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PAMELA: Pattern Matching Engine with Limited-Time Update for
NIDS/NIPS∗

Tran Ngoc THINH†a), Surin KITTITORNKUN†, Nonmembers, and Shigenori TOMIYAMA††, Member

SUMMARY Several hardware-based pattern matching engines for net-
work intrusion/prevention detection systems (NIDS/NIPSs) can achieve
high throughput with less hardware resources. However, their flexibility
to update new patterns is limited and still challenging. This paper de-
scribes a PAttern Matching Engine with Limited-time updAte (PAMELA)
engine using a recently proposed hashing algorithm called Cuckoo Hash-
ing. PAMELA features on-the-fly pattern updates without reconfigura-
tion, more efficient hardware utilization, and higher performance compared
with other works. First, we implement the improved parallel exact pat-
tern matching with arbitrary length based on Cuckoo Hashing and linked-
list technique. Second, while PAMELA is being updated with new attack
patterns, both stack and FIFO are utilized to bound insertion time due to
the drawback of Cuckoo Hashing and to avoid interruption of input data
stream. Third, we extend the system for multi-character processing to
achieve higher throughput. Our engine can accommodate the latest Snort
rule-set, an open source NIDS/NIPS, and achieve the throughput up to 8.8
Gigabit per second while consuming the lowest amount of hardware. Com-
pared to other approaches, ours is far more efficient than any other imple-
mented on Xilinx FPGA architectures.
key words: Cuckoo Hashing, dynamic update, pattern matching, FPGA,
NIDS/NIPS

1. Introduction

Nowadays, illegal intrusion is one of the most serious
threats to network security. Network Intrusion Detec-
tion/Prevention Systems (NIDS/NIPSs) are designed to ex-
amine not only the headers but also the payload of the
packets to match and identify intrusions. Most modern
NIDS/NIPSs apply a set of rules that lead to a decision
regarding whether an activity is suspicious. For example,
Snort [1] is an open source network intrusion detection and
prevention system utilizing a rule-driven language. As the
number of known attacks grows, the patterns for these at-
tacks are made into Snort signatures (pattern set). The sim-
ple rule structure allows flexibility and convenience in con-
figuring Snort. However, checking thousands of patterns to
see whether it matches becomes a computationally intensive
task as the highest network speed increases to several giga-
bits per second (Gbps).
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To improve the performance of pattern matching in
Snort, various implementations of field programmable gate
array (FPGA) systems have been proposed. These sys-
tems can simultaneously process thousands of patterns rely-
ing on native parallelism of hardware so that their through-
put can satisfy current gigabit networks. The drawback of
hardware-based systems, however, is the flexibility. With
emergence of new worms and viruses, the rule set must
be frequently updated. For recently proposed FPGA-based
NIDS/NIPSs [2]–[14], adding or subtracting a few rules re-
quires recompilation (synthesizing, placing and routing) and
reconfiguration of some parts or the entire design. Although
reconfiguration is one of the advantages of SRAM-based
FPGA; this process can take several minutes to several hours
to complete. Today, such latency may not be acceptable for
most networks when new attacks are released frequently.
Moreover, the measure of throughput per area should be
used in all hardware implementations. It is necessary to
build a system that can achieve high-throughput per area
with rapid rule set update.

Based on a novel Cuckoo Hashing [15], we imple-
mented an FPGA-based architecture of variable-length pat-
tern matching in our previous paper [16]. Unlike most pre-
vious FPGA-based systems, ours [16] can update the static
pattern set without reconfiguration thanks to Cuckoo Hash-
ing. In this paper, we propose a system named PAttern
Matching Engine with Limited-time updAte (PAMELA) that
extends and improves some disadvantages of [16]. Based on
our analysis, the main drawback of Cuckoo Hashing is time
consuming that can make the rule update time unlimited.
We propose to use a stack to prevent rehashing and a FIFO
to buffer the incoming data while updating the pattern set.
Based on our theoretical analysis and simulation results, the
insertion time of a new pattern is limited to 17 microseconds
at 200 MHz clock frequency. As a result, a new rule set can
be updated to PAMELA on line and on the fly. The power of
high throughput processing is addressed in this paper. With
the extension for multi-character processing, the current sys-
tem can sustain higher throughput than the previous one.
Moreover, the linked-list method is improved to detect the
continuous matches of long patterns; performance analysis,
more experimental verification and comparison are carried
out. With several improvements, PAMELA can save 30%
of the area compared with the best system, and the through-
put can achieve up to 8.8 Gbps for 4-character processing.

The rest of our paper is organized as follows. In Sect. 2,
some previous hardware implementations of static pattern
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matching and Cuckoo Hashing are presented. Section 3 pro-
poses the architecture of PAMELA engine. Next, perfor-
mance analysis of PAMELA is discussed in Sect. 4. The
extension for multi-character processing is mentioned in
Sect. 5 before the experimental results on FPGA are pre-
sented in Sect. 6. Finally, future works are suggested in the
conclusion.

2. Background and Related Works

2.1 Pattern Matching on NIDS/NIPS

For a line speed of gigabit network, a variety of FPGA ap-
proaches of NIDS/NIPS have been proposed, for example:
shift-and-compare; state machine such as Nondeterminis-
tic/Deterministic finite automata (NFA/DFA), Aho-Corasick
algorithm; and finally hashing. Firstly, some of the shift-
and-compare method are [2], [3]. They apply parallel com-
parators and deep pipelining on different, partially overlap-
ping, positions in the incoming packet. The simplicity of
the parallel architecture can achieve high throughput when
compared to software approaches. The drawback of these
methods is the high area cost. To reduce the area cost and
achieve a high clock rate, many improvements are proposed.
The work [5] is extended from [2] to share common sub-
strings. Predecoded shift-and-compare architectures ([7],
[17]) convert the incoming characters to bit lines to reduce
the size of comparators. A variation in tree-based optimiza-
tion ([8], [9]) divides the pattern set into partitions to share
similar characters resulting in excellent area performance.

The next approach exploits state machines (NFAs/
DFAs) [4], [18]. The state machines can be implemented on
hardware platform to work all together in parallel. By al-
lowing multiple active states, NFA is used in [18] to con-
vert all the Snort static patterns into a single regular ex-
pression. Moscola et al. [4] recognized that most of mini-
mal DFAs content fewer states than NFAs, so their modules
can automatically generate the DFAs to search for regular
expressions. Like the shift-and-compare implementations,
the predecoded method is also used in [6] to improve area
performance of NFAs. The main advantage of regular ex-
pression format as compared with static pattern one is that
a single regular expression can describe a set of static pat-
terns by using meta-characters with special meaning. As a
result, recently, a special format of regular expressions such
as Perl Compatible Regular Expressions (PCRE) is added
in Snort [1] instead of static patterns, and some new works
tried to improve on PCRE matching [19], [20]. However,
most of these systems suffer scalability problems, i.e. too
many states consume too many hardware resources and long
reconfiguration time.

Another approach of the state machine method used for
static pattern matching is the Aho-Corasick algorithm [21].
By modifying this algorithm on hardware, the implemen-
tations in [22]–[24] can get high performance. Aldwairi
et al. [22] partitioned the rule set into small ones according
to the type of attacks in Snort database. The state machine

in [23] is split into smaller FSMs which can run in parallel
to improve memory requirements. This bit-split FSM can fit
over 12k characters of Snort rule set to 3.2 Mbits memory at
10 Gbps on ASIC implementation and can update new rules
in the order of seconds with no interruption. Nonetheless,
its FPGA implementation [24] can achieve lower through-
put rate while using larger memory.

Finally, hashing approaches [10]–[14] can find a candi-
date pattern at constant look up time. The authors in [11],
[14] use perfect hashing for pattern matching. Although
their system memory usage is of high density, the systems
require hardware reconfiguration for updates. Papadopou-
los et al. proposed a system named HashMem [12] system
using simple CRC polynomials hashing implemented with
XOR gates that can use efficient area resources than be-
fore. For the improvement of memory density and logic gate
count, they implemented V-HashMem [13]. Moreover, V-
HashMem is extended to support the packet header match-
ing. However, these systems have some drawbacks: 1) To
avoid collision, CRC hash functions must be chosen very
carefully depending on specific pattern groups; 2) Since the
pattern set is dependent, probability of redesigning system
and reprogramming the FPGA is very high when the pat-
terns are being updated; 3) By using glue logic gates for
simplicity, the long patterns processing is also ineffective
for updating.

On the other hand, Dharmapurikar et al. propose to use
Bloom Filters to do the deep packet inspection [25]. Un-
like other hashing approaches mentioned above, the pattern
update process can be done easily without reprogramming
FPGA. A Bloom Filter with multiple hash functions up to
35 probes is used to check whether or not a pattern is mem-
ber of the set. Nevertheless, its main problem is due to false
positive matches, which requires extra cost of hardware to
confirm the match.

2.2 Cuckoo Hashing

Cuckoo Hashing is proposed by Pagh and Rodler [15] as an
algorithm for maintaining a dynamic dictionary with con-
stant lookup time in the worst case scenario. The algorithm
utilizes two tables, T1 and T2, of m = (1 + ε)n cells each,
where ε is some constant (ε > 0), n is the number of el-
ements (strings). Cuckoo Hashing does not need perfect
hash functions that is very complicated if the set of stored
elements dynamically changes under the insertion and dele-
tion. Given two hash functions, h1 and h2, mapping from
universe U to [m], a pattern x can be exactly stored in either
cell T1[h1(x)] or T2[h2(x)] but not both. So, lookup of x re-
quires at most two positions. Deletion procedure can also
run in worst case constant time.

Pagh and Rodler described a procedure to insert a new
pattern x in expected constant time. For the first time, x
is always placed into cell T1[h1(x)]. If this cell is empty,
the insertion is complete; if it is occupied by a pattern y
which necessarily satisfies h1(x) = h1(y), then x is put in
cell T1[h1(x)] anyway, and y is kicked out. Then, y is put into
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Fig. 1 Original Cuckoo Hashing [15] a) A pattern x is successfully in-
serted by moving y and z. b) A pattern x cannot be accommodated and a
rehash is required.

the cell T2[h2(y)] of the second table similarly, which is also
possibly occupied by another pattern z with h2(y) = h2(z). In
this case, z is placed in cell T1[h1(z)], and the process repeats
until the pattern can be placed in an empty cell as in Fig. 1 a.
However, it can be seen that the “cuckoo process” may not
terminate as Fig. 1 b. As a result, the number of iterations is
limited by a bound M chosen beforehand. In this case every
entry must be rehashed with two new hash functions.

3. FPGA-Based Pattern Matching Engine in NIDS/
NIPSs Using Cuckoo Hashing

For pattern matching in NIDS/NIPS, the patterns are
searched on the incoming data (packets). The matched pat-
tern can occur anywhere as the longest substring. This prob-
lem is called multi-pattern matching with a set of patterns
P = {p1, p2, . . . , pn} and the incoming data T . Normally,
the pattern set is preprocessed and built in a system. The
incoming data is entered into a FIFO to compare with all of
patterns. As a result, Cuckoo Hashing is a good candidate
for multi-pattern matching with constant lookup time. Fur-
thermore, dynamic update for the pattern set does not affect
the performance of lookup. Figure 2 a shows an overview of
multi-pattern matching engine using FPGA-based Cuckoo
Hashing. Each module named Cuckoo Li can process pat-
terns of i characters long.

In order to process at the network speed in Gbps, we
have to construct Cuckoo Hashing module for every pattern
length from Lmin = 1 up to Lmax characters. The priority
circuit then selects the longest pattern if multi matches hap-
pen. However, Lmax can grow up to hundreds in most of
NIDS/NIPS systems. Thus, we build the Cuckoo Hashing
modules for short patterns with the maximum length Lmax s

according to the most distribution of patterns in NIDS/NIPS.
In Snort pattern set, Lmax s gets the best value of 16 char-
acters. For longer patterns, we can break them into shorter
segments so that we can insert those segments to the Cuckoo
modules of short patterns. We then use simple address
linked-lists to combine these segments later. Figure 2 b
shows our optimized architecture for pattern matching.

3.1 FPGA-Based Cuckoo Hashing Module

In order to increase memory utilization, we build up a hash-
ing module for each pattern length and use indirect stor-

Fig. 2 FPGA-based pattern matching engine in NIDS/NIPSs using
Cuckoo Hashing. a) General Model b) Optimized Hardware Model.

Fig. 3 FPGA-based Cuckoo Hashing module with parallel lookup. Ta-
bles T1 and T2 store the key indices; Table T3 stores the keys.

age. Small and sparse hash tables contain indices of patterns
which are the addresses of a condensed pattern-stored table.
Our approach is also to change the lookup to parallel pro-
cessing. The insertion can be changed for better selection
of the available space in both hash tables. With some im-
provements in architecture, ours can take full advantages of
hardware.

The architecture of a FPGA-based Cuckoo Hashing
module as shown in Fig. 3 consists of three tables. Two in-
dex tables (hash tables) T1 and T2 are single-port SRAMs
and a pattern-stored table T3 is a double-port SRAM for con-
current processing. Hash functions can be changed if they
are required to rehash. Two registers named key and index
are the pattern to be searched for and the memory address
of that pattern in T3, respectively. Besides, two multiplexers
are used to select addresses of T3. Finally, a comparator is
used for exact matching of key with two candidate patterns
from T3.
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3.1.1 Parallel Lookup of an Incoming Pattern

By using parallel and multi-phase pipeline architecture,
PAMELA can look up patterns every clock cycle. Figure 4 is
the pseudo-code of parallel Cuckoo lookup function. A pat-
tern x is hashed by two hash functions concurrently. Then,
the values of two hash functions are used as the addresses of
two index tables. After that, the outputs of two index tables
are used as the addresses of T3. Finally, to determine the
match, the outputs of T3 are compared with x.

3.1.2 Dynamic Pattern Insertion and Deletion

The insertion of a new pattern x can be described in Fig. 5.
We have some improvements as compared with the origi-
nal Cuckoo Hashing. We consider both tables to reduce the
insertion time. If one of the outputs of two index tables is
empty (NULL), the index of x is inserted into T1 or T2 and
the insertion is complete. If the outputs of both T1 and T2 are
not NULL, we insert the index into the table with less num-
ber of patterns. At the same time, the “kicked-out” index T1

(index T2) and its data from T3 will be written into the in-

Fig. 4 Pseudo-code of parallel Cuckoo lookup algorithm.

Fig. 5 Pseudo-code of parallel Cuckoo insertion algorithm.

dex and key registers to start the hashing process. Then, M,
[3log1+εm] [15], is decreased and the key value is hashed by
hash function h2 (h1). The output data will be checked for
whether the value is NULL. If it is NULL, the process ends
with successful insertion. On the other hand, the process is
continued by taking in turns hashing from h2 (h1) to h1 (h2).
The worst case happens when M decreases to zero. Hence,
a rehash is required. Two new hash functions h1 and h2 are
issued by a pseudo-random number generator.

For deletion, the algorithm in Fig. 6 is as simple as the
lookup process. If the lookup succeeds, MUX1 will select
exactly one of the outputs of two index tables to write into
the index register. We then write NULL into table T3 at the
address pointed by the index register. After that, we reset
the index register to NULL and write it into appropriate T1

or T2. The deletion process results in some “holes” in T3.
When the number of “holes” is greater than a threshold, the
rehash for rearranging of T3 can be implemented.

3.1.3 Recommended Hash Function

The hash function of choice greatly affects the performance
of the system. A fast way of generating a class of universal
hash function that is hardware-friendly and tabulation based
method [26], is defined as follows:

Ht(x) = at[0][x0]⊕at[1][x1]⊕. . .⊕at[n − 1][xn−1] (1)

A table contains a 2-D array of random numbers in the hash-
ing space. A key x is a string of n characters, x0x1..xn−1, and
the hash value is calculated by bit-wise exclusive-or (⊕) a
sequence of values at[i][xi], which is indexed by each byte
value of xi and position of i in the string. The drawback is
that the size of random table is very large and depends on
the key length.

Another class of simple hash function for hashing char-
acter strings named shift-add-xor (SAX) [27] utilizes only
the simple and fast operations of shift, exclusive-or and ad-
dition.

Hi = Hi−1 ⊕ (S L(Hi−1) + S R(Hi−1) + ci) (2)

Two operators S L and S R denote the shift left and right,
respectively. The symbol ci is the character ith of string and
Hi is an intermediate hash value after examination of i char-
acters. The initial value H0 can be generated randomly. The
main advantage of SAX as compared with random-table is
very few hardware resources required. To generate the new

Fig. 6 Pseudo-code of parallel Cuckoo deletion algorithm.
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SAX hash function in case of rehashing, we only need to
change the value of H0 by a simple pseudo-random cir-
cuit LFSR [28]. Therefore, SAX is a suitable choice for
PAMELA.

3.1.4 Hardware Optimization for Cuckoo Module

We can significantly reduce large amount of hardware by ex-
ploiting accumulative characteristic of SAX hash function.
From Eq. (2), to calculate hash value of an incoming pattern
with length i characters in the hash module ith, the requi-
site inputs are the hash values of i − 1 characters calculated
beforehand in the hash module (i − 1)th and the ith charac-
ter. Therefore, the values of previous hash module can be
reused for the next hash module. As shown in Fig. 2 b, two
hash values h1 and h2 of Cuckoo Li−1 are fed into Cuckoo
Li (2 < i ≤ Lmax s). In addition, the FIFO for the incoming
data is also replaced by only a one-character shift register.

Nevertheless, our hardware optimization can increase
the probability of rehash on the system. For example, when
a rehash by collision happens at Cuckoo module i, new func-
tions h1 and h2 of module i make the inputs of module i + 1
changed and the hash values of module i+1 will be incorrect.
The process is going on recursively up to module Lmax s. As
a result, the rehash can be forced from Cuckoo module i+ 1
to module Lmax s. This thing, however, only affects the in-
sertion process. This trade off is good enough because the
first priority is fast lookup with smaller hardware.

3.2 Matching Long (>16-Character) Patterns

We break the longer (> 16-Character) patterns into variable-
length segments of 1 to Lmax s = 16 characters. The above
Cuckoo Hashing modules can then be used for matching
these individual segments. After that, these segments of
a long pattern are combined to a chain that can be imple-
mented by simple linked-list technique. The data structure
for storing linked-lists is a table named T4 whose depth is
the depth of T3 multiplied by the number of Cuckoo mod-
ules. Each address represents one segment and its content is
an address of next segment in the same long pattern.

For more details, we describe the technique using a
simple example. We assume that string “abcdefghij” is a
long pattern that is broken into smaller segments with pro-
portion 3 : 3 : 2 : 2 as in Fig. 7 a. Segments 1 and 2 are
hashed and stored in T3 of Cuckoo L3 at address 1FFh and
1FEh while segments 3 and 4 are hashed and stored in T3 of
Cuckoo L2 at address 1A4h and 1A5h. We combine the ad-
dresses in T3s together with the number of Cuckoo modules
to link these individual segments. If the depth of T3 in ev-
ery module and the number of Cuckoo modules are 512 and
16 then the bit number is 13 for representing a position of
individual segment: 9 least significant bits for representing
the address of T3 and 4 most significant bits for represent-
ing the number of Cuckoo modules. The segment addresses
of “abcdefghij” in T4 are 7FFh, 7FEh, 5A4h, and 5A5h as
shown in Fig. 7 b. The matching process is described as the

Fig. 7 Matching long patterns. a) Example of breaking a long pattern
“abcdefghij”. b) How to store a long pattern in table T4 as a linked-list.

following. When we get a match for segment “abc”, we
have address 7FFh whose content in T4 is 7FEh. After 3
clock cycles, if the mach segment is “def”, the process is
continued by jumping from 7FFh to 7FEh. Otherwise, the
detective process finishes without match and resets for other
patterns. Similarly, from 7FEh, if the next match segment
after 2 clock cycles is “gh”, address 5A4h is considered. Fi-
nally, if the last segment “ij” is detected 2 next clock cycles
later then the content of address 5A5h is read and the match
of this pattern is reported.

Two more bits are added in every entry of T3 as in
Fig. 7 b. They are used to describe a string which can be the
short pattern, the first segment of long pattern called pre-
fix segment, the body of long pattern called infix segment,
or even the short pattern which is also the prefix segment.
In case of the end of long pattern called suffix segment, we
can determine it by checking the content of its address in T4

whether it is NULL. However, if a long pattern is a prefix
substring of another one then it cannot be detected. For ex-
ample, a long pattern “abcdef” can be the prefix substring
of “abcdefghij”. To improve this case, we add one more bit
in table T4. When this bit is active, a suffix segment can also
be an infix segment of another pattern. In other words, the
content of a suffix segment in T4 can be a pointer to another
address.

The above paragraphs describe the method for holding
one long pattern per time. Each time, if the system detects
one segment with length L, it has to wait for the next seg-
ment in L clock cycles. During this time, if other matches
happen then the system cannot detect them. For example,
the incoming data is “. . . abcdefghijk. . . ” and we have 2
long patterns “abcdmnpq” and “bcdefghi” in the pattern
set. We assume that these patterns are broken into seg-
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ments “abcd”, “mnpq” and “bcde”, “fghi”, respectively.
In clock cycle t, if the matched string is “abcd” then the
system waits for the next match in 4 clock cycles. However,
the next match for the first pattern does not happen in this
case. Meanwhile, in clock cycle t + 1, the system cannot
detect the segment “bcde” that is the prefix for the second
pattern.

To detect all segments of long patterns while match-
ing in every clock cycle, we use Lmax s = 16 down coun-
ters and registers for storing the match values read from T4;
the length of segment and its content in T4 are stored in an
available counter and register, respectively. When a segment
match happens and it is a prefix segment, its position in T4 is
considered. If it is an infix or a suffix of current long pattern
candidates, it must be simultaneously compared to all reg-
isters whose counters are currently zero values to determine
the unique address of T4. Because the length of segments
can reach at Lmax s, the maximum number of current long
pattern candidates is Lmax s.

We use an automatic generator to partition the long pat-
terns in pattern set. Figure 8 is the pseudo-code of long
pattern insertion. First, we consider long patterns as the
incoming strings pass through the engine for lookup. If a
short pattern in the engine is the longest prefix of a candi-
date long pattern then we break the long pattern such that
its first segment is the same length as the short pattern. We
mark the short pattern which is also the prefix segment to
avoid checking again. After that, we break the rest of the
long pattern into halves if the length of the rest is greater
than Lmax s or the number of patterns in the same table T3 is
greater than a certain threshold Th, somewhat arbitrarily set

Fig. 8 Pseudo-code of long pattern insertion algorithm.

less than the size of hash table, to avoid the high probabil-
ity of rehash. Otherwise, the rest can be a suffix segment.
The partitioning can continue if any segment matches with
a string in the engine.

4. Performance Evaluation: Theoretical Analysis and
Simulation

4.1 Theoretical Analysis

In this subsection, we will analyze the time to lookup and in-
sert a pattern. Based on the worst case scenario, we propose
a method for bounding insertion time of a new pattern. In
addition, two common area metrics of SRAM-based FPGA,
memory and logic gate utilization are also explored to show
the efficiency of PAMELA engine. To facilitate the theoret-
ical analysis, some main notations are listed in Table 1.

4.1.1 Lookup Time and Insertion Time

The time to process a pattern of length L (characters or
bytes) is a function of the number of cycles needed to calcu-
late the hash values Thash, and the number of cycles needed
to access memory including hash tables Tmem1,2 and storage-
pattern table Tmem3 . We assume that the time needed to ac-
cess every memory table is constant and Tmem1,2 = Tmem3 =

Tmem. Our engine takes one character per clock cycle, so
Thash = L. The equation for the processing time TprocL is
expressed as

TprocL = Thash + 2Tmem = L + 2Tmem (3)

For pattern lookup, we need one more stage to compare the
candidate pattern after reading out of table T3 with the part
of the incoming data. With the time of the comparison Tmtch,
the equation for the lookup time is calculated as follows.

TluL = TprocL + Tmtch = L + 2Tmem + Tmtch (4)

The insertion time TinL of a pattern x with length L can in-
clude some shuffles of other patterns in the hash table. Let h

Table 1 Summary of main notations used in the performance analysis.

Symbol Units Description

L bytes The length of a pattern
Thash cycles The time to calculate the hash values
Tmem cycles The time to access any memory table
TprocL cycles The time to process a pattern of length L
Tmtch cycles The time of the comparison
TluL cycles The lookup time of a pattern
TinL cycles The insertion time of a pattern
Tin wL cycles The worst case insertion time
Tlu long cycles The time for lookup of a long pattern
Tin long cycles The time for insertion of a long pattern
S S bytes The size of the stack
Tin uL cycles The unsuccessful insertion time
TpartL cycles The online partitioning time
S F bytes The size of the FIFO
Umem The average memory utilization
RLC The ratio logic gates of the general

architecture and the optimized architecture
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denote the number of shuffles then the average time of suc-
cessful insertion is expressed as: Tin avgL = (1 + h) × TprocL .
At the best case, successful insertion of a pattern requires no
shuffle of other patterns in hash tables, Tin bestL = TprocL .

The worst case can happen as h reaches M and the re-
hash occurs. According to [15], probability of this case is
O(1/n2) when M is 3logε+1m. Before the rehashing process
begins, the hash tables have to clear every occupied space.
The reset time is Treset. If NL is the number of insertions
for all patterns of length L until the successful insertion for
pattern x then the time of rehash is NL × TprocL . In addi-
tion, according to the accumulative characteristic of SAX
hash function, the rehashes are also required for patterns of
lengths from L+1 to Lmax s. Finally, the worst-case insertion
time of a pattern can be calculated as

Tin wL = M × TprocL +

Lmax s∑
i=L

(Ni × Tproci + Treset) (5)

where Tproci denotes the processing time of pattern with
length i and Ni denotes the number of insertion time of all
patterns with length i.

For long patterns, we consider three more parameters:
the time to access table T4, Tmem4 = Tmem; the time to com-
pare and connect segments, Tconnect; and the number of seg-
ments of a pattern, s. We express the time for lookup and
insertion of a long pattern as follows.

Tlu long = (TluL + Tmem + Tconnect) × s (6)

Tin long = (TinL + Tmem + Tconnect) × s (7)

4.1.2 Limited-Time Update

As the analyzed worst case of insertion in Eq. (5), updat-
ing time of a pattern can be lengthy. For real-time protec-
tion, some practical systems can be vulnerable. To avoid
this weakness, the basic solution is that we build the dupli-
cate modules or separate modules for updating only [10],
[23]. However, this solution consumes a lot of hardware re-
sources and require re-compiling some parts of the system.
We propose a simple and fast method that needs minimum
hardware based on the capability of breaking a pattern into
segments.

The details of our solution can be described as follows.
If the worst case happens as a new pattern is inserted in the
system then we report unsuccessful insertion instead of re-
hashing the hash tables. However, at that time, some posi-
tions of the hash tables are modified. Thus, we add a stack to
trace the insertion process. Every step of insertion process is
stored in the stack. If M is reached then we copy the traces
from the stack back to the hash tables to restore the system.
For illustration, we use a simple example as in Fig. 9. We
insert a new element “4” into hash tables that stored “0, 2”
at addresses 3, 0 of T1 and “1, 3” at addresses 4, 0 of T2.
At every step of collisions, we store the old information of
“kick-out” elements in the stack including of the address in

Fig. 9 Example of Limited-time pattern update. A stack traces the inser-
tion process, the old information of “kick-out” elements, including of the
address in hash table Addrhash, the content at this address Contenthash, and
the order number of hash table Idhash. A FIFO buffers the incoming data
as updating patterns.

hash table Addrhash, the content at this address Contenthash,
and the order number of hash table Idhash. As in Fig. 9, in-
sertion process is infinite. Therefore, we restore steps one
by one from the stack to the hash tables until the stack is
empty with the last element of unavailable space being “4”.
We can calculate the size of the stack as follows

S S = M × �Addrhash +Contenthash + Idhash�byte (8)

In Eq. (8), the symbol �. . .�byte denotes rounding to byte of
the bit sum of fields in the stack.

Next, we consider the new pattern as a long pattern and
break it into segments to re-insert to the system. This pro-
cess is recursive until the successful insertion occurs. We
can prove that the update process of a string (pattern or seg-
ment) is limited by following paragraphs.

After un unsuccessful insertion of string less than or
equal Lmax s, the string must be broken into halves. Note
that the partitioning of long patterns greater than Lmax s is
preprocessed off-line before updating. The online partition-
ing is slightly different from off-line method as mentioned
in Sect. 3.2. We do not consider whether the short pattern
in the engine can be the prefix segment to save time. So the
unsuccessful insertion time and the partitioning time can be
calculated as follows.

Tin uL = M × TprocL + M = M(TprocL + 1) (9)

TpartL = 2TluL/2 + 2TinL/2 (10)

The unsuccessful insertion time equals to the sum of inser-
tion time and back tracking time. The partitioning time in-
cludes the lookup and insertion time of two halves. The
worst case insertion time can be expressed by the sum of the
unsuccessful time and the partitioning time.

Tin wL = Tin uL + TpartL (11)

= Tin uL + 2TluL/2 + 2TinL/2

Let us assume that Lmax s = 2K and the shortest segment is
one-character which is always successful, so the insertion
time Tin1 = Tin w1 .
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Lemma 1. The worst case insertion time of a new string of
length Lmax s = 2K(K ≥ 1) is limited by the following.

Tin w2K ≤
K−1∑
i=0

2i(Tin u2K−i + 2Tlu2K−i−1 ) + 2KTin w1

Proof. The proof is mathematical induction using Eq. (11).

• Basis: for K = 1, according to Eq. (11), it is true.

Tin w2 = Tin u2 + 2Tlu2 + 2Tin1

≤ Tin u2 + 2Tlu2 + 2Tin w1

• Inductive step: we assume that the result holds for
some unspecified value of K.
We must be shown that the result holds for K + 1, that
is:

Tin w2K+1 = Tin u2K+1 + 2Tlu2K + 2Tin2K

≤ Tin u2K+1 + 2Tlu2K

+ 2

[ K−1∑
i=0

2i(Tin u2K−i + 2Tlu2K−i−1 )

+ 2KTin2K /2K

]

≤
K∑

i=0

2i(Tin u2K+1−i + 2Tlu2K−i )

+ 2K+1Tin w1

Hence, the proof.

�

From Eqs. (9), (3) and (4):

Tin w2K ≤
K−1∑
i=0

2i[M(2K−i + 2Tmem + 1) (12)

+ 2(2K−i−1 + 2Tmem + Tmtch)] + 2KTin w1

Moreover, for on-the-fly update without interrupting
the data stream, we can use a FIFO to buffer data stream.
While a pattern is being updated, the data stream enters the
FIFO. After the successful or unsuccessful update of a pat-
tern, PAMELA will get data from the FIFO. The next up-
date can continue as soon as the FIFO is empty. Because
the network load is not 100% at all time, this on-the-fly up-
date process is practical. If the line rate network is one byte
per clock cycle, the size in byte of FIFO equals to the upper
bound of a string insertion.

We assume that all time parameters in Eq. (12) consum-
ing one clock cycle, K = 4, and M = 30 so we have the max-
imum successful insertion time of a pattern less than 3440
clock cycles as follows.

Tin w2K ≤
K−1∑
i=0

[2K(M + 1) + 2i(3M + 6)] + 2K (13)

≤ 109M + 170 = 3440 = S F

where S F is the size of the FIFO.

4.1.3 Hardware Utilization

In the direct storage method, the number of elements per
hash table size named load factor presents the efficiency
of memory utilization. In Cuckoo Hashing, load factor is
less than 0.5 to guarantee success of pattern insertion. If
we define navg as the average number of patterns and mavg

as the average size of hash table in each Cuckoo mod-
ule, then the average load factor α is given by the formula
α = navg/(2 × mavg)

In our indirect storage method, the hash tables only
store the indices of patterns using a few hardware resources,
and most of resources are for pattern storage. Therefore, the
memory utilization metric of our system has to take into ac-
count the condensed table T3. If we assume the size in bit of
T3 is equal to the number of bits of pattern storage required,
then it is the result of navg in a module multiplied by the av-
erage number of bits (8 × Lavg) per pattern of this module.
The number of bits to encode the address of storage table
T3 is �log2navg�, where �� denotes rounding up. Finally, the
average memory utilization Umem is calculated as

Umem =
navg × �log2navg� + navg × 8 × Lavg

2 × mavg × �log2navg� + navg × 8 × Lavg
(14)

In Eq. (14), Umem is the ratio of the patterns and their in-
dices with the total sizes of T1, T2 and T3. Figure 10 shows
the effect of Umem based on load factor α. With the maxi-
mum value of α of 0.5, Umem is approximately 0.88 when
mavg = 512, navg 	 500 and Lavg 	 8; we name it PAMELA-
1. As α reduces by half to 0.25, Umem slightly reduces and
equals to 0.72 when mavg = 1,024; we name it PAMELA-2.
To consider lower value of load factor, it is not interesting
in due to wasting too many memory resources. Therefore,
we only select these two systems for further testing. If the
balance between the high flexibility of update and the area
is the first priority then PAMELA-2 is selected. Otherwise,
hardware-efficient PAMELA-1 is the choice. Next section
will show the practical comparison of two systems.

Besides the memory utilization, the logic gate (logic

Fig. 10 Memory Utilization vs. Load Factor. PAMELA-1 has Memory
Utilization Umem of 0.88, PAMELA-2 has Umem of 0.72.
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cell) utilization is also our interest. We assume that if a char-
acter needs pLC logic gates for implementing hash function
as in Fig. 2 a then each pattern with length L needs L × pLC

logic gates. With Lmax s = 16 modules, the number of logic
gates is very large for the general architecture. However, as
in Fig. 2 b, our optimized architecture only uses pLC logic
gates for each module. The notation RLC to represent the
ratio between logic gates of the general architecture and the
optimized architecture is

RLC =

∑Lmax s

L=1 (L × pLC)

Lmax s × pLC
(15)

=
Lmax s(Lmax s + 1) × pLC

2 × Lmax s × pLC
=

(Lmax s + 1)
2

If Lmax s is 16 then the saving ratio is over 8 times for imple-
menting the hash functions.

4.2 Performance Simulations

4.2.1 Off-Line Insertion of Short Patterns

On Dec 15, 2006, there were 4,748 unique patterns with
64,873 characters in Snorts rule set. The distribution of the
pattern lengths in Snort database is from 1 up to 109 char-
acters. Fortunately, 65% of total numbers of patterns are up
to 16 characters. Therefore, we build the Cuckoo Hashing
modules for short patterns which are less than or equal to
Lmax s = 16 characters according to this fact.

For practical comparison, we implement hash func-
tions with patterns of the lengths from 2 to 16 characters.
For pattern length of one character, we directly match the
patterns to save the hardware. In all experiments from now
on, the number of trials is 1,000. We define a parameter
named %Rehash as the following equation to determine the
possibility of rehash happening in every trial in every pattern
length.

%Rehash =
the number o f rehashes

the number o f trials
× 100% (16)

Figure 11 presents the number of insertions of Cuckoo
Hashing with three hash functions: SAX, random table and
CRC in which the size of index table is 512. Although
CRC is a polynomials function, it is a suitable candidate
for testing due to its significantly cheap implementation
on hardware [29]. Three names, SAX hard, Tab hard and
CRC hard, are the FPGA-based systems whose architec-
tures are changed as in Sect. 3.1 of this paper with patterns
inserted in balancing.

The results in Fig. 11 show that the FPGA-based sys-
tems have the number of insertions less than the original
systems by 20% and the performance of SAX hash func-
tion is close to that of random table. The results in Fig. 11
also show that the SAX and random table functions are sig-
nificantly more efficient than CRC function with very small
%Rehash of less than 5%. With the index table size of 512,

Fig. 11 The number of insertions of various hash functions vs. pattern
length (characters). Bar graphs are the numbers of patterns. Line graphs are
the ratio of numbers of insertions over numbers of patterns. Index (hash)
table size is 512. The number of trials is 1,000.

Fig. 12 The number of insertions and %Rehash after addition of longer
patterns vs. pattern lengths (L). PAMELA-1 and PAMELA-2 have the index
table sizes of 512 and 1,024, respectively. Both systems are based on SAX
hash function and our improved architecture. The number of trials is 1,000.

the average load factor of index table is about 1/4. The re-
maining space can be used for fitting the segments of pat-
terns with lengths of over 16 characters.

4.2.2 Off-Line Insertion of Long Patterns

We break 1,643 long patterns of Snort rule set into over
3,500 segments of lengths from 3 to 16 characters as the de-
scribed technique in Sect. 3.2. By sharing the prefixes with
short patterns in the engine, the number of unique segments
reduces about 12%. Let string denote the short pattern and
the segment of long pattern. Totally, there are 6,136 strings
of pattern set. Note that the distribution of segments, Th,
is also considered to make the string number less than 512
in every length. This condition helps reduce the number of
block RAMs of FPGA for implementing T3 as well as T1

and T2.
The design can be parameterized with different ta-

ble depths of 512 and 1,024 entries as PAMELA-1 and
PAMELA-2, respectively as defined in the previous subsec-
tion. These systems are used to evaluate the trade off be-
tween hardware utilization and performance of insertion.
Both systems are based on SAX hash function and the
FPGA-based Cuckoo architecture. Figure 12 shows the
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Fig. 13 The average insertion time (clock cycles) for inserting 381 new
strings (patterns & segments). PAMELA-3 is extended from PAMELA-1 by
adding a stack and a FIFO for limited-time and uninterruptible update. The
number of trials is 1,000.

number of insertions as well as number of strings in ev-
ery length after adding segments of long patterns. In ev-
ery length of string, the number of insertions in PAMELA-2
is just greater than the number of strings slightly. Unfor-
tunately for PAMELA-1, the number of insertions is about
16% greater than the number of strings. %Rehashes of both
systems are showed in Fig. 12 to explain why the number
of insertions increases in PAMELA-1. Due to high memory
utilization, the collision (%Rehash) increases as the number
of patterns increases, approximately 12% as compared with
4% of PAMELA-2.

4.2.3 Dynamic Update for New Patterns

Snort rule database must be updated to handle the new at-
tacks. Normally, the web site of Snort generates new rules
every one or two weeks. As a result, PAMELA can also be
rapidly and easily updated to avoid vulnerability.

To demonstrate the dynamic update ability of
PAMELA, we accumulated the latest Snort pattern set on
May 14, 2007 to 5,026 unique patterns and 68,266 charac-
ters. Based on the pattern set on Dec 15, 2006, there were
293 unique and new patterns consisting 3,476 characters and
15 unique patterns consisting 83 characters deleted. Note
that all new patterns are searched in the system before insert-
ing. Within these 293 new patterns, 65 patterns are longer
than 16 characters. These long patterns are broken off-line
into segments as described in Sect. 3.2. Finally, only 381
unique short patterns and segments are inserted.

The average insertion time in number of clock cycles
of each PAMELA system is compared in Fig. 13. To de-
termine M, we can assign ε = 1, mavg = 1,024 for all
systems; thus the result of M is 30. Due to bigger table
size of 1,024 entries, PAMELA-2 takes 5,375 clock cycles
to insert without rehashing. In PAMELA-1, the numbers of
clock cycles at pattern lengths of 6, 11, 12 and 15 characters
rapidly increase due to the high penalty of rehashing. With
%Rehash from 0.6%–2.9%, it takes 12,600 clock cycles to
insert that is about 2.5 times as compared with PAMELA-
2. PAMELA-3 is extended from PAMELA-1 by adding a
stack and a FIFO for limited-time and uninterruptible up-

Table 2 Dynamic update comparison for a pattern.

System Clock Update Additional hard-
Freq. (MHz) time (μs) ware requirement

PAMELA-1 (index 0.21 No
table size:512)
PAMELA-2 (index 200 0.09 No
table size:1,024) (assumed)
PAMELA-3 0.17 A stack & FIFO
(extended from for uninterruptible
PAMELA-1) update

Bit-split AC [23] N/A ∼ 106 A temporary
module

Rom+CoProc [10] 260 ∼ 1/3 × 103 A co-processor

date. According to Eqs. (8) and (13), the sizes of the stack
and FIFO are 90 and 3440 bytes, respectively. Some new
patterns with lengths of 6, 11, 12 and 15 characters are bro-
ken into segments with lengths of 3, 5–8 characters as they
are unsuccessfully inserted into the index tables. Then, the
segments are inserted into the modules with corresponding
lengths. Some segments with length of 6 are continually
broken again due to high collision but the total of partition-
ing times is only 2. Although the number of strings needed
for insertion increases up to 390, the number of clock cycles
including partitioning time in PAMELA-3 reduces to 10,048.
For 15 deleted patterns, the process is fast with around 100
clock cycles for each system.

We assume that PAMELA-1 to PAMELA-3 are clocked
at 200 MHz which is less than our synthesized results shown
later and can be achieved on many common Virtex FPGA
boards. With 5,475 to 12,700 clock cycles, the update time
is about 28 to 64 microseconds (μs). Table 2 shows the
comparison of the dynamic update time of some systems.
[23] shows that the system can update non-interrupting data
stream by using a temporary module for updating only and
the duration is less than one second for compiling and updat-
ing. [10] uses a co-processor to update with estimated time
of 10 milliseconds (ms) for 30 new patterns. Thus we can
show the approximate time for one pattern is 1/3 ms. We
use no additional hardware in PAMELA-1 and PAMELA-2
of simulation systems. As a result, to add 293 new patterns,
the average insertion time for a pattern is 19–43 clock cy-
cles; and with added the delete time, the average time for
updating one pattern is only 18–42 clock cycles, about 0.09–
0.21 μs on 200 MHz FPGA systems. If the limited-time and
uninterruptible update system is required then PAMELA-3 is
used; the insertion time of a new pattern is limited in 3440
clock cycles (∼17 μs). These results show that PAMELAs
are very efficient for updating pattern set without lengthy
FPGA reconfiguration time.

5. Extension for Multi-Character Processing

To increase the throughput, PAMELA can be easily ex-
tended for multi-character processing. Instead of reading
one character per clock cycle, the system shifts N charac-
ters into an input buffer every clock cycle The system has N
blocks corresponding to N characters needed to process. In-
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side the block, each Cuckoo module receives one character
from the pre-determined address of input buffer and the hash
value from the previous module. Figure 14 is an example of
our system to process 4-character per clock cycle. Due to
higher addressing complexity, we need to determine the ad-
dress of input buffer that each Cuckoo Module is connected
to. In each block j, if the address connected to the previous
module is Ai−1, j (2 ≤ i ≤ Lmax s) and contents character xk

then the address connected to the next module, Ai, j, has to
shift N − 1 from Ai−1, j and the next module processes the
next character. For example, if the string is “. . . abcd. . . ”,
each time we shift N = 4 characters, the previous module
consumes the character ′a′ at address Ai−1, j then the next
module consumes the character ′b′ at address Ai−1, j+(N−1)
one clock cycle later. In general, the address in the buffer
connected to Cuckoo i of block j is:

Ai, j = Ai−1, j + (N − 1) = Ai−2, j + 2(N − 1) (17)

= . . . = A1, j + (i − 1)(N − 1)

From Eq. (17), we can see that when N = 1, the address of
any module coincides with the first address. So it is correct
with our one-character design. We can also calculate the size
of input buffer from Eq. (17). The last address is ALmax s,1

when i = Lmax s. If the lowest address is zero then A1,1 is
N − 1. The size of the buffer can be calculated as follows.

S Bu f f er = ALmax s,1 + 1 (18)

= A1,1 + (Lmax s − 1)(N − 1) + 1

= Lmax s(N − 1) + 1

The resources for storing patterns in multi-character pro-
cessing scheme can be significantly reduced by sharing
SRAMs together. If the number of ports of SRAMs are
two times of the number of processed characters, T3 can
be shared for Cuckoo modules that process the same pattern
length. Moreover, the processing of long pattern can be also
carried out only one table T4 for the whole system.

Fig. 14 PAMELA for N-character processing (N = 4). Cuckoo Modules
are connected to the determined addresses of input buffer.

6. FPGA Implementation Results

Our design is developed in Verilog hardware description lan-
guage and by Xilinx’s ISE 8.1i for hardware synthesis, map-
ping, and placing and routing. The target chips are some
major Xilinx FPGA chips such as Virtex2, Virtex-Pro and
Virtex-4. To reduce the number of memory blocks in FPGA,
we can implement two index tables in the same block RAM;
T1 is in a low addresses part and T2 is in a high addresses
part. The block RAM of Xilinx FPGA can be configured as
dual-port mode that can be accessed concurrently.

Based on our parallel pattern matching engine de-
scribed earlier, we can measure the cost based on the num-
bers of block RAMs and logic cells in Table 3. With the
maximum capacity of 18 kbits, block RAMs can be pro-
grammed as 18K × 1 bit to 512 × 36 bits, in various depth
and width configurations. Hence, we can configure both ta-
bles T1 and T2 with size 1,024×9 bits for each as PAMELA-
2 mentioned above. Since the number of patterns in each
Cuckoo module is less than 500, we can set the depth of T3

as 512. The width of T3 can be determined by the pattern
length added 2 more bits for controlling long patterns. For
table T4, the width of T4 is equal to the number of its ad-
dress bits plus 1 bit for suffix segment of long pattern. For
this reason, the size of T4 is 213 × 14. For the short patterns
of one character, we can directly compare to save hardware
resources. The other parts of the system use logic cell of
FPGA. While SAX functions use few resources of logic
cells, the most consuming parts are the comparators. To-
tally, we use only 62 block RAMs and 3,220 logic cells to fit
68,266 characters of the entire rule set on the XCV4LX100
FPGA chip. To update without interrupting the incoming
data, three more block RAMs are used to implement the
stack and FIFO. For multi-character processing, since cur-
rent Xilinx FPGA chips only have 2-port block RAM, we
have to duplicate the pattern in T3s. In addition, T4s can
only process 2 lookups at the same clock cycle. Some com-
ponents such as the controls, counters, registers, LFSR, etc.
are also shared inside the system.

Table 4 shows the comparison of our synthesized sys-
tems with other recent FPGA systems. Two metrics, logic

Table 3 Logic and memory cost of components in Virtex-4.

Component Quan Block Logic Note
tity RAMs cells

Tables T1 & T2 15 × 2 15 0 2 tables in a BRAM
Table T3 16 39 0 The BRAM numbers

for lengths
1 to 4: 1; 5 to 8: 2
9 to 13: 3; 14 to 16: 4

Table T4 1 8 0
SAX hashes 15 × 2 0 840
Multiplexer 15 × 2 0 300
Comparator 32 0 1,320 16 for long patterns
Counter, Priority, 0 760
Reg, LFSR, etc.
Total 62 3,220
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Table 4 Performance comparison of FPGA-based systems for NIDS/NIPS.

System Device bits/ Freq. No. No. Mem LCs/ Mem per T-put PEM
(Xilinx) cycle (MHz) chars LCs (kbits) char char (bits) (Gbps)

XC4VLX100 8 285 3,220 1,116 0.047 16.74 2.28 10.29
XC4VLX100 16 282 6,120 2,070 0.090 31.05 4.51 10.92
XC4VLX100 32 275 11,980 4,140 0.175 62.10 8.80 10.70

PAMELA-2 XC2VP20 8 272 68,266 3,266 1,116 0.048 16.74 2.18 9.79
XC2V6000 8 223 3,266 1,116 0.048 16.74 1.78 8.03
XC2V6000 16 218 6,212 2,070 0.091 31.05 3.49 8.42

PAMELA-2 (with a XC4VLX100 8 285 68,266 3,233 1,170 0.047 17.55 2.28 9.91
FIFO and a stack)
V-HashMem [13] XC2VP30 8 306 33,613 2,084 702 0.060 21.39 2.49 8.60
HashMem [12] XC2V1000 8 250

18,636
2,570 630 0.140 34.62 2.00 4.01

XC2V3000 16 232 5,230 1,188 0.280 65.28 3.71 3.86
PH-Mem [11] XC2V1000 8 263

20,911
6,272 288 0.300 14.10 2.11 4.71

XC2V1500 16 260 10,224 306 0.490 14.98 4.16 6.44
ROM+Coproc [10] XC4VLX15 8 260 32,384 8,480 276 0.260 8.73 2.08 5.90
Prefix Tree [9] XC2VP100 8 191 39,278 12,176 0 0.310 0 1.53 4.93
PreD-CAM [7] XC2V3000 8 372

18,036
19,854 0 1.100 0 2.98 2.70

XC2V6000 32 303 64,268 0 3.560 0 9.70 2.72
FPGA-based Bit-Split [24] XC4FX100 8 200 16,715 4,514 6,000 0.270 184 1.60 0.39
PreD-NFA [6] XC2V8000 32 219 17,537 54,890 0 3.130 0 7.00 2.24

cells per character (LCs/char) and SRAM bits per character
(bits/char), are used to evaluate the efficiency of FPGA uti-
lization. For state machine approach, we just show some in-
teresting implementations that are commonly used for static
pattern matching only. We can see that the hashing sys-
tems [10]–[13] are almost better than state machine [6], [24]
and compare-and-shift ones [7], [9] in term of hardware uti-
lization. As compared to V-HashMem [13], PAMELAs are
30% fewer in LCs/char and bits/char. Note that V-HashMem
supports header matching with less hardware. On the con-
trary, with 6,500 strings inserted into the system, the storage
capacity of synthesized PAMELA can support 1500 more
strings without additional hardware resource. As compared
to [10], [11], the Block RAM usage of our architecture is
1.22–2.07 times greater than theirs, but our logic cell usage
is significantly smaller than theirs by 4.3–5.2 times. In sum-
mary, PAMELAs are the most efficient ones in using logic
cells of FPGA at a cost of 0.047-0.175 LCs/char. In addi-
tion, the memory usage of our architecture is of high den-
sity (16.74–62.10 bits/char) and is acceptable as compared
to other systems.

For throughput comparison, our throughput (T-put) can
vary from 1.78–8.8 Gbps depending on the kinds of FPGA
chips and the number of characters processed per clock
cycle. Some works can also process multi-character at
very high throughput up to 10 Gbps, especially shift-and-
compare architectures. However, the area cost is high.
Therefore, a Performance Efficiency Metric (PEM) is used
as the ratio of throughput in Gbps to the logic cell per each
pattern character for performance evaluation.

PEM =
Throughput

No.Logiccells+ Membytes
12

No.Characters

(19)

Assuming that the cost of 12 bytes block RAMs is equiv-
alent to a logic cell [30], Eq. (19) takes into account both
block RAMs and logic cells area metrics for fair compari-

son [14] between the memory-based systems and the logic
gate-based systems. As PEMs in the range of 8.03–10.92,
PAMELAs are the best of the FPGA-based hashing systems,
far better than the shift-and-compare systems by at least two
times, and better than the state machine systems over three
times.

7. Conclusion

A pattern matching engine based on Cuckoo hashing for
NIDS/NIPS named PAMELA is proposed. PAMELA en-
gine can update the new patterns rapidly in the orders
of microseconds. PAMELA can also guarantee that the
data stream cannot be interrupted during pattern updates by
adding both small stack and FIFO. According to the imple-
mentation results, the performance of PAMELA is the best
when compared with other previous systems and the achiev-
able throughput can be up to 8.8 Gbits/s. The current scheme
of PAMELA is also scalable enough to process N characters
every clock cycle. Since PAMELA requires no reconfigu-
ration at all, this engine can be applied on ASIC at much
higher performance than FPGA.
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