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LETTER Special Section on Formal Approach

Comparison of the Expressive Power of Language-Based Access
Control Models∗

Yoshiaki TAKATA†a) and Hiroyuki SEKI††b), Members

SUMMARY This paper compares the expressive power of five
language-based access control models. We show that the expressive powers
are incomparable between any pair of history-based access control, regular
stack inspection and shallow history automata. Based on these results, we
introduce an extension of HBAC, of which expressive power exceeds that
of regular stack inspection.
key words: history-based access control, stack inspection, shallow history
automaton, expressive power

1. Introduction

To protect secret information against malicious access, it is
desirable to incorporate a runtime access control mechanism
in a host language. This approach is called language-based
access control, and a few models have been proposed [1],
[5], [6], [9]. A common feature of these models is that the
history of execution such as method invocation and resource
access is used for access control. Stack inspection provided
in the Java virtual machine [6] is one of the best-known such
control mechanisms. In stack inspection, a set of permis-
sions is assigned statically to each method and when the
control reaches a statement for checking permissions, it is
examined whether or not every method on the runtime stack
has the permissions specified by the statement. Stack in-
spection has been extended in several ways. For example,
stack pattern can be specified by LTL formula in [7] and
regular language in [4], [8]. Automatic verification meth-
ods for a program with stack inspection are also discussed
in [4], [7], [8]. Abadi and Fournet [1] pointed out the prob-
lem of stack inspection, which completely cancels the ef-
fect of the finished method execution. They proposed a
new control mechanism called history-based access control
(HBAC). In HBAC, current permissions are modified each
time a method is invoked, and they may depend on all the
methods executed so far. Verification of HBAC programs
is also discussed in [2], [3], [11]. Meanwhile, Schneider [9]
defines security automata, and later Fong [5] defines shal-
low history automata as a subclass of finite-state security
automata. Fong showed that the expressive powers of shal-
low history automata and regular stack inspection are in-
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comparable. However, the relations among the control mod-
els mentioned so far have not been fully clarified.

In this paper, we first define five of the existing con-
trol mechanisms in a simple and uniform framework based
on control flow graph. Then, we compare the expressive
power of these mechanisms in terms of trace-based seman-
tics. Since these mechanisms are used for pruning execution
traces that violate a policy, we think the comparison should
be based on how they can alter the trace set of a host pro-
gram. As a result, we show that the expressive powers are
incomparable between any pair of history-based access con-
trol, regular stack inspection and shallow history automata.
Based on these results, we introduce an extension of HBAC,
of which expressive power exceeds that of regular stack in-
spection.

2. Definitions

2.1 HBAC Program

An HBAC program is a tuple π = (Mhd, f0, {G f | f ∈ Mhd},
PRM) where Mhd is a finite set of method names, f0 ∈ Mhd
is the main method name, G f ( f ∈ Mhd) is a control flow
graph of f defined below and PRM is a finite set of per-
missions. G f is a directed graph (NOf ,TGf , IS f , IT f , SPf )
where NOf is a finite set of nodes, TGf ⊆ NOf ×NOf is a set
of transfer edges, IS f : NOf → {callg[PG, PA] | g ∈ Mhd,
PG ⊆ SPf , PA ⊆ SPf }∪{check[P] | P ⊆ PRM}∪{return, nop}
is a labeling function for nodes, IT f ⊆ NOf is a set of initial
nodes, which represents the set of entry points of method f ,
and SPf ⊆ PRM is a subset of permissions assigned to f be-
fore runtime (static permissions). NOf is divided into four
subsets by IS f as follows.

• IS f (n) = callg[PG, PA]. Node n is a call node that rep-
resents a call to method g. Parameters PG and PA are
called grant permissions and accept permissions, re-
spectively.
• IS f (n) = return. Node n is a return node that represents

a return to the caller method.
• IS f (n) = check[P] where P ⊆ PRM. Node n is a check

node that represents a test for the current permissions.
For p ∈ PRM, check[{p}] is abbreviated as check[p].
• IS f (n) = nop. Node n is a nop node with no effect.

We write n→ n′ for n, n′ ∈ NOf if 〈n, n′〉 ∈ TGf . Let NO =
⋃

f∈Mhd NOf and IS =
⋃

f∈Mhd IS f . For n ∈ NO, also let
in(n) = { n′ | n′ → n } and out(n) = { n′ | n→ n′ }.
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In the figures in this paper, a dotted arrow denotes a
transfer edge and a solid arrow connects between a call node
and the initial node(s) of the callee method. Also, a method
is surrounded by a rectangle and a set beside the rectangle
denotes the static permissions of the method.

A state of π is a pair 〈n,C〉 of a node n ∈ NO and
a subset of permissions C ⊆ PRM. A configuration of π
is a finite sequence of states, which is also called a stack.
The concatenation of state sequences ξ1 and ξ2 is denoted
as ξ1 : ξ2. The semantics of an HBAC program is defined
by the transition relation ⇒ over the set of configurations,
which is the least relation satisfying the following rules.

IS(n) = callg[PG, PA], n′ ∈ ITg

ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′, (C ∪ PG) ∩ SPg〉
IS(m) = return, IS(n) = callg[PG, PA], n→ n′
ξ : 〈n,C〉 : 〈m,C′〉 ⇒ ξ : 〈n′,C ∩ (C′ ∪ PA)〉
IS(n) = check[P], P ⊆ C, n→ n′
ξ : 〈n,C〉 ⇒ ξ : 〈n′,C〉
IS(n) = nop, n→ n′
ξ : 〈n,C〉 ⇒ ξ : 〈n′,C〉

The rule of nop for the other program subclasses in the fol-
lowing subsections is the same as above and will be omit-
ted below. For a configuration 〈n1,C1〉 : . . . : 〈n�,C�〉,
the stack top is 〈n�,C�〉 where n� and C� are called the
current program point and the current permissions of the
configuration, respectively. The trace set of π is defined
as [[π]] = { n0n1 . . . nk | n0 ∈ IT f0 , ∃C1, . . . ,Ck ⊆ PRM,
∃ξ1, . . . , ξk ∈ (NO×2PRM)∗, ξi : 〈ni,Ci〉 ⇒ ξi+1 : 〈ni+1,Ci+1〉
for 0 ≤ i < k, C0 = SPf0 , ξ0 = ε }, where ε denotes the
empty sequence. For a set S of sequences, let prefix(S ) de-
note the set of all nonempty prefixes of sequences in S .

2.2 JVM and R-SI Programs

A program with Java stack inspection (abbreviated as JVM
program) has a form π = (Mhd, f0, {G f | f ∈ Mhd},PRM,
PRV) similar to an HBAC program such that G f = (NOf ,
TGf , IS f , IT f , SPf ) where each component of G f is the same
as that of an HBAC program, except that the label IS f (n) of
each call node n is simply callg (g ∈ Mhd) without PG or PA,
and a set of privileged nodes PRV ⊆ NO is specified. The
semantics of π is defined as follows. (The rule for check is
the same as HBAC programs.)

IS(n) = callg, n � PRV , n′ ∈ ITg

ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′,C ∩ SPg〉
IS(n) = callg, n ∈ PRV ∩ NOf , n′ ∈ ITg

ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′, SPf ∩ SPg〉
IS(m) = return, n→ n′
ξ : 〈n,C〉 : 〈m,C′〉 ⇒ ξ : 〈n′,C〉
A regular stack inspection (R-SI) program π = (Mhd,

f0, {G f | f ∈ Mhd}) is introduced in [4], [8] as an extension
of a JVM program where G f = (NOf ,TGf , IS f , IT f ). Its
semantics is given by the following rules.

IS(n) = callg, n′ ∈ ITg

ξ : n⇒ ξ : n : n′

IS(m) = return, n→ n′
ξ : n : m⇒ ξ : n′

IS(n) = check[R], ξ : n ∈ R, n→ n′
ξ : n⇒ ξ : n′

where R ⊆ (NO)∗ is a regular language over NO. The trace
set of a JVM or R-SI program is defined in the same way as
that of an HBAC program except that current permissions
are missing in R-SI.

2.3 F-SA and SHA Programs

A finite security automaton (F-SA) [9] is just a deterministic
finite automaton (DFA) M = (Σ,Q, q0, δ) without final states
where Σ is a finite set of input symbols, Q is a finite set of
states, q0 ∈ Q is the initial state and δ is a state transition
function, which is a partial function from Q × Σ to Q. We
write δ(q, a) = ⊥ if δ(q, a) is undefined. A shallow history
automaton (SHA) [5] is an F-SA M = (Σ,Q, q0, δ) such that
Q = 2Σ and q0 = ∅ and if δ(q, a) � ⊥ then δ(q, a) = q ∪ {a}.

An F-SA program is a tuple (Mhd, f0, {G f | f ∈ Mhd},
M) without permissions or check nodes where G f = (NOf ,
TGf , IS f , IT f ) ( f ∈ Mhd) and M = (Σ,Q, q0, δ) is an F-SA
such that Σ = { f , f | f ∈ Mhd}. The semantics of an F-SA
program is defined as follows.

IS(n) = callg, n′ ∈ ITg, δ(q, g) � ⊥
〈ξ : n, q〉 ⇒ 〈ξ : n : n′, δ(q, g)〉
IS(m) = return, m ∈ NOg, n→ n′, δ(q, g) � ⊥
〈ξ : n : m, q〉 ⇒ 〈ξ : n′, δ(q, g)〉

The trace set of an F-SA program π is defined as [[π]] =
{ n0n1 . . . nk | n0 ∈ IT f0 , ∃q1, . . . , qk ⊆ Q, ∃ξ1, . . . , ξk ∈
NO∗, 〈ξi : ni, qi〉 ⇒ 〈ξi+1 : ni+1, qi+1〉 for 0 ≤ i < k, ξ0 = ε }.

3. Expressive Power

A program without check nodes, permissions or privileged
nodes is called a basic program. Let α ∈ {HBAC,R-SI,
JVM,F-SA,SHA}. An α program π is an extension of a
basic program π0 if π0 is obtained from π by the following
operations.

(S1) Delete each check node n (if α = HBAC, R-SI or
JVM). At the same time, for any pair of n1 ∈ in(n)
and n2 ∈ out(n), add a transfer edge n1 → n2. More-
over, if n ∈ IT f for some f ∈ Mhd, then add every
n2 ∈ out(n) into IT f .

(S2) Delete grant permissions and accept permissions from
each call node (if α = HBAC).

(S3) Delete the designation of privileged nodes (if α =
JVM).

(S4) Unite call nodes n1 and n2 such that IS(n1) = IS(n2),
in(n1) = in(n2), and out(n1) = out(n2).
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Fig. 1 HBAC �� R-SI.

Fig. 2 JVM �� F-SA.

Let nc be a homomorphism over the set of nodes de-
fined by nc(n) = n for a call or return node n and nc(n) = ε
for a check or nop node n. For two programs π1 and π2, we
say that π1 is trace equivalent to π2 if they are extensions of
a single basic program π0 and nc([[π1]]) = nc([[π2]]).

Let us denote the class of α programs by α. For classes
of programs α and β, we write α � β if for an arbitrary
α program π1 there is a β program π2 trace equivalent to
π1 (we say that π1 can be simulated by π2). If α � β, we
also say that α can be simulated by β. � is reflexive and
transitive. We write α �� β if α � β does not hold. By
definition, SHA � F-SA. It is known that JVM � R-SI [8],
R-SI �� SHA, SHA �� R-SI [5] and JVM � HBAC [11].

Theorem 1. HBAC �� R-SI.
Proof Sketch. The HBAC program π1 in Fig. 1 cannot be
simulated by any R-SI program. In π1, the call to g at m1

prevents the control from reaching s1; however, an R-SI pro-
gram completely cancels the effect of the finished method
execution. �

Theorem 2. JVM �� F-SA.
Proof Sketch. Suppose that there exists an F-SA program π′2
that simulates the JVM program π2 in Fig. 2. The F-SA of
π′2 must have a run (i.e. path from the initial state) for se-
quence gi(hhg)i−1g for i ≥ 1 but must not have any run for
gi(hhg)i−1h. However, such a finite automaton never exists
by the pumping lemma of regular languages. �

Theorem 3. F-SA �� SHA.
Proof. In the program π3 shown in Fig. 3, calling h is per-
mitted only when g has been called an odd number of times.

Fig. 3 F-SA �� SHA.

Fig. 4 R-SI �� HBAC.

Fig. 5 SHA �� HBAC.

If there is an SHA program π′3 that simulates π3, then the
SHA of π′3 must have a run for sequence g2i−1h for i ≥ 1 but
must not have any run for g2ih. However, there is no such
SHA because the state of an SHA just after reading gj for
any j ≥ 1 is {g}, and thus the SHA has a run for g2ih if it has
a run for g2i−1h. �

Theorem 4. R-SI �� HBAC.
Proof Sketch. Suppose that there exists an HBAC pro-
gram π′4 that simulates the R-SI program π4 in Fig. 4. In π′4
the current permissions always equal SPg and thus π′4 cannot
distinguish between even and odd numbers of calls at n1. �

Theorem 5. SHA �� HBAC
Proof Sketch. The SHA program π5 in Fig. 5 cannot be sim-
ulated by any HBAC program. In π5, the call to g at m1

enables the call to h at m2; however, any HBAC program
cannot simulate such a program since the current permis-
sions never increase as a result of a call. �
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Fig. 6 Comparison of the expressive power.

4. An Extended Model

An HBAC program cannot remove a permission from the
current permissions unless it takes the intersection of the
current permissions and the static permissions of a callee
method. Thus, we extend HBAC by introducing a sub-
set SET of NO (like PRV in a JVM program) such that if
n ∈ NOf ∩ SET and IS(n) = callg[PG, PA] in HBAC then n
replaces the current permissions with PG before taking the
intersection of the current permissions and the static permis-
sions of g. We also extend HBAC so that the initial current
permissions C0 in the definition of the trace set can be an
arbitrary subset of SPf0 and is given as a component of an
HBAC program.

The syntax and semantics of the extended model,
called sHBAC, are defined as follows.

• An sHBAC program is π = (Mhd, f0, {G f | f ∈ Mhd},
PRM, SET ,C0).
• The semantic rules for an sHBAC program are the rules

obtained from the original rules in Sect. 2.1 by replac-
ing the first rule with the following two rules.

IS(n) = callg[PG, PA], n � SET , n′ ∈ ITg

ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′, (C ∪ PG) ∩ SPg〉
IS(n) = callg[PG, PA], n ∈ SET , n′ ∈ ITg

ξ : 〈n,C〉 ⇒ ξ : 〈n,C〉 : 〈n′, PG ∩ SPg〉
The definition of trace equivalence is the same as the

one in Sect. 3 except that we add:

(S3′) Delete the designation of set nodes (nodes being in
SET) if α = sHBAC.

We also define a subclass of sHBAC, called sH-SI, in
which the accept permissions of every call node in method f
equal SPf . This means that the effect of finished method ex-
ecution is canceled and thus the current permissions depend
only on the current stack.

We can show the following theorems. Proofs of these
theorems are given in the full version [10] of this paper.

Theorem 6. R-SI � sH-SI

Theorem 7. sH-SI � R-SI

Note that HBAC � sHBAC by definition. SHA ��
sHBAC since the proof of Theorem 5 remains valid for
sHBAC.

Known results and new results are summarized in
Fig. 6. For any pair of program classes α, β, either α � β
or α �� β has been proved. In the figure, an arrow is omitted
between program classes α and β if α � β or α �� β can
be implied by other relations. For example, R-SI �� JVM is
implied by JVM � HBAC and R-SI �� HBAC.

5. Conclusion

The expressive power of five subclasses of programs with
access control was compared. In particular, the expressive
powers are incomparable between any pair of history-based
access control, regular stack inspection and shallow history
automata. Based on these results, we introduced an ex-
tension of HBAC, of which expressive power exceeds that
of regular stack inspection. It is left as a future study to
clarify whether some composition of programs can simu-
late HBAC, for example, HBAC � JVM × SHA and/or
HBAC � R-SI × F-SA.
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