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PAPER

An Identification Method of Data-Specific GO Terms from a
Microarray Data Set

Yoichi YAMADA†a), Ken-ichi HIROTANI†, Nonmembers, Kenji SATOU†,
and Ken-ichiro MURAMOTO†, Members

SUMMARY Microarray technology has been applied to various bio-
logical and medical research fields. A preliminary step to extract any in-
formation from a microarray data set is to identify differentially expressed
genes between microarray data. The identification of the differentially ex-
pressed genes and their commonly associated GO terms allows us to find
stimulation-dependent or disease-related genes and biological events, etc.
However, the identification of these deregulated GO terms by general ap-
proaches including gene set enrichment analysis (GSEA) does not neces-
sarily provide us with overrepresented GO terms in specific data among a
microarray data set (i.e., data-specific GO terms). In this paper, we propose
a statistical method to correctly identify the data-specific GO terms, and
estimate its availability by simulation using an actual microarray data set.
key words: microarray data set, differentially expressed genes, data-
specific GO terms, cell cycle

1. Introduction

Microarray technology is a method in genetic engineering
which can monitor the expression of thousands of genes si-
multaneously [1]. The expression ratio of genes between
two samples belonging to distinct conditions is measured
in the microarray. For example, when genes display higher
expression in a diseased patient than a healthy control, it is
conceivable that the function of the genes is more induced
in the diseased patient. However, if we know only the name
of the genes upregulated in the diseased patient, we can not
easily understand what biological events specifically occur
in the patient. We therefore need to identify biological terms
commonly associated with the upregulated genes.

A number of genes from organisms of over 50 species
are annotated to terms, which are defined by Gene Ontology
(GO) [2]–[4]. The GO provides us with common terms (i.e.,
GO terms) for identical biological conception between dif-
ferent organisms or distinct research organizations. The GO
terms form a directed acyclic graph (DAG), where each node
is a GO term, the root has the most abstract term, and nodes
have more concrete terms as going to tips along branch. The
GO consortium manages the structured, precisely defined,
common and controlled vocabulary for describing the roles
of genes in any organism.
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A preliminary step to computationally analyze mi-
croarray data is to identify the induced or suppressed genes
(i.e., differentially expressed genes) between two samples
in single microarray data or between microarray data. In a
next step, each GO term annotation to the differentially ex-
pressed genes is statistically evaluated. For instance, when
a GO term significantly annotates differentially expressed
genes between an object sample and a control in single mi-
croarray data, we can understand that the GO term is dereg-
ulated between the object sample and the control. On the
other hand, the identification of GO terms that significantly
annotate differentially expressed genes between microarray
data has also been frequently performed. For example, when
we compare several microarray data from a control versus a
diseased patient with those from a control versus a control,
the identification of the differentially expressed genes be-
tween two groups of microarray data and their related bio-
logical events allows us to determine deregulated biological
phenomena in diseased patients compared to controls [5]–
[8].

Similar analyses are also frequently conducted between
time-course microarray data from several organisms or cul-
tured cells. The main objective of the experiment is to de-
termine what kind of genes and biological events are in-
duced or suppressed in specific time points. Finding dereg-
ulated genes and biological events in specific time points
has been reported to be useful for the identification of peri-
odically oscillated or stimulation-dependent genes and bio-
logical events, etc. [9], [10]. Here we have referred to such
deregulated biological terms in specific microarray data as
“data-specific GO terms”.

Several algorithms and tools have ever been developed
to determine the differentially expressed genes and calcu-
late a statistical significance of GO term annotation to those
genes [11]–[14]. The simplest method for identifying the
differentially expressed genes is based on fold change of
gene expression between an object and a control sample or
between microarray data. However, it is difficult to choose
only one threshold of expression ratio for selecting the dif-
ferentially expressed genes. If researchers determine only
one threshold of the expression ratio to extract the differen-
tially expressed genes, important or unnecessary GO terms
may not be or may be detected as statistically overrepre-
sented GO terms, respectively. Recently, the utilization of
methods based on fold change decreases due to lacking bio-
logical grounds to determine one threshold for selecting the
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differentially expressed genes. In this context, we applied a
series of multiple thresholds of the ratio to select the differ-
entially expressed genes, and showed it useful to correctly
identify their related GO terms.

On the other hand, gene set enrichment analysis
(GSEA) has also been developed for identification of dereg-
ulated gene sets between microarray data [15]. GSEA can
test whether gene sets annotated to GO terms are dif-
ferentially expressed between microarray data. Therefore
it does not require pre-identification of differentially ex-
pressed genes for detection of deregulated GO terms be-
tween microarray data.

However, above-mentioned approaches are not neces-
sarily enough to find the data-specific GO terms. Because
when separate gene groups showing the differential expres-
sion in different microarray data share overrepresented an-
notation of the same GO term, the GO term may be recog-
nized being deregulated in most of a microarray data set:
the overrepresentation of this GO term is ubiquitous rather
than specific to particular data among a microarray data set.
Although several algorithms have been proposed to identify
the deregulated GO terms between microarray data, there
are few reports referring to this serious problem for identifi-
cation of the data-specific GO term.

In this paper, we propose a statistical method to cor-
rectly identify data-specific GO terms from a microarray
data set using multiple thresholds of the expression ratio.

2. Materials and Methods

2.1 Microarray Dataset

The microarray dataset used in this study was produced by
Spellman et al [9]. They synchronized yeast cells by three
independent methods: α factor arrest, elutriation, and ar-
rest of a cdc15 temperature-sensitive mutant. After release,
yeast cells were periodically recovered and their RNAs were
extracted. Control cells were also recovered from asyn-
chronous yeast cells growing in the same culture condition
at the same time points and their RNAs were extracted in
the same way. Fluorescently labeled cDNA was synthesized
from each extracted RNA and the ratio of experimental to
control cDNA was measured every recovery time points.
The expression ratio of each gene in obtained data was sub-
jected to logarithmic conversion. For our analysis, these log-
arithmic values were returned to former values by exponen-
tial function with base 2.

2.2 Proposed Method for Identification of Data-Specific
GO Terms from a Microarray Dataset

To determine the data-specific GO terms from a microarray
dataset, the following steps 1-3 were carried out.

Step 1: Preparation of a pair-wise comparison matrix be-
tween microarray data for each GO term.

Fig. 1 The matrix of pair-wise comparison between microarray data for
GO term “A”. Each microarray data (I-VIII) has relative fold-inductions of
genes in a given sample to a control. The asterisk describes the cell where
the calculation in Fig. 2 is conducted.

To compare the expression of genes between microar-
ray data, we first made a matrix for each GO term. As an
example, matrix linked to GO term “A” is shown in Fig. 1
where eight microarray data (I-VIII) are compared with each
other.

Step 2: Identification of differentially expressed genes be-
tween two microarray data and their commonly associated
GO terms.

To identify differentially expressed genes between mi-
croarray data in a matrix, we calculated the expression ratio
of genes in the row index to the column index of each cell
excluding those marked by the diagonal line. For instance,
the calculation result of the asterisked cell in Fig. 1 is shown
in Fig. 2 where the expression ratio of genes in microarray
data II to I is calculated and sorted.

Then, genes showing expression ratio over a thresh-
old (i.e., differentially expressed genes between microarray
data) were selected from the calculation result in each cell
and subjected to statistical testing based on the following
equation:

p − value =
min(n,M)∑

j

MC j · N−MCn− j

NCn
(1)

where N is the number of genes examined by the microarray
experiment which we refer to as “population gene set”, M is
the number of genes annotated to the matrix-linked GO term
in the population gene set, n is the number of differentially
expressed genes between microarray data, and j is the num-
ber of genes assigned to the matrix-linked GO term in the
differentially expressed genes. Based on the hypergeometric
distribution, this testing examines whether the matrix-linked
GO term significantly annotates the differentially expressed
genes compared to the population gene set.

Since there are no biological grounds to determine one
threshold for selecting the differentially expressed genes be-
tween microarray data, the threshold was increased by a cer-
tain interval from 1.0 to possible maximum value, and the
same statistical testing was repeated for genes showing the
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Fig. 2 An example of gene expression ratios which were calculated and
sorted in the asterisked cell of Fig. 1.

expression ratio over each threshold.
When the annotation of the matrix-linked GO term

showed p-value below 0.05 to the differentially expressed
genes obtained from at least a threshold, the correspond-
ing cell in the matrix was shaded. For instance, when GO
term “A” significantly annotates any differentially expressed
genes in microarray data I versus II in Fig. 1, the asterisked-
cell in Fig. 1 is shaded gray. Similarly, the same statistical
testing preceded by selection of the differentially expressed
genes is repeated in the other cells of Fig. 1 except those
marked by the diagonal line.

Although results of multiple comparisons need to be
corrected, no correction was applied to those results because
Bonferroni correction or false discovery rate (FDR) correc-
tion was so strict that some matrices had few gray cells in
important rows (see Fig. 5). Results of FDR or Bonferroni
correction for two GO terms-linked matrices are shown in
Fig. 5. FDR and Bonferroni corrections were conducted by
the following Eq. (2) and (3), respectively:

False discovery rate (%) =
100 × N × P

n
(2)

where N is the number of multiple comparisons, P is the
p-value in Eq. (1), n is the number of the differentially ex-
pressed gene set which displayed the p-value under 0.05 in
Eq. (1).

Bon f erroni − corrected p − value = N × P (3)

where N is the number of multiple comparisons, P is the
p-value in Eq. (1). In these corrections, FDR (< 20%) and
Bonferroni-corrected p-value (< 0.05) were considered as

Fig. 3 The average expression of the population gene set and genes an-
notated to GO term “A” in each microarray data. Each number (I-VIII)
in the horizontal axis represents the microarray data. The vertical axis de-
scribes the average expression of genes. The solid line indicates the average
expression of the population gene set in each microarray data. The dotted
line describes the average expression of genes annotated to GO term “A” in
each microarray data.

Fig. 4 The matrix of GO term “A” expected from Fig. 3. The gray cell
shows that GO term “A” significantly annotates more upregulated genes in
its row index than its column index.

significant annotation of a GO term.
An example of the process described above is shown

in Fig. 3 and Fig. 4. Figure 3 depicts the average expression
of genes assigned to GO term “A” and the population gene
set in each microarray data. The matrix of GO term “A”
expected from Fig. 3 is shown in Fig. 4. As is apparent from
Fig. 3, the average expression of genes annotated to GO term
“A” is higher in microarray data II and V than that of the
population gene set. Accordingly, microarray data II and V
in the first column of Fig. 4 represent significant annotation
of GO term “A” to microarray data I, III, IV, VI, VII and VIII
in the first row. Furthermore, since the average expression
of GO term “A”-annotated genes is higher in microarray data
II than V (see Fig. 3), II in the first column of Fig. 4 shows
significant annotation of GO term “A” to V in the first row
but not vice versa.

In contrast, the average expression of genes annotated
to GO term “A” is lower in microarray data IV and VII than
that of the population gene set (see Fig. 3). Accordingly,
microarray data I, II, III, V, VI and VIII in the first column
of Fig. 4 exhibit significant GO annotation to IV and VII in
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the first row. The significant GO annotation in IV of the first
column to VII of the first row but not in VII to IV results
from higher average expression of IV compared to VII. This
expression difference between IV and VII also leads to no
significant GO annotation in VII of the first column to IV of
the first row.

Step 3: Identification of data-specific GO term.
To determine GO terms deregulated in specific mi-

croarray data (i.e., data-specific GO term), we examined
whether gray cells are enriched in any rows compared to
whole cells in each GO term-linked matrix. To examine
whether gray cells significantly concentrated in any rows
compared to whole cells, a statistical testing was performed
in each row by the following equation:

p − value=
min(n(m),M(m))∑

j(m)

M(m)C j(m) · N(m)−M(m)Cn(m)− j(m)

N(m)Cn(m)
(4)

where N(m) is the number of all cells except those with self-
comparison in the matrix, M(m) is the number of gray cells
in the N(m), n(m) is the number of cells in a row, j(m) is the
number of gray cells in the row. FDR correction was also
applied to the results of these multiple comparisons by the
following equation:

False discovery rate (%) =
100 × N(r) × P(r)

n(r)
(5)

where N(r) is the number of multiple comparisons, P(r) is
the p-value in Eq. (4), n(r) is the number of rows which dis-
played the p-value under 0.05 in Eq. (4). Consequently, rows
which showed false discovery rate under 5% were identified
as significantly concentrated rows of gray cells.

Thus, a matrix-linked GO term showing significantly
concentrated gray cells in specific rows is the data-specific
GO term which is deregulated in specific microarray data.

2.3 Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) software was down-
loaded from the web site: http://www.broad.mit.edu/gsea/do
wnloads.jsp [15]. The yeast cell cycle microarray dataset
synchronized by α factor was used as GCT-formatted gene
expression data. Each recovery time point name (i.e., 0 min,
7 min, 14 min, · · · · · ·., 105 min, 112 min and 119 min) was
attached to the microarray data from the same time point
name as phenotype label in CLS-format, respectively. GO
terms (i.e., “mitotic cell cycle”, “DNA replication”, “sulfur
metabolic process”, “chromatin assembly or disassembly”,
“cytokinesis, completion of separation”, “telomere mainte-
nance via recombination”, “DNA unwinding during replica-
tion” and “response to pheromone”) and gene sets annotated
to them were prepared in GMT-format.

For GSEA, “1000”, “gene set”, “weighted” and “log2
Ratio of Classes” were selected as “Number of permuta-
tions”, “Permutation type”, “enrichment statistic” and “Met-
ric for ranking genes”, respectively. In the parameter of

“phenotype labels”, each microarray data vs the rest was
selected. For instance, “0 min vs REST” calculates fold
change of each gene in 0 min-labeled microarray data vs the
rest of microarray data (i.e., 7 min, 14 min, · · · · · ·., 105 min,
112 min and 119 min). Gene sets (i.e., Genes annotated to
GO terms), which were upregulated in each microarray data
and showed FDR under 20%, were identified as deregulated
gene sets (i.e., deregulated GO terms) compared to the other
microarray data.

3. Experimental Results

To test whether our proposed method can identify the data-
specific GO terms from an actual microarray dataset, we
used the yeast cell cycle microarray data set produced by
Spellman et al [9]. In the dataset, yeast culture was synchro-
nized by α factor and collected every 7 minutes after release.
It is generally known that many genes periodically oscillate
in the expression during the cell division cycle. Spellman
et al. identified about 800 genes regulated in a cell cycle-
dependent manner by the combination of a Fourier algo-
rithm and a correlation algorithm. Those genes were fur-
thermore classified by their expression pattern and divided
into eight groups termed G1 (CLN2), G1 (Y’), S (Histone),
G2 (MET), M (CLB2), M/G1 (MCM), M/G1 (SIC1) and
M/G1 (MAT). Since they show periodically oscillated ex-
pression and the expression peak in the same time point, we
thought that candidates for the data-specific GO terms could
be identified from genes within these groups. On the basis of
this idea, we explored GO terms that significantly annotate
genes within each group by free software, GO term finder
(http://www.yeastgenome.org/). The most overrepresented
GO term (i.e., GO term with the lowest p-value) in each
gene cluster is summarized in Table 1. Note that one may
not determine these GO terms as the most overrepresented
GO term in each gene cluster because annotations for genes
change day by day. Then matrices like Fig. 1 were made for
each overrepresented GO term. Here, each microarray data
in Fig. 1 corresponds to that obtained from each recovery

Table 1 The most overrepresented GO term in each gene cluster.

“Overrepresented GO term” indicates the most overrepresented GO term
annotated to genes within each cluster. “Rate in cluster” shows the rate of
genes annotated to each overrepresented GO term in each cluster to genes in
each cluster. “Rate in population” describes the rate of genes annotated to
each overrepresented GO term in the population gene set to the population
gene set. “p-value” is calculated from the rate in cluster and the rate in
population.
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Fig. 5 The effect of false discovery rate (FDR) correction or Bonferroni correction for matrices of
GO term DNA unwinding during replication and mitotic cell cycle. The A, B and C indicate the applica-
tion results of no correction, FDR correction and Bonferroni correction in the matrix of GO term DNA
unwinding during replication, respectively. The D, E and F describe the application results of no correc-
tion, FDR correction and Bonferroni correction in the matrix of GO term mitotic cell cycle, respectively.
The threshold increase interval 0.01 of the expression ratio was used for identification of differentially
expressed genes in GO term DNA unwinding during replication and mitotic cell cycle. In B and E, cells
showing FDR under 20% for GO term annotation were shaded. Cells showing Bonferroni-corrected
p-value under 0.05 for GO term annotation were shaded in C and F.

time point of yeast culture after synchronization and release.
As described in “Materials and Methods”, gene expression
ratios of each microarray data in the first column to each
one in the first row were calculated. Every threshold that in-
creases by 0.01 from 1.0 to maximum value, genes showing
expression ratio over each threshold were isolated for the
succeeding statistical testing. When an overrepresented GO
term significantly annotates any of the isolated genes, the
corresponding cell in the overrepresented GO term-linked
matrix was marked in gray.

Multiple comparisons require any corrections for the
calculation results. Figure 5 describes the results of no cor-
rection, FDR correction and Bonferroni correction in two
GO terms (“DNA unwinding during replication” and “mi-
totic cell cycle”)-linked matrices. Numbers of the gray cell
in no correction, FDR correction and Bonferroni correction

for GO term DNA unwinding during replication-linked ma-
trix were 160, 73 and 14, respectively. On the other hand,
numbers of gray cell in no correction, FDR correction and
Bonferroni correction for GO term mitotic cell cycle-linked
matrix were 239, 197 and 125, respectively. Thus effects of
multiple testing correction for GO term annotaion seemed
to vary according to GO terms. In “DNA unwinding during
replication”-linked matrix of no correction, rows of 21 min,
70 min and 77 min showed the statistical significance (FDR
< 5% in Eq. (5)) in concentration testing of gray cells in
rows (see A in Fig. 5). When FDR or Bonferroni correction
was applied to “DNA unwinding during replication”-linked
matrix, the row of 21 min did not show the statistical sig-
nificance (FDR < 5% in Eq. (5)) in concentration testing of
gray cells in the row (see B and C in Fig. 5). Here actual
FDRs of 21 min, 28 min, 70 min and 77 min rows in concen-
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Fig. 6 Comparison of the average expression between genes in cell cycle clusters and those assigned
to overrepresented GO terms in Table 1. The horizontal axis represents the recovery time points (min)
of yeast culture after synchronization and release. The vertical axis describes the average expression
of genes. The solid line indicates the average expression of the population gene set at each time point.
The dotted lines in graphs on the left describe the average expression of genes in each cluster: A, M/G1
(MCM); C, M (CLB2); E, G1 (CLN2). The dotted lines in graphs on the right denote the average
expression of genes annotated to the overrepresented GO term in the population gene set: B, genes
associated with “DNA unwinding during replication”; D, genes associated with “mitotic cell cycle”; F,
genes annotated to “DNA replication”.

tration testing of gray cells were 117%, 49%, 0.00015% and
0.00015%, respectively (see B in Fig. 5).

However the average expression of genes assigned to
“DNA unwinding during replication” was much higher in
14 min, 21 min, 63 min, 70 min and 77 min than that of pop-
ulation gene set (see B in Fig. 6). Considering these results,
FDR and Bonferroni corrections seemed to be so strict that
the significant GO annotation was not detected in 14 min
and 21 min. The same problem to “DNA unwinding during

replication” was also observed in “sulfur metabolic process”
(data not shown). However, even if Bonferroni correction
was applied to “DNA replication”-linked matrix, the same
problem did not occur at the matrix (data not shown).

Thus application of FDR or Bonferroni correction to
matrices may bring about serious problems in a part of ma-
trices. Because of this, we did not apply any corrections to
results of the multiple comparisons of GO annotation.

As described above, we next examined whether gray
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Fig. 7 The verification of deregulated time points of overrepresented GO terms identified by three
methods. The overrepresented GO terms in Table 1 are shown as follows: A, DNA replication; B,
telomere maintenance via recombination; C, chromatin assembly or disassembly; D, sulfur metabolic
process; E, mitotic cell cycle; F, DNA unwinding during replication; G, cytokinesis, completion of
separation; H, response to pheromone. “X” shows the time point where the average expression of genes
annotated to overrepresented GO terms is higher than that in the population gene set. For rows of A-
H, a shaded square means the time point in which each representative GO term showed a statistical
significance in Eq. (5). In rows of A-H (>=12), a shaded square describes that the time point (i.e., the
row) in the GO term-linked matrix has 12 gray cells and over. For rows of A-H (GSEA), a shaded square
means that the time point showed FDR < 20% in GSEA analysis.

cells were significantly enriched in any rows of the matrix
for each overrepresented GO term in Table 1. According
to Eq. (4) and (5), statistical test and corrections of multiple
comparisons were performed in each row of the overrep-
resented GO term-linked matrix. When gray cells signif-
icantly concentrated (FDR < 5%) in any rows of the over-
represented GO term-linked matrix, the rows were identified
as time points at which genes annotated to the matrix-linked
GO term have higher expression than others.

The overrepresented GO terms shown in Table 1 are
candidates for the data-specific GO term, because they an-
notate significant number of genes with periodically oscil-
lated expression. If these overrepresented GO terms are
actually data-specific GO terms, they will show significant
concentration (FDR < 5%) of gray cells around higher ex-
pression time points of genes within each cluster in Table 1.
We therefore searched the time points in which the average
expression of genes within each cluster is higher than that of
the population gene set, and marked them by X, as shown in
Fig. 7. When increase interval 0.01 of the threshold for iso-
lation of the differentially expressed genes was used, rows
(i.e., time points) showing significant concentration of gray
cells in the overrepresented GO term-linked matrices were
shaded at rows of GO term A-H in Fig. 7. Consequently,
shaded cells coincided with ones marked by X at high rates

for all overrepresented GO terms except GO term E mitotic
cell cycle. Moreover although most of gene sets annotated to
each overrepresented GO term have two time points show-
ing the expression peak, our method could identify both of
the two time points. For instance, since genes annotated to
GO term A (i.e., DNA replication) display the expression
peak in time points of 21 min and 77 min (see F in Fig. 6),
two expression peak time points (i.e., 21 min and 77 min)
were identified as shaded cells in the row of the GO term A
(see Fig. 7).

These results suggested that our proposed algorithm
can correctly identify the data-specific GO terms from an
actual microarray data set. Furthermore we compared these
results with results (i.e., GO term A-H (>=12) in Fig. 7)
from our proposed method without application of Eq. (4)
and (5) or those (i.e., GO term A-H (GSEA) in Fig. 7) from
GSEA method. In our method without using Eq. (4) and (5),
rows having 12 gray cells and over were identified as signif-
icant concentration of gray cells. GSEA is a method which
can test whether gene sets annotated to GO terms are dif-
ferentially expressed between microarray data [15]. As a re-
sult, in both methods, high coincidence between shaded and
X-marked cells was observed for all overrepresented GO
terms including GO term E mitotic cell cycle. Here FDRs
of 21 min, 70 min, 77 min, 98 min and 105 min in GSEA of



1100
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 8 Matrices for GO term mitotic cell cycle and DNA replication. The
A and B indicate the matrices for the GO term mitotic cell cycle and DNA
replication, respectively. The shaded square represents that each matrix-
linked GO term significantly annotates more induced genes at the time
point of its row index than that of its column index.

GO term E mitotic cell cycle were 12%, 10%, 1.6%, 17%
and 19%, respectively. However our method without Eq. (4)
and (5) tended to detect non X-marked cell. These results
may result from no correction for multiple comparisons of
GO term annotation testing. In addition, GSEA could not
identify 0 min of GO term G as a statistical significance dif-
ferent from other two methods. This result suggested that
the threshold of 20% for FDR was not so mild in this GSEA.

To examine the reason for these different outcomes be-
tween methods, we compared the matrix of “mitotic cell cy-
cle” with that of “DNA replication”, as shown in Fig. 8. In-
terestingly, most time points in the matrix of “mitotic cell
cycle” had the statistical significance to most of the others
(Fig. 8A). For example, although the row index of 70 min
exhibited the statistical significance to the other time points
(i.e., gray cells in the row of 70 min), all the row indexes
other than 7 min, 14 min, 84 min and 119 min also displayed
the statistical significance to the column index of 70 min
(i.e., gray cells in the column of 70 min). In contrast, al-
though there were some contradictions between the same
time point-labeled row-column pairs, typical contradictions
such as mitotic cell cycle were not found in the matrix of
“DNA replication” (Fig. 8B).

The contradictions in the matrix of “mitotic cell cycle”
suggested that GO term mitotic cell cycle annotates sepa-
rate gene clusters showing high expression in different time
points and different expression cycles. In other words, dis-
tinct lists of genes with the same annotation may contribute
to the statistical significance of cells in the row and the col-
umn marked by the same time point, respectively.

In order to investigate whether our interpretation is cor-
rect, we compared the average expression of genes in each
cluster with that of genes assigned to each overrepresented
GO term in the population gene set (Fig. 6). Genes in clus-
ter M (CLB2) showed the periodically oscillated expres-
sion through time course (dotted line in Fig. 6C). In con-
trast, genes associated with GO term mitotic cell cycle in
the population gene set showed flat expression pattern (dot-
ted line in Fig. 6D) similar to that of the population gene set
(solid line in Fig. 6D). On the other hand, genes in cluster
G1 (CLN2) exhibited periodic expression pattern in a man-
ner different from those of cluster M (CLB2) (dotted line in
Fig. 6E). Moreover, the average expression of genes with an-
notation of DNA replication in the population gene set was
also similar, but mild oscillated expression pattern in com-
parison to that in cluster G1 (CLN2) (dotted line in Fig. 6F).
These results strongly supported our idea mentioned above:
since GO term mitotic cell cycle annotates separate gene
clusters showing expression peaks in different time points
and different expression cycles, the average expression of
genes associated with mitotic cell cycle in the population
gene set is averaged at most time points. In contrast, the
other overrepresented GO terms (e.g., DNA replication) are
composed of uniform genes showing similar expression pat-
terns, so that the average expression of genes associated with
those terms in population gene set is less averaged than mi-
totic cell cycle and maintain periodically oscillated expres-
sion through the time course.

Thus, since GO term mitotic cell cycle seemed not to
be the data-specific GO term, it was suggested that calcu-
lations of step 3 in our proposed method are essential for
correct identification of the data-specific GO term (see E in
Fig. 7). Here note that when we applied FDR or Bonfer-
roni correction to the matrix of “mitotic cell cycle”, rows
of 70 min and 77 min displayed significant concentration of
gray cells in FDR-corrected matrix, and rows of 21 min,
70 min, 77 min and 84 min displayed significant concentra-
tion of gray cells in Bonferroni-corrected matrix (see E and
F in Fig. 5). These results also suggested that the correc-
tion for multiple comparisons of GO term annotation may
also lead to mis-identification of a part of data-specific GO
terms.

Moreover, we also changed the threshold increase in-
terval from 0.01 to 2 for isolation of the differentially ex-
pressed genes and examined their effects, as shown in Fig. 9.
When we used the threshold increase intervals of 1 and 2, no
shaded cell was observed in 77-119 min time points of GO
term C which are around the second expression peak point.
In addition, threshold increase intervals of 1 and 2 identified
GO term E mitotic cell cycle as the statistical significance in
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Fig. 9 Exploration of more suitable threshold increase interval for iso-
lation of differentially expressed genes. The overrepresented GO term in
Table 1 is described as follows: A, DNA replication; B, telomere mainte-
nance via recombination; C, chromatin assembly or disassembly; D, sulfur
metabolic process; E, mitotic cell cycle; F, DNA unwinding during replica-
tion; G, cytokinesis, completion of separation; H, response to pheromone.
Numbers in parentheses describe threshold increase intervals for isolation
of the differentially expressed genes. The shaded cell means that the time
point in each overrepresented GO term displayed a statistical significance
in Eq. (5). “X” shows the time point where the average expression of genes
annotated to overrepresented GO terms is higher than that in the population
gene set.

time points of 70 min and 77 min. As described above, since
GO term mitotic cell cycle seemed not to be the data-specific
GO term, it was suggested that the threshold increase inter-
vals of 1 and 2 are not suitable for extraction of the differ-
entially expressed genes. Similarly, when the threshold in-
crease interval of 0.1 was used, no shaded cell was observed
in 14 min and 21 min time points of GO term F which are
around the first expression peak point. These results sug-
gested that 0.01 or less increase interval of threshold is more
suitable for extracting the differentially expressed genes.

4. Conclusion

In this paper, we have proposed novel method to identify the
data-specific GO terms from a microarray data set. In spite
of considerable attention for identification of differentially
expressed genes or deregulated GO terms, the identification
method of data-specific GO terms has not been deliberated
by researchers. However, for instance, the availability of the
cancer classification based on expression pattern of genes
annotated to a GO term makes us realize the importance of
data-specific GO terms [7]. In this context, we estimated
our proposed method using the yeast cell cycle microarray
data set in which many genes are differentially expressed be-
tween microarray data. Consequently, it was shown that our
proposed algorithm can correctly identify the data-specific
GO terms from an actual microarray data set, and applica-
tion of a series of multiple thresholds to the identification
of differentially expressed genes between microarray data

allows us to correctly identify the data-specific GO terms.
Moreover we compared our method with the method with-
out step 3 or GSEA. As a result, it was concluded that any
processes (e.g., step 3 in our method) after the identification
of deregulated GO terms are essential to correctly determine
data-specific GO terms.

Thus, even if we identify deregulated GO terms, data-
specific GO terms will not be correctly identified. Since GO
terms in higher levels of the DAG generally annotate a num-
ber of genes, it is possible that a GO term annotates separate
gene clusters showing the differential expression in differ-
ent microarray data. In such case, a part of GO terms would
be misunderstood to be deregulated in most of a microarray
data set. At this point, our proposed method may exert im-
portant effect for deleting such false positive data-specific
GO terms.

Acknowledgments

This work was in part supported by research grants from
Ministry of Education, Science, Sports, Culture and Tech-
nology, Japan.

References

[1] D. Shalon, S.J. Smith, and P.O. Brown, “A DNA microarray sys-
tem for analyzing complex DNA samples using two-color fluores-
cent probe hybridization,” Genome Res., vol.6, pp.639–645, 1996.

[2] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M.
Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A.
Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C.
Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, and G. Sher-
lock, “Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium,” Nat. Genet., vol.25, pp.25–29, 2000.

[3] E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen,
D. Binns, N, Harte, R. Lopez, and R. Apweiler, “The gene ontol-
ogy annotation (GOA) database: Sharing knowledge in uniprot with
gene ontology,” Nucleic Acids Res., vol.32 (Database issue), D262–
266, 2004b.

[4] Gene Ontology Consortium, “Creating the gene ontology resource:
Design and implementation,” Genome Res., vol.11, pp.1425–1433,
Aug. 2001.

[5] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P.
Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D.
Bloomfield, and E.S. Lander, “Molecular classification of cancer:
Class discovery and class prediction by gene expression monitor-
ing,” Science, vol.286, pp.531–537, Oct. 1999.

[6] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D.
Mack, and A.J. Levine, “Broad patterns of gene expression revealed
by clustering analysis of tumor and normal colon tissues probed
by oligonucleotide arrays,” Proc. Natl. Acad. Sci. USA, vol.96,
pp.6745–6750, June 1999.

[7] R. Maglietta, A. Piepoli, D. Catalano, F. Licciulli, M. Carella, S.
Liuni, G. Pesole, F. Perri, and N. Ancona, “Statistical assessment of
functional categories of genes deregulated in pathological conditions
by using microarray data,” Bioinformatics, vol.23, pp.2063–2072,
May 2007.

[8] A. Barrier, P.Y. Boelle, F. Roser, J. Gregg, C. Tse, D. Brault, F.
Lacaine, S. Houry, M. Huguier, B. Franc, A. Flahault, A. Lemoine,
and S. Dudoit, “Stage II colon cancer prognosis prediction by tumor
gene expression profiling,” J. Clin. Oncol., vol.24, pp.4685–4691,
Oct. 2006.



1102
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

[9] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders,
M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, “Comprehen-
sive identification of cell cycle-regulated genes of the yeast Saccha-
romyces cerevisiae by microarray hybridization,” Mol. Biol. Cell,
vol.9, pp.3273–3297, 1998.

[10] H. Yoshimoto, K. Saltsman, A.P. Gasch, H.X. Li, N. Ogawa, D.
Botstein, P.O. Brown, and M.S. Cyert, “Genome-wide analysis
of gene expression regulated by the calcineurin/Crz1p signaling
pathway in Saccharomyces cerevisiae,” J. Biol. Chem., vol.277,
pp.31079–31088, Aug. 2002.

[11] J.M. Claverie, “Computational methods for the identification of
differential and coordinated gene expression,” Hum. Mol. Genet.,
vol.8, pp.1821–1832, 1999.

[12] P. Khatri and S. Draghici, “Ontological analysis of gene expression
data: Current tools, limitations, and open problems,” Bioinformat-
ics, vol.21, pp.3587–3595, 2005.

[13] T. Beissbarth and T.P. Speed, “GOstat: Find statistically overrep-
resented gene ontologies within a group of genes,” Bioinformatics,
vol.20, pp.1464–1465, Sept. 2004.

[14] E.I. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein, J.M. Cherry,
and G. Sherlock, “GO: TermFinder–open source software for ac-
cessing gene ontology information and finding significantly enriched
gene ontology terms associated with a list of genes,” Bioinformatics,
vol.20, pp.3710–3715, Dec. 2004.

[15] A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L.
Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub,
E.S. Lander, and J.P. Mesirov, “Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expres-
sion profiles,” Proc. Natl. Acad. Sci. USA, vol.102, pp.15545–
15550, Sept. 2005.

Yoichi Yamada received B.S. degree from
Tsukuba University in 1996. He received M.S.
and D.M. degrees in biological science and med-
ical science from Tokyo University in 1998 and
2002, respectively. He is a research associate in
the Division of Electrical Engineering and Com-
puter Science at Kanazawa University, Japan.
His research interests include molecular biology
and bioinformatics.

Ken-ichi Hirotani received B.E. and M.E.
degrees from Kanazawa University in 2005 and
2007, respectively. His research interests in-
clude computer science and bioinformatics.

Kenji Satou received the B.E., M.E., and
D.E. degrees in computer science and commu-
nication engineering from Kyushu University,
in 1987, 1989, and 1996, respectively. He
was a research associate of Kyushu University,
Fukuoka, Japan (1989–1994) and the Univer-
sity of Tokyo, Tokyo, Japan (1995–1997). From
1997 to 2007, he was an associate professor of
Japan Advanced Institute of Science and Tech-
nology (JAIST), Ishikawa, Japan. He is cur-
rently an associate professor of Kanazawa Uni-

versity, Ishikawa, Japan. His research interests include wide variety of top-
ics in bioinformatics.

Ken-ichiro Muramoto received B.E. and
M.E. degrees from Toyama University in 1971
and 1973, respectively. He received his doctor
of medical science degree from Toyama Med-
ical and Pharmaceutical University in the field
of neurophysiology. He has also received Ph.D.
degree in Engineering from Kyoto University in
the field of image information science. He is a
professor in the Division of Electrical Engineer-
ing and Computer Science at Kanazawa Univer-
sity, Japan. His research interests include image

processing, pattern recognition, human vision and remote sensing. He is a
member of IEEE.


