2)!
nn/2

(
e−4/T

)n/2
.
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Table 1 Energy difference ΔE caused by a spin flip.

σi−1 σi σi+1 σi−1 σ′i σi+1 ΔE
↓ ↓ ↓ ↓ ↑ ↓ +4
↓ ↓ ↑ ↓ ↑ ↑ 0
↓ ↑ ↓ ↓ ↓ ↓ −4
↓ ↑ ↑ ↓ ↓ ↑ 0
↑ ↓ ↓ ↑ ↑ ↓ 0
↑ ↓ ↑ ↑ ↑ ↑ −4
↑ ↑ ↓ ↑ ↓ ↓ 0
↑ ↑ ↑ ↑ ↓ ↑ +4

In this formula, a constant value 4 appears as ΔE in the ex-
ponent. This is formed as a result of the normalization of
the interaction coefficient J to −1. When this normalization
is applied, the definition of the energy E, given in Sect. 2,
yields Table 1 showing the energy difference caused by a
spin flip. In this table σi is the spin flipped and σ′i repre-
sents the new value caused by the flip. In random spin flip-
ping, the probability of accepting a flip becomes less than
one only when the energy difference ΔE is greater than zero.
In such a case, ΔE is always 4.

To compute the actual probability of the specific tran-
sition, we use the following formula written in the PRISM
language:

P=? [ true U<=6 (MP=12) {"equilibrium"} ]

In this formula, {"equilibrium"} means the initial state
where EP = 0 ∧ MP = n/2 holds. If two or more states
satisfy the initial condition, PRISM automatically chooses a
state as a starting point for verification.

The analytic solution of p(1.0, 12) is 9.10300 × 10−15.
The probability computed exactly matched the analytic so-
lution in the calculation error range. This agreement of
the two probabilities suggests us that the PRISM model
correctly represents the Ising model. The correctness of a
model can be confirmed by similar computations. Once the
model is confirmed to be correct, we can reliably compute
various probabilities even if they are hard to solve analyti-
cally.

Computing Transition Time
Using transition rewards, one can measure the expected time
required for the system to move from state to state. Recall
that we assigned a transition reward of 1 to every transition.
The expected value of rewards can be considered as the ex-
pected transition time, since one judgment of spin flipping
corresponds to a transition and a passage of discrete com-
putational time. In the 1D Ising model, the spontaneous
magnetization is zero in the absence of an external mag-
netic field. However, temperature contributes to magneti-
zation fluctuation. To understand the behavior, we measure
the expected time of changing magnetization starting from
the stable magnetization MP = 6 (= n/2) to MP � 6. One
can instruct PRISM to compute the expected time by speci-
fying in the PRISM language as follows:

R=? [ F (MP=VAL) {"equilibrium"} ]

where VAL is an integer target magnetization which varies

Fig. 3 Temperature dependency of expected value of transition time
against magnetization (n = 12).

from 0 to n. For each integer value in VAL, PRISM returns
the evaluated expected transition time. We computed the
expected transition times at fixed temperatures: 1.0, 1.5, 2.0
and 3.0. Figure 3 shows the results. The X-axis is the nor-
malized magnetization M = (2MP − n)/n. The Y-axis is the
normalized transition time R/n. This is because n times of
spin flipping correspond to one update. Because of the ob-
vious symmetry of the Ising model, we only show the result
of T = 3.0 for M < 0.

Some characteristics are observable in Fig. 3. One
characteristic is the temperature dependence. As we can
see, the expected transition time increases as temperature
decreases. This is natural, because the probability of spin
flipping is lower when the temperature is lower, and it takes
much time to transit to excited states where the system has
a higher magnetization.

Computing the expected transition time is a common
practice for observing how a system behaves from a fixed
initial state. In physics, it is common to analyze physical
properties based on an equilibrium or a ground state where
the system has the lowest energy. Therefore, this approach
can be applied to many analyses that focus on the differences
in quantities between states. We can also see a symmet-
ric behavior that is induced by the fact that the Ising model
has a symmetric structure. Unnecessary verification can be
avoided using such a symmetry, as we show in Fig. 3.

Table 2 shows the time required for constructing the
model (4096 states and 52924 transitions) and the time re-
quired for the three verifications discussed in this subsec-
tion. The measurement was performed using Windows XP
Professional on a computer equipped with an Intel Centrino
U1300 1.06 GHz processor and a 1.5 GB RAM.

In Table 2, the elapsed time for computing transition
time increases as the temperature T decreases for a fixed
MP. As a termination criterion, PRISM checks that the
result has converged sufficiently. This explains why the
expected transition time increases when temperature de-
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Table 2 Elapsed time for constructing a model, a verification, and com-
putations.

time (seconds)

model construction 0.047
reachability 0.016
probability 0.354

transition time T = 1.0 T = 1.5 T = 2.0 T = 3.0
MP = 7 0.125 0.156 0.110 0.093
MP = 8 0.625 0.282 0.219 0.218
MP = 9 12.14 1.969 0.984 0.580

MP = 10 388.0 28.17 8.531 3.093
MP = 11 1041 405.5 116.6 28.81
MP = 12 N/A 824.8 697.2 340.4

creases, because a low temperature causes a long transition
time, resulting in a long convergence time.

5. Evaluation

Our aim is to explore the potential applicability of proba-
bilistic model checking to the Ising model, in the field of
physics. In this paper, we limit our discussion to magnet-
ics. Our proposed approach is, however, readily extendible
to a wide range of applications, not limited in physics.
Because of its simplicity and powerful expressiveness, the
Ising model has been used to explain many kinds of phe-
nomenon including sociology [22] and neural networks [23].
To deal with such an application in the proposed approach,
it suffices to specify its own dynamics and properties of in-
terest in a well-defined modeling language, provided by a
model checker such as PRISM. This would be much eas-
ier than writing a new code for computer simulation from
scratch.

The relationship between the Ising model and Markov
chains is described in [15], and the relationship between
Markov chains and probabilistic checking is evident. One
advantage of using model checking is that it is possible to
verify properties without obtaining an exact solution. All
properties expressible by PCTL can be verified. One typical
approach to analyzing physical phenomena is to use a hy-
brid approach in which properties are represented by differ-
ential equations. Compared with model checking, the use
of such differential equations often becomes complex, and
solutions are not always obtained. As an example of the dif-
ficulty in obtaining an exact solution, it is reported that the
three-dimensional Ising model is intractable [24].

Our verification results suggest that probabilistic model
checking seems reasonable for analyzing physical phenom-
ena observed in the 1D Ising model. In our DTMC model,
the number of spins is set to twelve, which is less than that of
computer simulation, typically more than a hundred. How-
ever, the computed results perfectly match theoretical calcu-
lation results. This is unlikely the case when using computer
simulation.

Historically, computer simulation has long been used
to analyze the Ising model. The computation cost between
probabilistic model checking and computer simulation can-
not be simply compared because they have different advan-

tages and disadvantages. We think that probabilistic model
checking and computer simulation can be used in a com-
plementary manner by taking both advantages. Exhaustive
search is definitely an advantage of model checking. This
advantage allows us to validate the correctness of models by
checking various specifications. For example, probabilis-
tic model checking can verify phenomena that are compara-
tively difficult to observe by computer simulation. Another
advantage of model checking is the reusability of models.
Once models are built, various specifications can be ver-
ified by only writing formulas. The expressive power of
PCTL gives us concise expressions of complicated condi-
tions. On the other hand, computer simulation is based on
evaluation along a time series. Therefore, it is well-suited
for statistical analysis, such as for computing the median
of a physical quantity in a long period. Some cooperation
between model checking and computer simulation is con-
ceivable. For example, numerical computation results by
probabilistic model checking can be used to facilitate the
parameter settings of computer simulation. In the case of
the 1D Ising model, the expected transition time in Sect. 4.2
can help estimate the sampling time of a simulation.

Both model checking and computer simulation model
a system based on theoretical analyses and mathematical
models. However, there seems no study that addresses the
problem of constructing common models amenable to the
two approaches. Such a common model could be the first
step in cooperation. An immediate benefit of using a com-
mon model is that it becomes easy to confirm that the model
correctly represents the target system. We can check the cor-
rectness of the model by probabilistic model checking, and
then simulate by computer simulation. Conversely, the eval-
uation results of computer simulation could be confirmed on
the ground of verification by model checking.

Although model checking has advantages, it also has
drawbacks. One serious problem is the state space explo-
sion problem where the size of the state space exponentially
grows. This problem makes the complexity of verification
high and limits scalability. For the 1D Ising model with n
spins, the number of states is 2n. Therefore, the state space
easily grows as the number of spins increases, and the num-
ber of spins that can be dealt with is restricted. For much
large systems, such as the two-dimensional Ising model,
a straightforward approach will not work. Abstraction is
known as an effective technique for reducing the size of the
state space. For non-probabilistic systems, various kinds
of abstraction techniques have been proposed, including ab-
straction in the presence of symmetry [25] and predicate ab-
straction [26]. In recent years, these techniques have been
extended to probabilistic model checking, including sym-
metry reduction for probabilistic model checking [27], and
probabilistic predicate abstraction [28].

6. Conclusion

We verified the one-dimensional Ising model using proba-
bilistic model checking with DTMCs and specifications de-
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scribed in PCTL. Some macroscopic physical properties
relating to energy and magnetization were verified. Con-
sequently, we demonstrated that our models are reasonable
in representing the 1D Ising model and probabilistic model
checking has power to analyze it.

In all DTMC models, the interaction coefficient was
fixed to negative, i.e., the system was anti-ferromagnet.
However, the analysis of ferromagnetic behavior is essen-
tially the same as that of anti-ferromagnetic behavior. Be-
haviors relating to other physical quantities such as entropy
and specific heat can be analyzed in the same way. In this
paper, we assumed that there is no external magnetic field
for simplicity. For a system with an external magnetic field,
our approach can also work by incorporating the external
factor into models.

We hope to extend this work to analyze more practi-
cal problems such as phase transition appearing in the two-
dimensional Ising model. To achieve this, it is necessary to
solve the state space explosion problem. As future work,
we plan to study the application of abstraction techniques
to the Ising model. Some of the authors proposed finite ap-
proximation analysis using predicate abstraction [29] for a
deterministic one-dimensional cellular automaton. It seems
that this approach can be extended for a DTMC.

References

[1] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking, The
MIT Press, Cambridge, Massachusetts, 1999.

[2] S. Hart, M. Sharir, and A. Pnueli, “Termination of probabilistic con-
current programs,” POPL, pp.1–6, 1982.

[3] M.Y. Vardi, “Automatic verification of probabilistic concurrent
finite-state programs,” FOCS, pp.327–338, IEEE, 1985.

[4] C. Baier and M.Z. Kwiatkowska, “Model checking for a proba-
bilistic branching time logic with fairness,” Distributed Computing,
vol.11, no.3, pp.125–155, 1998.

[5] M. Kwiatkowska and G. Norman, “Verifying randomized byzantine
agreement,” FORTE, LNCS, vol.2529, pp.194–209, Springer, Texas,
USA, 2002.

[6] M. Kwiatkowska, G. Norman, and J. Sproston, “Probabilistic model
checking of the IEEE 802.11 wireless local area network proto-
col,” PAPM-PROBMIV, LNCS, vol.2399, pp.169–187, Springer,
Copenhagen, Denmark, 2002.

[7] J.G. Kemeny and J.L. Snell, Finite Markov Chains, Van Nostrand,
Princeton, New Jersey, 1960.

[8] C. Baier and J.P. Katoen, Principles of Model Checking, The MIT
Press, Cambridge, Massachusetts, 2008.

[9] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
A tool for automatic verification of probabilistic systems,” TACAS,
LNCS, vol.3920, pp.441–444, Springer, Vienna, Austria, 2006.

[10] J.P. Katoen, M. Khattri, and I.S. Zapreev, “A Markov reward model
checker,” QEST, pp.243–244, IEEE Computer Society, 2005.

[11] R. Barbuti, S. Cataudella, A. Maggiolo-Schettini, P. Milazzo, and
A. Troina, “A probabilistic model for molecular systems,” Fundam.
Inform, vol.67, no.1-3, pp.13–27, 2005.

[12] M. Kwiatkowska, G. Norman, and D. Parker, “Using probabilistic
model checking in systems biology,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol.35, no.4, pp.14–21, 2008.

[13] T. Sekizawa, T. Tsuchiya, T. Kikuno, and K. Takahashi, “Analysing
the one dimensional Ising model by probabilistic model checking,”
Proc. IASTED Asian Conference on Modelling and Simulation,
pp.199–204, ACTA Press, Beijing, China, 2007.

[14] E. Ising, “Beitrag zur theorie des ferromagnetismus,” Zeitschrift für
Physik, vol.31, pp.254–258, 1925.

[15] R. Kindermann and L.J. Snell, Markov Random Fields and Their
Applications, Amer Mathematical Society, 1980.

[16] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, and A.H. Teller,
“Equation of state calculations by fast computing machines,” Journal
of Chemical Physics, vol.21, no.6, pp.1087–1092, June 1953.

[17] W. Heisenberg, “Zur theorie des ferromagnetismus,” Zeitschrift für
Physik, vol.49, pp.619–636, 1928.

[18] C. Kittel, Introduction to Solid State Physics, Sixth ed., John Wiley
& Sons, New York, 1995.

[19] N. Mott and R. Peierls, “Werner Heisenberg. 5 December 1901 –
1 February 1976,” Biographical Memoirs of Fellows of the Royal
Society, vol.23, pp.212–252, 1977.

[20] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Asp. Comput, vol.6, no.5, pp.512–535, 1994.

[21] PRISM, “Probabilistic symbolic model checker.”
http://www.prismmodelchecker.org/

[22] W. Weidlich, “The statistical description of polarization phenomena
in society,” British Journal of Mathematics and Statistical Psychol-
ogy, vol.24, pp.251–256, 1971.
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Appendix: An Example of PRISM Code

Figure A· 1 specifies a PRISM code in which the number of
spins n is 12. The model consists of the model type, decla-
rations of constant variables, modules, formulas and reward
definition.

The model type probabilistic specifies that the
code is a model of DTMC. Following the type specifica-
tion, some global constants are declared.

The model includes n modules, each of which repre-
sents a spin. A module is defined by two parts: a local
variable and commands. For example, module Spin1 rep-
resents spin σ1 and its probabilistic transitions. In module
Spin1, the local variable s1 takes an integer value of 0 or
1 representing the value of spin σ1, which is initialized by
0. After that, probabilistic transitions follow. Every prob-
abilistic transition is expressed by a “command” consisting
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Fig. A· 1 A PRISM code for the 1D Ising model (n = 12).

of a guard followed by probabilistic choices of updates to
variables. Such guards represent conditions of spin σ1 and
its nearby spins. The following updates to variables describe

the random spin flipping algorithm. For example, the third
command means that if guard σ0 = 0 ∧ σ1 = 1 ∧ σ2 = 0
holds, then either update σ1 to σ′1 = 0 occurs with a prob-



SEKIZAWA et al.: PROBABILISTIC MODEL CHECKING OF THE ONE-DIMENSIONAL ISING MODEL
1011

ability p = e−4/T , or no variables are updated. Modules
Spin2 to Spin10 are renamed copies of module Spin1.
Such duplications of modules are realized by “module re-
naming”, which allows to change the name of the module
and its definitions at a textual level.

As mentioned in Sect. 4.1, two physical quantities E
and M are defined using the shorthand expression “formula”.
These expressions do not appear in the code, but are used to
express specifications, such as the formula equilibrium.

At last, a transition reward of 1 is assigned to every
probabilistic transition, which corresponds to one judgment
of spin flipping.
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