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Differentiating Honeycombed Images from Normal HRCT Lung
Images

Aamir Saeed MALIK†, Nonmember and Tae-Sun CHOI††∗a), Member

SUMMARY A classification method is presented for differentiating
honeycombed High Resolution Computed Tomographic (HRCT) images
from normal HRCT images. For successful classification of honeycombed
HRCT images, a complete set of methods and algorithms is described from
segmentation to extraction to feature selection to classification. Wavelet
energy is selected as a feature for classification using K-means clustering.
Test data of 20 patients are used to validate the method.
key words: segmentation, extraction, feature selection, wavelet energy,
classification, K-means clustering

1. Introduction

An automated Computer Aided Diagnosis (CAD) system re-
quires unsupervised segmentation, segmented region extrac-
tion and labeling, feature selection and finally classification.
Our aim is to address all these requirements. The objective
of HRCT is to assess a variety of lung diseases, for exam-
ple, pulmonary emphysema, nodules, interstitial lung dis-
ease. HRCT has been offering increasingly better anatomic
resolution because of very thin image slices, and it is a non-
invasive and non-traumatic diagnostic method. However, as
a consequence of thin slices, we get a sequence of images
consisting of large number of slices for a single patient. This
fact results in time consuming visual assessment of all the
images. According to [1], experienced observers typically
make correct global diagnosis of parenchymal lung diseases
in 40% to 70% of cases. Further, interpretation of HRCT
images requires special training and experience from a ra-
diologist. Hence, CAD can help to produce objective mea-
sures of abnormal patterns in lungs and assist radiologists in
assessing diseases.

Today, HRCT is a widely used technique for the assess-
ment of the lung diseases. In this letter, we deal with one of
the disease patterns, i.e., Honeycombing. Honeycombing
is a lesion belonging to the diffuse lung disease category.
Among the entire diffuse lung disease family, honeycomb-
ing is the most difficult pattern to detect automatically as
shown by Uppaluri et al. [2]. Pathologically, honeycomb-
ing is defined by the presence of small air-containing cystic
spaces with thickened walls composed of dense fibrous tis-
sue. As honeycomb cysts are usually clustered together, it
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has the characteristic appearance of “honeycombing”. Hon-
eycombing is difficult to detect due to its textural and struc-
tural appearance, which changes with the progression of the
disease.

In this letter, we present a method to differentiate the
honeycombed images from the normal HRCT images. First,
the optical filter described in Sect. 3 is used for the seg-
mentation of the images. Then an algorithm is presented in
Sect. 4 for extraction of the lungs. Section 5 describes fea-
tures based on wavelet energy that are used for classification
using K-means clustering in Sect. 6.

2. Previous Work

The related work can easily be divided into two categories;
one dealing with the segmentation issue and the other with
the classification. First we discuss the various segmentation
methods published in literature. M.S. Brown et al. [3] used
explicit anatomical knowledge (expected size, shape, rela-
tive position of objects in the same or adjacent slices, etc.)
to generate an anatomical model. This model was developed
with the guidance from experienced radiologists. S. Hu et al.
[4] used an iterative searching method to compute an opti-
mal threshold value for each CT case and use conditional
morphological operations to segment lung regions. In addi-
tion, many other methods are published including using ar-
tificial neural networks to classify each pixel in the CT slice
into different anatomical structure, a fully automated seg-
mentation process based on segmenting the potential lung
areas using an adaptive threshold based on pixel value dis-
tribution in each CT slice, using anatomy guided 3D water-
shed transform for lung lobe segmentation, etc.

Many papers have been published for assessing lung
diseases. Generally they are based on textural features.
Prasad et al. [5] presented an automated texture based unsu-
pervised system for the classification of lung HRCT find-
ings in emphysema, ground-glass opacity, honeycombing
and bronchiectasis. Shamsheyeva et al. [6] interpreted lung
patterns as textures and developed a texture classification
technique for segmentation of lung patterns based on Sup-
port Vector Machines learning algorithm.

As mentioned above, in most of the previous research
works, honeycombing was detected using texture. However,
as the disease progresses, the appearance of honeycombed
cysts changes to “reticular pattern”, i.e., linear or curvilin-
ear. Consequently, we have explored alternative methods
for detecting honeycombing and our technique is different in
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Fig. 1 HRCT image, its DCT spectrum & filter designed with σ1 = 0.01
& σ2 = 0.1.

respect that instead of exploiting various textural features, it
uses energy information for classification of honeycombing.

3. Segmentation

We introduce a segmentation method based on bipolar in-
coherent image processing. T.C. Poon and P.P. Banerjee [7]
has discussed bipolar incoherent image processing in detail.
The sharpness of pixel values in the image is found by con-
volving the spectrum of the intensity image (|Í0(x, y)|2) with
the transfer function which in our case is Optical Transfer
Function (OTF). The computed image [ic(x, y)] is given as:

ic(x, y) = Re[DCT−1{DCT{|Í0(x, y)|2}OTF́Ω(kx, ky)}]
(1)

Where:

OTF́Ω(kx, ky)=exp[−σ1(k2
x+k2

y )]−exp[−σ2(k2
x+k2

y )]

(2)

The processing in the frequency domain is particularly use-
ful for noise reduction as the noise frequencies are easily
filtered out. The high frequency component of an image
area can be determined by processing with Discrete Cosine
Transform (DCT) and analyzing the frequency distribution.
So, the OTF is a filtering operation that provides the sharp-
ness at pixel points in an image. The filtering operation de-
pends upon σ1 and σ2. Figure 1 shows an HRCT image, its
corresponding spectrum obtained using DCT and the filter
with σ1 = 0.01 and σ2 = 0.1.

Once the OTF is applied to the HRCT images, we can
select the boundary points for the segmented regions in the
HRCT segmented image. So the selection at a point (i, j)
can be computed in a small window around (i, j) and the
value at (i, j) can be replaced by the sum of computed val-
ues of all pixels in that window only after enhancing the
extracted edges and removing noise, if any. Therefore, the
segmented point can also be given by the following equation
where OSO stands for Optical Segmentation technique:

OSO(i, j) =
i+N∑

x=i−N

j+N∑
y= j−N

ic(x, y) (3)

Figure 2 shows the segmentation results with various
different values of σ1 and σ2. We have used heuristic ap-
proach to select σ1 and σ2 for segmentation.

4. Extraction of Lungs

Lets first consider the extraction of lungs from the image.

Fig. 2 Segmentation results with different values of sigmas.

The algorithm for extraction of lungs is as follows:

1. Process original HRCT slice using OTF in DCT do-
main (σ1 = 0.05 and σ2 = 1) and invert it (hence
removing thorax). The image obtained after OTF pro-
cessing is inverted so as to highlight the edges detected
by OTF. The inverted image IV (x, y) is obtained from
the computed image in Eq. (1) as:

IV (x, y) = max(ic(x, y)) − ic(x, y) (4)

2. Convert the image to a binary image (IB) using thresh-
olding.

IB =

{
0, IV (x, y) < 0.99
1, IV (x, y) ≥ 0.99

(5)

3. Label the regions as separate independent objects and
remove small objects from the image based on the area
of each object. Let RL be region with label L then:

RL =

{
0, Area(RL) ≤ 8000pixels
1, Area(RL) > 8000pixels

,

L = 1, 2, 3, 4. (6)

4. Remove the regions that connect to any of the boundary
in the image.

RL =

{
0, boundary(RL) = B pixels
1, boundary(RL) � B pixels

,

L = 1, 2, 3, 4 (7)

boundary (RL) = Any boundary pixel of the region L
B = Any boundary pixel of the image slice

5. Fill the holes within the remaining regions (the holes
are filled with the boundary pixel value of the region).

6. Extract lungs based on the area calculated in step 3.

RLung =

{
max(area(RL)), Lung = 1
(max−1)(area(RL)), Lung = 2

(8)

Where Lung = 1, 2; L = 1, 2, 3, 4 . . . . . .

Figure 3 shows some of the steps of above mentioned
algorithm.

5. Wavelet Energy

We base our theory on the premise that the various anatom-
ical structures exhibit different and unique energy. Hence,
the normal HRCT lung image will exhibit different energy
as compared to the honeycombed HRCT image. Therefore,
the energy becomes the unique attribute that will differen-
tiate a honeycombed image from a normal HRCT image.
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Fig. 3 Some of the steps of the algorithm for extraction of lungs. (a)
Inverted (step 1) (b) Binary (step 2) (c) Removing small objects (step 3) (d)
Lungs extraction (step 6).

Table 1 Results of energy components of 3 patients.

It is similar to the concept that every body part has unique
absorption characteristic when exposed to X-Rays. X-ray
attenuation can be used to distinguish between various body
parts. Alternatively other information can be also used, for
example, the energy information of a body part.

We use the energy information to separate honey-
combed image from a normal HRCT image. That energy
information is obtained using wavelet transform. We have
used Reversible Biorthogonal wavelet and we show that en-
ergy obtained from this wavelet transform is quite distinct
for differentiation between a honeycombed and a normal
HRCT image.

We performed 3-level wavelet decomposition. Hence
the coefficient matrices for all the three levels were gener-
ated. The coefficient matrices were generated for the ap-
proximation, horizontal, vertical and diagonal details. Once
the coefficient matrices were obtained, we calculated energy
corresponding to each of the coefficient matrix, i.e., for a
two-dimensional wavelet decomposition, the percentage of
energy corresponding to the approximation, horizontal, ver-
tical, and diagonal details. Hence a total of 12 decimal val-
ues per wavelet are calculated for each image slice. We also
calculated Shannon and Log energy entropy values for each
image slice. All these energy values are calculated for the
lungs extracted in previous section.

Table 1 gives a summary of these values for 3 patients.
These values are given as a percentage of energy calculated.
Table 1 provides energy values for the Shannon, Log energy
and approximation, horizontal, vertical and diagonal energy
percentage values for decomposition level 1. Similarly the
approximation, horizontal, vertical and diagonal energy per-
centage values for decomposition levels 2 and 3 were calcu-
lated. We performed this experiment for 20 patients: 18 with
normal HRCT images and 2 with honeycombed images.

6. Classification

In Hierarchical method, as clusters grow in size, the actual
expression patterns become less relevant. Therefore, as the
number of patients increase, the hierarchical method might
fail. Hence, we have used the K-means clustering for clas-

Fig. 4 Silhouette diagram.

sification which performs well for large cluster sizes. K-
means clustering method partitions the observations in the
data into K mutually exclusive clusters. We used cosine dis-
tance method for this calculation. Next, we used the member
objects and the centroid to define each cluster. The centroid
for each cluster is the point to which the sum of distances
from all objects in that cluster is minimized.

We performed the experiment with 20 patients. The pa-
tients with honeycombed HRCT images are patient #1 and
patient #15. The rest have normal HRCT images. The re-
sults of this experiment are shown in Fig. 4. It can be seen
that cluster #2 has patient #1 as well as patient #15 (both
honeycombed patients in one cluster) while cluster #1 have
Patient #2 to #14 and #16 to #20 (all the normal patients).
From the silhouette plot in Fig. 4, it can be seen that almost
all points in cluster #1 have a large silhouette value, greater
than 0.7. Also, both the points in cluster #2 have a large
silhouette value too, greater than 0.7. Hence, this large sil-
houette value indicates that the cluster #1 is well separated
from neighboring cluster #2.

7. Conclusions

The objective of this letter is to present a classification
method that can successfully differentiate the honeycombed
HRCT images from the normal HRCT images. For this pur-
pose, first the images are segmented using an optical filter
followed by our proposed extraction algorithm that success-
fully extracts the lung regions. Then, percentage of wavelet
energy is selected as a feature that is used by K-means clus-
tering for classification of honeycombed and normal HRCT
images. For testing, a set of 20 patients were selected: 18
of them had normal HRCT images and 2 of them had hon-
eycombed HRCT images. It was found that the wavelet en-
ergies for the normal HRCT differed from those of honey-
combed HRCT images. Hence the wavelet energies served
as a differentiating feature for classification of normal and
honeycombed HRCT images.
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8. Future Work

We plan to include data of more patients as well as com-
parison with other methods for validation of the proposed
algorithm. Additionally, we will provide method for adap-
tive selection of σ1 and σ2.
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