
120
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

PAPER Special Section on Foundations of Computer Science

A Polynomial Time Algorithm for Finding a Minimally Generalized
Linear Interval Graph Pattern

Hitoshi YAMASAKI†a), Nonmember and Takayoshi SHOUDAI†, Member

SUMMARY A graph is an interval graph if and only if each vertex in
the graph can be associated with an interval on the real line such that any
two vertices are adjacent in the graph exactly when the corresponding inter-
vals have a nonempty intersection. A number of interesting applications for
interval graphs have been found in the literature. In order to find structural
features common to structural data which can be represented by intervals,
this paper proposes new interval graph structured patterns, called linear
interval graph patterns, and a polynomial time algorithm for finding a min-
imally generalized linear interval graph pattern explaining a given finite set
of interval graphs.
key words: interval graphs, PQ-trees, graph structured patterns, graph
mining, computational learning theory

1. Introduction

A graph G = (V, E) is an interval graph if and only if for
each vertex v ∈ V , a closed interval Iv in the real line can
be associated such that for each pair of vertices u, v ∈ V
(u � v), (u, v) ∈ E if and only if Iu ∩ Iv � ∅. For exam-
ple, in Fig. 1, G is an interval graph which has its interval
representation R(G). One important application of interval
graphs is a physical mapping in genome research, that is,
to reconstruct the relative positions of fragments of DNA
along the genome from certain pairwise overlap informa-
tion [13]. Reliable and complete overlap information is very
costly and practically not available. Probe interval graphs
were introduced by Zhang et al.[8], [14] to represent only
partial overlap information. As another application, the mu-
tual exclusion scheduling problem is known to be formal-
ized by a subclass of interval graphs [3].

In order to represent interval patterns common to in-
terval structured data, we propose interval graph patterns
which consist of interval graph structures and simplicial
variables. The formal definition is described in Sect. 2. An
interval graph pattern is called linear if all variables in it
have mutually distinct variable labels. For an interval graph
pattern g, the interval graph language of g, denoted by L(g),
is the set of all interval graphs which are obtained from g
by substituting arbitrary interval graphs for all variables in
g. In Fig. 1, f is a linear interval graph pattern with three
variables of variable labels x, y and z, and R( f ) is an interval
representation of f . The interval graph G is obtained from f
by replacing x, y and z with g1, g2 and g3, respectively. Then

Manuscript received March 31, 2008.
Manuscript revised July 02, 2008.
†The authors are with the Department of Informatics, Kyushu

University, Fukuoka-shi, 819–0395 Japan.
a) E-mail: h-yama@i.kyushu-u.ac.jp

DOI: 10.1587/transinf.E92.D.120

G ∈ L( f ). For a finite set of interval graphs S , a minimally
generalized linear interval graph pattern explaining S is de-
fined as a linear interval graph pattern g such that S ⊆ L(g)
and there exists no linear interval graph pattern g′ satisfying
S ⊆ L(g′) � L(g). In this paper, we give a polynomial time
algorithm for finding a minimally generalized linear interval
graph pattern explaining a given finite set of interval graphs.

It is known that the general problem of deciding graph
isomorphism appears to be hard. However for some spe-
cial classes of graphs, isomorphism can be decided effi-
ciently. The class of interval graphs is the case. Lueker and
Booth [6] gave a linear time algorithm for interval graph iso-
morphism. Their isomorphism algorithm uses a data struc-
ture called a labeled PQ-tree which is an extension of PQ-
tree [2]. PQ-trees are used to represent the permutations
of a set in which specified subsets of the set occur consec-
utively. In this paper, we introduce a new tree structured
pattern, called a PQ-tree pattern, to design polynomial time
algorithms for interval graph patterns.

As related works, Suzuki et al.[11] and Matsumoto et
al.[7] showed polynomial time learnabilities of linear tree
patterns with internal structured variables by using vari-
ous learning models. Takami et al.[12] gave a polynomial
time learning algorithm for graph structured patterns based
on two-terminal series parallel (TTSP) graphs, which are
used as data models in applications for electric networks
and scheduling problems. Many chemical compounds are
known to be represented by outerplanar graphs. Horváth
et al.[5] developed a frequent subgraph mining algorithm
in a class of outerplanar graphs that works in incremental
polynomial time. Sasaki et al.[10] presented an effective
algorithm of enumerating all frequent block preserving out-
erplanar graph patterns from a given finite set of outerplanar
graphs.

This paper is organized as follows. In Sect. 2, we for-
mally define interval graph patterns and PQ-tree patterns. In
Sect. 3, we present a polynomial time matching algorithm
which decides whether or not a given interval graph pattern
matches a given interval graph. In Sect. 4, we present a poly-
nomial time algorithm for finding a minimally generalized
linear interval graph pattern explaining a given finite set of
interval graphs. In Sect. 5, we conclude this paper with fu-
ture works.

2. Interval Graph Patterns

For a graph G = (V, E) and a vertex u ∈ V , the set of vertices

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



YAMASAKI and SHOUDAI: A POLYNOMIAL TIME ALGORITHM FOR FINDING A LINEAR INTERVAL GRAPH PATTERN
121

Fig. 1 An interval graph G (its interval representation R(G)) and an interval graph pattern f (its inter-
val representation R( f )). The interval graph G is the instance of f by θ where θ = [x/g1, y/g2, z/g3].

adjacent to u, called the neighborhood of u, is denoted by
NG(u). Occasionally we call NG(u) the open neighborhood
of u and NG(u) ∪ {u} the closed neighborhood of u. We
denote the closed neighborhood of u by NG[u]. A clique
of a graph G is a complete subgraph of G. A vertex u is
simplicial if the subgraph induced by NG(u) is a clique.

Definition 1: Let G = (V, E) be an interval graph. Let Vg

and Hg be a partition of V such that Vg ∪ Hg = V and Vg ∩
Hg = ∅. A triplet g = (Vg, E,Hg) is called an interval graph
pattern if all vertices in Hg are simplicial and no two vertices
in Hg are adjacent. Let X be an infinite alphabet. We call an
element in X a variable label. Each variable in an interval
graph pattern is labeled with a variable label in X. We call
elements in Vg and Hg a vertex and a variable, respectively.

For any interval graph pattern g, we denote the sets of
vertices, edges, and variables by V(g), E(g), and H(g), re-
spectively. The size of g is defined as |V(g)|+ |H(g)|. For any
u ∈ H(g), we denote the variable label of u by x(u). An in-
terval graph pattern g is called linear if all variables in H(g)
have mutually distinct variable labels in X, that is, for any
two variables u, v ∈ H(g), x(u) � x(v). We denote the set of
all interval graphs by IG, the set of all interval graph pat-
terns by IGP, and the set of all linear interval graph patterns
by LIGP.

Definition 2: Let f and g be two interval graph patterns in
IGP. We say that f and g are isomorphic, denoted by f � g,
if there exists a bijection ϕ : V( f ) ∪ H( f ) → V(g) ∪ H(g)
such that (1) for any u, v ∈ V( f ) ∪ H( f ), (u, v) ∈ E( f ) if
and only if (ϕ(u), ϕ(v)) ∈ E(g), (2) v ∈ V( f ) if and only if
ϕ(v) ∈ V(g), and (3) for any u, v ∈ H( f ), x(u) = x(v) if and
only if x(ϕ(u)) = x(ϕ(v)).

Definition 3: Let g1 and g2 be interval graph patterns in
IGP. For a variable label x ∈ X, the form x/g2 is called
a binding for x. A new interval graph pattern g1[x/g2] is
obtained from g1 and x/g2 by connecting all vertices and
variables in V(g2) ∪ H(g2) to all vertices in Ng1 (h) for each
variable h such that x(h) = x, and then removing h from
g1. Formally g3 = g1[x/g2] is defined as V(g3) = V(g1) ∪
V(g2), E(g3) = E(g1) ∪ E(g2) ∪ {(u, v) | u ∈ Ng1 (h), v ∈
V(g2) ∪ H(g2)} − {(u, h) | u ∈ Ng1 (h)}, and H(g3) = H(g1) ∪
H(g2)−{h}. A substitution θ is a finite collection of bindings
[x1/g1, . . . , xn/gn], where xi’s are mutually distinct variable
labels in X.

The interval graph pattern f θ, called the instance of
f by θ, is obtained by applying all the bindings xi/gi on
f simultaneously. We give an example of a substitution in
Fig. 1. For an interval graph G and an interval graph pattern
g, we say that g matches G if there exists a substitution θ
such that G � gθ.

Definition 4 ([6]): A labeled PQ-tree is a node-labeled or-
dered tree whose internal nodes consist of two classes,
namely P-nodes and Q-nodes. Each leaf and P-node is la-
beled with a nonnegative integer � and each Q-node with m
children is labeled with a lexicographically sorted sequence
of m′ pairs of integers (i1, j1), . . . , (im′ , jm′ ) where m′ ≥ 1
and 1 ≤ ik ≤ jk ≤ m for k = 1, 2, . . . ,m′. We denote the
label of a node a by Label(a). We say that two labeled PQ-
trees T1 and T2 are equivalent, denoted by T1 ≡ T2, if T2

is obtained from T1 by applying any combination of the fol-
lowing transformations:

(a) arbitrarily reordering the children of a P-node, and
(b) reversing the ordering of the m children of a Q-node

and replacing the label (i1, j1), . . . , (im′ , jm′ ) with the



122
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Fig. 2 An interval graph G has 8 maximal cliques (see also Fig. 1). Each maximal clique corresponds
to one of leaves of T (G). T ( f ) is the PQ-tree pattern of a linear interval graph pattern f (Definition 5).
In this and subsequent figures, P-nodes are drawn as circles, Q-nodes and leaves as rectangles, and
variables as dot-filled rectangles.

lexicographically sorted sequence of (m + 1 − j1,m +
1 − i1), . . . , (m + 1 − jm′ ,m + 1 − im′ ).

For a node a of a PQ-tree T , we denote by T [a] the
subtree induced by a and all descendants of a. For a Q-node
a and its label Label(a), we denote the label after applying
the transformation (b) to a by Labelr(a). The frontier of a
PQ-tree T is the ordering of its leaves obtained by reading
them from left to right. The frontier of a node a, denoted by
F(a), is the frontier of T [a]. An ordering of the leaves of T is
consistent with T if it is the frontier of a PQ-tree equivalent
to T . For each vertex u of a graph G, let C(u) be the set of
maximal cliques which contain u. It is known that G is an
interval graph if and only if there exists a linear ordering of
all maximal cliques of G such that for each vertex u of G, the
elements of C(u) appear consecutively within the ordering.
Lueker and Booth [6] gave a linear time algorithm, given an
interval graph G, to construct a labeled PQ-tree T so that
there is a bijection ψ from the set of all leaves of T to the set
of all maximal cliques of G satisfying the conditions (1)–(3).

(1) Let k be the number of leaves of T . An ordering
(b1, . . . , bk) of the leaves of T is consistent with T if
and only if for any vertex u ∈ V(G), an element of C(u)
appears consecutively in (ψ(b1), . . . , ψ(bk)).

(2) For any vertex u ∈ V(G), the characteristic node of
u is the deepest node a in T such that F(a) contains
all elements of ψ−1(C(u)). For any leaf or P-node a,
Label(a) = |{u ∈ V(G) | a is the characteristic node of
u}|.

(3) For any Q-node a and its children c1, . . . , cm, Label(a)
contains (i, j) (1 ≤ i ≤ j ≤ m) if and only if there is
a vertex u ∈ V(G) such that ψ−1(C(u)) is the set of all
leaves in the frontiers of ci, . . . , c j.

We denote the labeled PQ-tree obtained from an inter-
val graph G by T (G). For a labeled PQ-tree T , we denote

the sets of nodes and edges by V(T ) and E(T ), respectively.
A labeled PQ-tree T (G) is a tree representation of an in-

terval representation R(G) of an interval graph G. For exam-
ple, the labeled PQ-tree of the interval representation R(G)
in Fig. 1 is described in Fig. 2. A path from the root to a
leaf of T (G) corresponds to one of the segments of R(G).
For example, the paths from the root to the leaves A–F,H,I
of T (G) in Fig. 2 corresponds to the segments A–F,H,I of
R(G) in Fig. 1, respectively. The paths also correspond to
the maximal cliques of G. One of the correspondences is
described in the upper right frame Fig. 2.

Theorem 1 ([6]): For interval graphs G1 and G2, G1 � G2

if and only if T (G1) ≡ T (G2).

Definition 5: Let g be an interval graph pattern and G =
(V(g) ∪ H(g), E(g)). The PQ-tree pattern of g is the labeled
PQ-tree with variables, denoted by T (g), which is obtained
from T (G) by, for all characteristic nodes a ∈ V(T (G)) of
the variables h ∈ H(g), decreasing the label of a by one and
attaching the variable label of h to a as its variable label. We
note that the characteristic node of any variable is a leaf in
T (G) since all variables are simplicial in g.

A PQ-tree pattern is called linear if all variables in it
have mutually distinct variable labels. We give an example
of an interval graph pattern f and its PQ-tree pattern T ( f ) in
Fig. 2. We denote the set of all labeled PQ-trees by PQT ,
the set of all PQ-tree patterns by PQTP, and the set of all
linear PQ-tree patterns by LPQTP. We remind that if v is a
variable or a P-node, then Label(v) is a nonnegative integer,
otherwise, a sequence of pairs of positive integers.

Definition 6: Let t1 and t2 be PQ-tree patterns and r the
root of t2. We assume that if a PQ-tree pattern consists of a
single node, the label of the node is a positive integer. Let
h be a variable of t1 whose variable label is x ∈ X. Let
x/t2 be a binding for x. A new PQ-tree pattern t1[x/t2] is



YAMASAKI and SHOUDAI: A POLYNOMIAL TIME ALGORITHM FOR FINDING A LINEAR INTERVAL GRAPH PATTERN
123

Fig. 3 Replacements of PQ-trees in Definition 6.

Fig. 4 t1, t2 and t3 are the labeled PQ-trees of g1, g2 and g3 in Fig. 1, respectively. And t is the PQ-tree
patterns of f in Fig. 1. T is the instance of t by a substitution τ = [x/t1, y/t2, z/t3].

obtained from t1 by applying x/t2 to t1 in the following way
(see Fig. 3).

1. If r is a Q-node with k children, r is identified with
h (the new node is a Q-node) and its label is the lexi-
cographically sorted sequence of the concatenation of
Label(r) and (1, k), . . . , (1, k)︸�������������︷︷�������������︸

Label(h) times

.

2. If either r is a P-node or t2 is a single node, and

a. if Label(r) = Label(h) = 0 and the parent of h is a
P-node, the children of r are directly connected to
the parent of h (h and r are removed),

b. otherwise, r is identified with h (the new node is a
P-node) and its label is Label(r) + Label(h).

A finite collection of bindings τ = [x1/t1, . . . , xn/tn] is called
a substitution, where xi’s are mutually distinct variable la-
bels in X.

For example, in Fig. 4, the bindings x/t1, y/t2 and z/t3
are the cases (1), (2-a) and (2-b), respectively. The PQ-tree
pattern tτ, called the instance of t by τ, is obtained by ap-
plying all the bindings xi/ti on t simultaneously. We have
the next lemma for an interval graph pattern and a PQ-tree
pattern.

Lemma 1: Let f and g be interval graph patterns and x a
variable label of a vertex in H( f ). Then, T ( f )[x/T (g)] ≡
T ( f [x/g]).

Proof. Let g1 and g2 be interval graph patterns and h a vari-
able in H(g1). Let g3 = g1[x(h)/g2]. From Definition 3, for
each vertex or variable u ∈ V(g2) ∪ H(g2) and each vertex
v ∈ Ng1 (h), we can show that Ng3 [u] ⊆ Ng3 [v]. From this
fact, it is easy to see that the characteristic node of u is a
descendant of v in the PQ-tree pattern g3. Therefore we can
see that the PQ-tree pattern T (g1)[x/T (g2)] represents con-
nections between g1 and g2 produced by the substitution.
Additionally, we note that there exists no P-node which has
a P-node labeled with 0 as a child in any PQ-tree, because,
for such a PQ-tree T , there exists an ordering of all maximal
cliques of an interval graph G corresponding T such that, for
every vertex v of G, the maximal cliques containing vertex v
occur consecutively, and the ordering is not consistent with
T . Definition 6 includes the method of a substitution which
does not generate such a PQ-tree pattern, so T (g1)[x/T (g2)]
can represent all orderings of maximal cliques of g3 which
have the consecutive property. �

3. Interval Graph Pattern Matching

For a PQ-tree T and a PQ-tree pattern t, we say that t
matches T if there exists a substitution τ such that T ≡ tτ.
Unfortunately the general interval graph pattern matching
problem is hard to compute.

Theorem 2: The problem of deciding, given an interval
graph pattern g ∈ IGP and an interval graph G ∈ IG,



124
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Fig. 5 The first three interval graphs and their labeled PQ-trees which represent the digits in V =
{1, 2, . . . , |V |}.

Fig. 6 A graph G = (V, E) and a positive integer k = 3 are supposed to be instances of CLIQUE. G
is transformed into an interval graph G′ whose labeled PQ-tree is TG . G(1, 3) is one of the connected
components of G′. And k-clique is transformed into an interval graph pattern gk whose PQ-tree pattern
is tk. gk(x, y) is one of the connected components of gk.

whether or not g matches G is NP-complete.

Proof. We reduce the CLIQUE problem, which is to de-
cide whether a given general graph G = (V, E) has a clique
of size k, to the matching problem. We assume that V =
{1, 2, . . . , |V |}. We define a series of interval graphs G(i)
(i = 0, 1, . . .) inductively as follows. Let G(0) = ({b}, ∅).
For G(i − 1) = (Vi−1, Ei−1) and two new vertices a and c
(a, c � Vi−1) (i ≥ 1), we define G(i) = (Vi−1 ∪ {a, c}, Ei−1 ∪
{(a, v) | v ∈ Vi−1} ∪ {(a, c)}). Each vertex i ∈ {1, 2, . . . , |V |} is
transformed uniquely into an interval graph G(i) (see Fig. 5).
Let G(i, j) be the interval graph constructed from G(i), G( j)
and a new vertex by connecting the new vertex to all the

vertices of G(i) and G( j). For example, G(1, 3) is shown in
Fig. 6. Although no labeled PQ-tree is needed for this reduc-
tion, for easy understanding, we draw the labeled PQ-trees
of the interval graphs in Figs. 5 and 6. By using G(i) and
G(i, j) (1 ≤ i, j ≤ |V |), we transform the graph G to an inter-
val graph G′ whose labeled PQ-tree is TG (see Fig. 6). The
root of TG has just |E| children each of which represents an
edge in G. In Fig. 6, we omit the interval graph G′ because
it is too complicated to draw. Instead of it, we show one of
the interval representations R(G′) of G′. In a similar way,
we transform k-clique to an interval graph gk whose PQ-tree
pattern is tk. Let K = |E| − k(k− 1)/2. And let x1, . . . , xk and



YAMASAKI and SHOUDAI: A POLYNOMIAL TIME ALGORITHM FOR FINDING A LINEAR INTERVAL GRAPH PATTERN
125

u1, . . . , uK be mutually distinct variable labels. The root of
tk has just |E| children which represent k(k − 1)/2 edges of
k-clique and K variables for garbage collections. For k = 3,
we show one of the interval representations R(gk) of gk in
Fig. 6.

Next we show that this reduction is computed in poly-
nomial time with respect to the size of G and k. The root of
the labeled PQ-tree TG of G′ has exactly |E| children. The
subtree rooted at each child represents an edge in E. For
each edge (i, j) ∈ E, the subtree corresponding to (i, j) con-
tains exactly (2i+1)+(2 j+1)+1 = 2i+2 j+3 nodes. Thus, TG

contains 1+
∑

(i, j)∈E(2i+ 2 j+ 3) ≤ 1+ |E|(2(|V | − 1)+ 2|V |+
3) = O(|E||V |) nodes. The interval graph G′ also contains
O(|E||V |) vertices, and therefore O(|E|2|V |2) edges. The in-
terval graph pattern gk reduced from k-clique has |E|−k(k−1)
vertices and k(k− 1) edges. G′ and gk are directly computed
from G and k by simply replacing vertices and edges with
their corresponding interval graphs and connections among
the graphs. Therefore we conclude that this is a polynomial
time reduction with respect to the size of G and k.

Finally we show that gk matches G′ if and only if G
has a k-clique. Both the interval graph G′ and the inter-
val graph pattern gk consist of |E| connected components,
each of which includes exactly one vertex which is ad-
jacent to the other vertices in the component. Here we
call the vertex the root of the component. Let x1, . . . , xk

be the variable labels appearing in the connected compo-
nents of gk which contain more than one vertex. We as-
sume that gk matches G′. Then there exists a substitution
τ such that G′ ≡ gkτ. There is an isomorphism ϕ from
G′ to gkτ. Since the roots of the components of G′ are
transformed into those of gk by ϕ, there is an injection f
from {x1, · · · , xk} to {1, · · · , |V |} such that τ contains bind-
ings x1/G( f (x1)), . . . , xk/G( f (xk)). Therefore the subgraph
induced by { f (x1), · · · , f (xk)} of G is a k-clique. Conversely
we assume that G has a k-clique. Let v1, . . . , vk be the ver-
tices by which the k-clique is induced, where {v1, . . . , vk} ⊆
{1, . . . , |V |}. Let θ = [x1/G(v1), . . . , xk/G(vk)] and η =
[u1/G(w1,w′1), . . . , uK/G(wK ,w′K)] where u1, . . . , uK are the
variables for garbage collections and {(w1,w′1), . . . , (wK ,w′K)} =
E − {(vi, v j) | 1 ≤ i < j ≤ k}. And let τ = θη. Since for any
i and j (1 ≤ i < j ≤ k), the variables labeled with xi and
x j are connected through a vertex in gk, and G(vi) and G(v j)
are also connected through a vertex in G′, we conclude that
gkτ is isomorphic to G′. �

Next we give a polynomial time algorithm for deciding,
given a linear interval graph pattern g ∈ LIGP and a given
interval graph G ∈ IG, whether or not g matches G. From
Theorem 1 and Lemma 1, we have the following lemma.

Lemma 2: For g ∈ IGP and G ∈ IG, g matches G if and
only if T (g) matches T (G)

Firstly, we transform g and G into a linear PQ-tree pat-
tern T (g) and a labeled PQ-tree T (G), respectively. Sec-
ondly, we decide whether or not there is a substitution τ such
that T (G) ≡ T (g)τ. Below, we briefly denote T (G) by T and
T (g) by t. For a node a of a PQ-tree pattern t, we denote by

t[a] the PQ-tree pattern induced by a and all the nodes and
variables which are descendants of a.

Definition 7: Let t and T be a PQ-tree pattern and a labeled
PQ-tree, respectively. For any node a ∈ V(t), we say that a
subset of V(T ) is the candidate set of a, denoted by NS(a),
if it satisfies that, for any node b ∈ V(T ), b ∈ NS(a) if and
only if t[a] matches T [b].

For v ∈ V(t) ∪ V(T ), we denote by depth(v) the depth
of a node v and by ch(v) the number of children of a node v.
The following algorithm computes NS(a) for each a ∈ V(t)
by using NS(a1), . . . ,NS(ach(a)) where a1, . . . , ach(a) are all
children of a. We assign a candidate set to each node of
a given linear PQ-tree pattern t. The algorithm terminates
when a candidate set is assigned to the root of t. From the
definition of a candidate set, NS(rt) contains the root of T if
and only if t matches T , where rt is the root of t.

Since no variable of t has a child, for any substitution
τ and a node a ∈ V(t), the depth of a in tτ is equal to that
of a of t. Therefore, in order to decide whether or not t
matches T , we only need to compute NSd(a) = {b ∈ NS(a) |
depth(b) = depth(a)} for all a ∈ V(t). Below we give an
algorithm for computing the sets NSd(a) for all node a ∈
V(t). The assignment method depends on the type of a node
a. The label of a node, which is a nonnegative integer or
a sequence of pairs of positive integers, plays an important
role for the assignment.

Leaf: NSd(a) is the set of all leaves b ∈ V(T ) such that
depth(b) = depth(a) and Label(b) = Label(a).

Variable: NSd(a) is the set of all nodes b ∈ V(T ) such that
depth(b) = depth(a) and either

(1) b is a leaf and Label(b) > Label(a),
(2) b is a P-node and Label(b) ≥ Label(a), or
(3) b is a Q-node and Label(b) contains

(1, ch(b)), . . . , (1, ch(b))︸������������������������︷︷������������������������︸
at least Label(a) times

.

P-node: NSd(a) is the set of all P-nodes b ∈ V(T ) satisfying
the following three conditions.

(1) depth(b) = depth(a) and Label(b) = Label(a).
(2) If there is a child a′ of a such that a′ is a variable

and Label(a′) = 0, then ch(b) ≥ ch(a), otherwise,
ch(b) = ch(a).

(3) Let a1, . . . , ach(a) and b1, . . . , bch(b) be the children
of a and b, respectively. Then there is an in-
dex subsequence m1, . . . ,mch(a) (1 ≤ m1 < · · · <
mch(a) ≤ ch(b)) such that bmk ∈ NSd(ak) for all k
(1 ≤ k ≤ ch(a)).

The condition (3) is decided by computing the maxi-
mum graph matching for a bipartite graph B = (U,V, E)
where U = {a1, . . . , ach(a)}, V = {b1, . . . , bch(b)}, E =
{(ai, b j) | 1 ≤ i ≤ ch(a), 1 ≤ j ≤ ch(b), b j ∈ NSd(ai)}).
A node b is in NSd(a) if and only if b satisfies (1), (2)
and that B has the maximum matching of size ch(a).

Q-node: NSd(a) is the set of all Q-nodes b ∈ V(T ) satisfy-



126
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

ing the following three conditions.

(1) ch(b) = ch(a) and depth(b) = depth(a).
(2) Either Label(b) = Label(a) or Label(b) =

Labelr(a) holds.
(3) Let a1, . . . , ach(a) and b1, . . . , bch(a) be the ordered

children of a and b, respectively. Then, for all
i (1 ≤ i ≤ ch(a)), if Label(b) = Label(a), then
bi ∈ NSd(ai), otherwise, bch(a)−i+1 ∈ NSd(ai).

Lemma 3: The problem of deciding, given a linear PQ-
tree pattern t ∈ LPQTP and a labeled PQ-tree T ∈ PQT ,
whether or not t matches T is solvable in O(nN1.5) time,
where n = |V(t)| and N = |V(T )|.
Proof. The correctness follows from the following fact. For
a node b ∈ V(T ), b ∈ NSd(a) if and only if t[a] matches T [b]
and depth(b) = depth(a). This is shown by induction on the
depth of a node a ∈ V(t) in a bottom-up manner. We omit
the proof because it is long but not difficult.

Next we analyze the time complexity of the algo-
rithm. Let d be the height of t, and ni and Ni (0 ≤ i ≤
d) the numbers of nodes of depth i of t and T , respec-
tively. For a node a ∈ V(t) of depth i, if a is either a
leaf or a variable, we need O(Ni) time to compute the set
NSd(a). If a is a P-node, we compute a maximum match-
ing problem for a bipartite graph. It is known that the
maximum matching problem for a given bipartite graph G
can be computed in O(|E(G)|

√
|V(G)|) time [4]. Thus we

need O(ch(a)ch(b)
√

ch(a) + ch(b)) time to decide whether
or not a P-node b ∈ V(T ) is in NSd(a). Let Ki,max =

max{ch(b) | b is a P-node of depth i in V(T )}. Then we
need O(ch(a)Ni+1

√
Ki,max) time for computing NSd(a). In

the case of a Q-node a, we need O(Ni+1) time for comput-
ing NSd(a), since we must examine all children of Q-nodes
of depth i of T . Therefore we need O(ni+1Ni+1

√
Ki,max)

time to compute all nodes of depth i of t. Since a node
of depth d of t is either a leaf or a variable, the to-
tal time for computing NSd(a) for all nodes a ∈ V(t) is
O(
∑d−1

i=0 ni+1Ni+1
√

Ki,max + ndNd) time. Since
∑d

i=0 ni = n,∑d
i=0 Ni ≤ N, and max{Ki,max | 0 ≤ i ≤ d} ≤ N,

d−1∑
i=0

ni+1Ni+1

√
Ki,max ≤ (

d∑
i=0

ni)(
d∑

i=0

Ni)
√

N = nN1.5.

Therefore we need O(nN1.5) time to decide whether or not t
matches T . �

Theorem 3: The problem of deciding, given a linear inter-
val graph pattern g ∈ LIGP and an interval graph G ∈ IG,
whether or not g matches G is solvable in polynomial time.

Proof. Firstly, we transform g and G into a PQ-tree pattern
T (g) and a labeled PQ-tree T (G), respectively. These trans-
formations need O(n+m) and O(N+M) times, respectively,
where n = |V(g)| + |H(g)|, m = |E(g)|, N = |V(G)|, and M =
|E(G)| [6]. Since g has at most n maximal cliques, the num-
ber of leaves of T (g) is at most n. Since any internal node of
T (g) has at least 2 children, we have |V(T (g))| = O(n). Sim-
ilarly we have |V(T (G))| = O(N). From Lemma 3, we need

O(nN1.5) time to decide whether or not T (g) matches T (G).
Then the total complexity is O(nN1.5 + m + M) time. �

4. Minimally Generalized Linear Interval Graph Pat-
terns

For an interval graph pattern g, let L(g) = {G ∈ IG | g
matches G}. For a finite set of interval graphs S ⊂ IG, a
minimally generalized linear interval graph pattern explain-
ing S is defined as a linear interval graph pattern g ∈ LIGP
such that S ⊆ L(g) and there exists no linear interval graph
pattern g′ ∈ LIGP satisfying S ⊆ L(g′) � L(g).

For a PQ-tree pattern t, the PQ-tree pattern language
LT (t) of t is defined as {T ∈ PQT | t matches T }. For
a finite set of PQ-trees S T ⊂ PQT , a minimally general-
ized linear PQ-tree pattern explaining S T is defined as a
linear PQ-tree pattern t ∈ LPQTP such that S T ⊆ LT (t)
and there exists no linear PQ-tree pattern t′ ∈ LPQTP sat-
isfying S T ⊆ LT (t′) � LT (t).

Lemma 4: For S ⊂ IG and g ∈ LIGP, g is a minimally
generalized linear interval graph pattern explaining S if and
only if T (g) is a minimally generalized linear PQ-tree pat-
tern explaining S T = {T (g) | g ∈ S }.

Proof. From Lemma 2, we make a point that S ⊆ L(g)
if and only if S T ⊆ LT (T (g)). Moreover, for two linear
interval graph patterns g and g′, L(g′) ⊆ L(g) if and only if
LT (T (g′)) ⊆ LT (T (g)). Therefore we have the lemma. �

For a given set S ⊂ IG of interval graphs, we find a
minimally generalized linear interval graph pattern explain-
ing S in the following way. First we transform the set S
into a set of labeled PQ-trees S T ⊂ PQT . Then we find
a minimally generalized linear PQ-tree pattern explaining
S T . Finally we transform the obtained minimally general-
ized linear PQ-tree pattern explaining S T into the minimally
generalized linear interval graph pattern explaining S .

The size of a PQ-tree pattern t is defined as |V(t)| +
|H(t)|. Let S T be a finite set of PQ-trees. We define the
following 4 classes of linear PQ-tree patterns s, p, q(w,Z),
and r (Fig. 7).

• The linear PQ-tree pattern s consists of only one vari-
able of label 1.
• The linear PQ-tree pattern p consists of one P-node

with label 0 and two variables with label 0. Both vari-
ables are the children of the P-node.
• The linear PQ-tree patterns q(w,Z) consist of one Q-node

with label w and a series of variables or leaves with

Fig. 7 A basic set of linear PQ-tree patterns. The 3rd and 4th linear PQ-
tree patterns are two examples of the form q(w,Z) which are obtained from
the PQ-tree of minimum size in S T .



YAMASAKI and SHOUDAI: A POLYNOMIAL TIME ALGORITHM FOR FINDING A LINEAR INTERVAL GRAPH PATTERN
127

label 0. All the variables and leaves are the children
of the Q-node. The index (w,Z) satisfies the following
conditions: w is the label of the Q-node which does

Fig. 8 Procedure Extraction-Qpattern and its example. A linear PQ-
tree pattern q[i, j] is obtained from the j-th Q-node of depth i of the
above PQ-tree by this procedure. For the above labeled PQ-tree, we
have q[0,1] = q((1, 2)(2, 3), ∅), q[1,1] = q((1, 2)(2, 3), {2}) and q[1,2] =

q((1, 2)(2, 3)(3, 4), {3}).

Fig. 9 A refinement process of Algorithm MINL-PQTP. The numbers over the arrows indicate the refinements (1)–(4) used in the
algorithm. The PQ-tree patterns in Fig. 8 are used for the refinements (3). The label “x” specifies the target variable of a refinement.

not contain a pair (1,m), where m be the number of
children of the Q-node, and Z is the set {i ∈ {1, . . . ,m} |
w contains two pairs ( j, i) and (i, k), and the i-th child
of the Q-node is a leaf}.
From the PQ-tree of minimum size in S T , we generate
all linear PQ-tree patterns of the form q(w,Z) by using
Procedure Extraction-Qpattern in Fig. 8.
• The linear PQ-tree pattern r consists of only one leaf

node of label 1.

We give an algorithm for finding a minimally general-
ized PQ-tree pattern, called MINL-PQTP.

Algorithm MINL-PQTP

We start with the linear PQ-tree pattern t consisting of only
one variable with label 0. This pattern t generates all labeled
PQ-trees. Then we repeatedly apply a combination of the
following refinements to all variables of a temporary linear
PQ-tree pattern t while S T ⊂ LT (t). Let h be a variable of t
whose variable label is x.

(1) if S T ⊆ LT (t[x/s]) then t := t[x/s];
(2) if S T ⊆ LT (t[x/p]) then t := t[x/p];
(3) if there are w and Z such that S T ⊆ LT (t[x/q(w,Z)]) then

t := t[x/q(w,Z)];

If none of the above refinements can be applied to the cur-
rent linear PQ-tree pattern t, we repeatedly apply the next
refinement while S T ⊆ LT (t).

(4) if S T ⊆ LT (t[x/r]) then t := t[x/r];

If no more refinement is possible, we output the cur-
rent linear PQ-tree pattern t. An example of a process of
refinements is shown in Fig. 9.

Lemma 5: For a given finite set of labeled PQ-trees S T ⊂
PQT , the algorithm MINL-PQTP correctly outputs a min-
imally generalized linear PQ-tree pattern explaining S T .



128
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Proof. Let t1 be a linear PQ-tree pattern immediately before
an application of refinements (4) starts and t an output linear
PQ-tree pattern of Algorithm MINL-PQTP. We will show
that if there is a linear PQ-tree pattern t′ such that S T ⊆
LT (t′) ⊆ LT (t), then t′ ≡ t. It is easy to see that LT (t′) ⊆
LT (t1). Let t′′ be the linear PQ-tree pattern obtained by t′

by replacing each leaf v ∈ V(t′) with Label(v) ≥ 1 with
a variable of label Label(v) − 1. Obviously S T ⊆ LT (t′′)
holds. Let x1, . . . , xm (m ≥ 0) be all labels of variables in t′′.
And let θr = [x1/r, . . . , xm/r]. Then there is a substitution
θ such that t′′θr ≡ t1θ. Let θ = [y1/s1, . . . , yn/sn] where
y1, . . . , yn (n ≥ 0) are all variables of t1 and s1, . . . , sn are
PQ-trees. For each si (1 ≤ i ≤ n), let s′i be the linear PQ-tree
pattern obtained from si by replacing each leaf v ∈ V(si)
with Label(v) ≥ 1 with a variable of label Label(v) − 1. Let
θ′ = [y1/s′1, . . . , yn/s′n], then we can see that t′′ ≡ t1θ′ holds.
If s′i is a linear PQ-tree pattern which can be produced from
a linear PQ-tree pattern in the basic set of linear PQ-tree
patterns except r, this contradicts the assumption that none
of refinements (1)–(3) can be applied to t1. Therefore s′i is
the linear PQ-tree pattern consisting of only one variable of
label 0. Then t1θ′ ≡ t1 holds. Consequently we can see
that t′′ ≡ t1. Since t′ can be obtained from t′′ by a series
of refinements (4), t′ can also be obtained from t1 by the
same series of refinements (4). Let K = max{Label(v) |
v is a leaf of t}. Let T be the linear PQ-tree pattern which is
obtained from t′ by substituting leaves of label K + 1 for all
variables of t′. If t′ � t, t does not match T . This contradicts
LT (t′) ⊆ LT (t). Then we have t′ ≡ t. �

Lemma 6: For a given finite set of labeled PQ-trees S T ⊂
PQT , the algorithm MINL-PQTP outputs a minimally
generalized linear PQ-tree pattern in O(|S T |N3

minN1.5
max) time,

where Nmin and Nmax are the minimum and maximum sizes
of PQ-trees in S T .

Proof. From Lemma 3, we need O(|S T |NminN1.5
max) time to

decide whether or not S T ⊆ LT (t). Since the refinement
operations (1)–(4) are applied at most O(N2

min) times, the
total time complexity of this algorithm is O(|S T |N3

minN1.5
max)

time. �

Theorem 4: For a given finite set of interval graphs S ⊂
IG, a minimally generalized linear interval graph pattern
explaining S can be computed in polynomial time.

Proof. The transformation of the set of interval graphs S to a
set of labeled PQ-trees S T ⊂ PQT needs O(|S |(nmax+mmax))
time, where nmax (resp. mmax) is the maximum number
of vertices (resp. edges) of interval graphs in S . From
Lemma 6, we can find a minimally generalized linear PQ-
tree pattern explaining S T in O(|S |n3

minn1.5
max) time, where

nmin is the minimum number of vertices of interval graphs
in S . Therefore the time complexity of the algorithm is
O(|S |(n3

minn1.5
max + mmax)). �

5. Conclusions and Future Work

From Theorems 3 and 4, we conclude that the class of linear

interval graph pattern languages is polynomial time induc-
tively inferable from positive data by using the theorems in
[1], [9]. We are now considering polynomial time learnabil-
ities of graph languages on classes of graph structured pat-
terns expressing probe interval graphs, chordal graphs, and
outerplanar graphs, and so on.

References

[1] D. Angluin, “Finding patterns common to a set of strings,” J. Com-
put. Syst. Sci., vol.21, pp.46–62, 1980.

[2] K.S. Booth and G.S. Lueker, “Testing for the consecutive ones prop-
erty, interval graphs and graph planarity using PQ-tree algorithms,”
J. Comput. Syst. Sci., vol.13, pp.335–379, 1976.

[3] F. Gardi, “The mutual exclusion scheduling problem for proper
interval graphs,” LIF Research Report 02-2002, Laboratoire
d’Informatique Fondamentale de Marseille, April 2002.

[4] J. Hopcroft and R. Karp, “An n5/2 algorithm for maximum match-
ing in bipartite graphs,” SIAM J. Comput., vol.2, no.3, pp.225–231,
1973.

[5] T. Horváth, J. Ramon, and S. Wrobel, “Frequent subgraph mining in
outerplanar graphs,” Proc. KDD 2006, pp.197–206, 2006.

[6] G.S. Lueker and K.S. Booth, “A. linear time algorithm for decid-
ing interval graph isomorphism,” J. ACM, vol.26, no.2, pp.183–195,
1979.

[7] S. Matsumoto, T. Shoudai, T. Miyahara, T. Uchida, and Y. Suzuki,
“Learning of finite unions of tree patterns with internal structured
variables from queries,” IEICE Trans. Inf. & Syst., vol.E91-D, no.2,
pp.222–230, Feb. 2008.

[8] F.R. McMorris, C. Wang, and P. Zhang, “On probe interval graphs,”
Disc. Appl. Math., vol.88, pp.315–324, 1998.

[9] T. Shinohara, “Polynomial time inference of extended regular pat-
tern languages,” Proc. RIMS Symp. Software Science and Engineer-
ing, Springer-Verlag, LNCS 147, pp.115–127, 1982.

[10] Y. Sasaki, H. Yamasaki, T. Shoudai, and T. Uchida, “Mining of fre-
quent block preserving outerplanar graph structured patterns,” Proc.
ILP 2007, Springer-Verlag, LNAI 4894, pp.239–253, 2008.

[11] Y. Suzuki, T. Shoudai, T. Miyahara, and T. Uchida, “Ordered term
tree languages which are polynomial time inductively inferable from
positive data,” Theor. Comput. Sci., vol.350, pp.63–90, 2006.

[12] R. Takami, Y. Suzuki, T. Uchida, T. Shoudai, and Y. Nakamura,
“Polynomial time inductive inference of TTSP graph languages
from positive data,” Proc. ILP 2005, Springer-Verlag, LNAI 3625,
pp.366–383, 2005.

[13] P. Zhang, E.A. Schon, S.G. Fisher, E. Cayanis, J. Weiss, S. Kistler,
and P.E. Bourne, “An algorithm based on graph theory for the as-
sembly of contings in physical mapping of DNA,” CABIOS, 10,
pp.309–317, 1994.

[14] P. Zhang, “Probe interval graph and its applications to physical map-
ping of DNA,” Int. Conf. Computational Molecular Biology RE-
COMB 2000 (Poster Session), 2000.



YAMASAKI and SHOUDAI: A POLYNOMIAL TIME ALGORITHM FOR FINDING A LINEAR INTERVAL GRAPH PATTERN
129

Hitoshi Yamasaki received the B.S. degree
in Physics, the M.S. degree in Informatics from
Kyushu University, in 2004 and 2006, respec-
tively. He is currently a Ph.D. student in Kyushu
University. His research interests include algo-
rithmic graph theory and knowledge discovery
from structured data.

Takayoshi Shoudai received the B.S. in
1986, the M.S. degree in 1988 in Mathematics
and the Dr. Sci. in 1993 in Information Sci-
ence all from Kyushu University. Currently, he
is an associate professor of Department of In-
formatics, Kyushu University. His research in-
terests include algorithmic graph theory, algo-
rithmic learning theory, and data mining from
graph-structured data. He is a member of IPSJ
and ACM.


