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PAPER

Segmenting Shape Using Deformation Information

Ruiqi GUO†, Nonmember, Shinichiro OMACHI††, Member, and Hirotomo ASO††, Fellow

SUMMARY To segment a shape into parts is an important problem in
shape representation and analysis. We propose in this paper a novel frame-
work of shape segmentation using deformation models learned from mul-
tiple shapes. The deformation model from the target image to every other
image is then estimated. Finally, normalized-cut graph partition is applied
to the graph constructed based on the similarity of local patches in the tar-
get image, and a segmentation of the shape is carried out. Experimental
results for images from MPEG7 shape database show the effectiveness of
the proposed method.
key words: shape segmentation, shape matching, deformation model,
graph partition

1. Introduction

A significant problem in many computer vision and com-
puter graphics applications is the retrieval of a well-
structured shape model by segmenting it into a set of simpler
shape segments, such that each segment can be semantically
meaningful and easier to model. Complex shapes are often
characterized as a collection of parts. Many of these ob-
jects undergo articulated motion in which each part moves
independently and rigidly in its own motion model, stretch-
ing or rotating with respect to the other parts of the object.
Shape segmentation finds its uses in many fields of applica-
tions. Such techniques are employed in medical imaging for
segmenting shape of an organ, in computer-aided design for
identifying segments of mechanical parts, reverse engineer-
ing of CAD model and in computer graphics for construct-
ing geometric models, etc. Also, a proper segmentation of
a shape can be useful in shape matching, shape analysis and
object detection in that it provides a representation with se-
mantic contexts.

In this paper, we propose a novel framework of shape
segmentation using deformation models learned from multi-
ple shapes. Our framework contains three steps. Firstly, we
roughly divide a target shape into a number of patches. This
is done by randomly sampling points in the internal of the
target shape. Then they are clustered with k-means method.
Next, correspondences between the target and reference im-
ages are found using the Shape Context shape matching [1],
then the Thin Plate Spline [2] transformation model from
the target shape to each of the different reference shapes
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is estimated. Using the transformation models, the defor-
mational pattern of each patch under the transformation is
calculated. Finally, a graph is created, with patches as ver-
tices and the affine-error between two patches as the weight
of edges between them. This graph captures the relation of
local patches by evaluation of pair-wise similarity between
them. Normalized cut graph partition algorithm is then ap-
plied to the graph by taking the graph into several subsets.
By merging the patches that belong to a same subset, the fi-
nal segmentation is computed. The complete framework is
shown in Fig. 1. To address the effectiveness and the appli-
cation of the proposed method, shape segmentation experi-
ment with a number of shape categories in MPEG7 database
is shown in the latter part of the paper.

2. Related Work

There are literatures related to the shape segmentation
method. Current approaches using geometry, topology and
dynamic analysis models had been established and studied.
Siddiqi et al. proposed a theory for representing shapes by
shocks which is called shock graph model [3]. They also ap-
plied the theory to a shape matching problem by introduc-
ing a novel tree matching algorithm. Wu and Levine pro-
posed a physics-based segmentation method [4]. An object
is viewed as a charged conductor and the part boundaries are
detected based on the electrical charge density distribution.
A survey article [5] gives more detailed information on this
issue.

In more recent works, Dey et al. proposed a method
for defining features of shapes by stabilizing shape induced
flows [6]. They also developed a shape matching algorithm
based on the features. Gorelick et al. proposed a segmen-
tation method by thresholding Poisson equation solution [7]
as a product of Poisson equation based shape representation.
Reniers and Telea proposed a hierarchical shape segmenta-
tion method by skeletonizing the shape [8]. Kageyama et al.
proposed a method to decompose a shape into parts with a
hierarchical structure by categorizing the edges of the graph
obtained by the medial axis transform of the shape [9].

All of these methods try to segment a shape using one
single image. Unfortunately, however, the ideal segmenta-
tion containing rich information from one single image can
be hard. The most concerning problem of the shape segmen-
tation lies in setting a proper criterion of geometric segmen-
tation, which is often ambiguous and sometimes can only
be assumed routinely. Utilizing only the geometric features
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Fig. 1 An overview of the proposed shape segmentation framework. k-means provides an initial
clustering. Shape Contexts matching results are fed to produce the TPS deformation models. A graph
of local patches and their dissimilarity relations is partitioned using Normalized-cut method. Then the
final segmentation result is obtained.

from one static, isolated shape, these frameworks are inher-
ently incapable of processing semantic information that can
be extracted from multiple shapes of a category.

Many of shape analysis tasks that involve perceptual
shape grouping and segmentation deal with huge amount
of shapes. Thus, it is reasonable to assume that multiple
instances of a prototype exist for the same shape category.
For example, when segmenting the shape of an organ, it is
highly possible that at least one reference shape of the organ
is available and useful information can be extracted from
the comparison between the target shape and the reference
ones. Motivated by this idea, the proposed method utilizes
the deformation information with multiple images to help
segmenting the target shape. We aim at segmentation of a
shape into a number of parts, of which the dissimilarity be-
tween each component is most significant.

3. Methodology

3.1 Rough Initial Clustering

First, we randomly sample a number of points si (i =
1, . . . ,N) from the internal of the target shape. And a pair
of points that are too close to each other are removed so that
the points distribute uniformly within the shape. Next, us-
ing k-means [10] approach, we cluster these sampled points
into K clusters, {Pi|i = 1, . . . ,K}, where K is relatively large
compared to the desired number of segmentation. Each clus-
ter Pi can be seen as a patch. Since all segmentation in later
stages are merged from the initial clusters, the result cannot
be more “refined” than the initial one. The final result is not
sensitive to the initial clusters if the number of initial cluster
is large. As a constraint, it is required that the minimal num-
ber of points in a cluster is 3, since the affine transformation
estimation needs at least 3 points.

3.2 Transformation Recovery

In this step, we compute the transformation model of the
target shape to each of the reference shapes. First we use
Shape Contexts descriptor [1], which is one of the most pop-
ular and effective approaches of shape matching. In this
stage, we deal with a shape based on the sample points
taken randomly from the contour. The sample points on the
contour has to be dense enough to approximate the shape.
Once shape matching completes, Thin Plate Spline (TPS)
deformation models are estimated for each pair of matched
shapes. TPS is found to be successful in modeling morphing
in various types of biological forms and equally performs
well in our cases.

3.2.1 Shape Matching by Shape Context Descriptor

Shape Context is a descriptor defined on each sampled point
S c = {pi|i = 1, . . . , n} on the contour of the shape, and it
contains a rough histogram hi of the relative position vector
from the point to all other points. Shape Context feature on
point pi is given as:

hi(k) = #{q ∈ S c|q � pi, (q − pi) ∈ bin(k)},
where bins are in a log-polar space, which makes the de-
scriptor more sensitive to nearer points. The distance func-
tion of two Shape Context local descriptors is defined as:

Ci j ≡ C(pi, q j) =
1
2

Nc∑
k=1

[hi(k) − h j(k)]2

hi(k) + h j(k)
,

where Nc is the number of bins.
Note that both rotation invariant and variant versions

of Shape Context can be used, depending on the applica-
tion requirement. Once descriptors are calculated, match-
ing process based on distance of descriptors is carried out
using bipartite graph matching: the nodes on one side are
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from the target shape and nodes from reference image on
the other side. Well-known Hungarian algorithm can solve
the matching problem in O(n3) time, and there are also more
efficient methods of [11] that can be implemented in O(n2).

The result of the matching algorithm is a set of one-to-
one correspondences between points on the target shape and
one reference image. Suppose we have found in the match-
ing step that pi = (xi, yi) corresponds to ui = (x′i , y

′
i), we can

use the matched pairs to estimate the TPS deformation such
that T (pi) = ui. The deformation function is in the form of
T : R2 → R2:

T (x, y) = ( f1(x, y), f2(x, y)),

where f1(x, y) and f2(x, y) are in form of spline functions:

fk(x, y) = ak
0 + ak

1x + ak
2y

+

n∑
j=1

wk
jU(‖(x, y) − (x j, y j)‖),

where U(r) = r2 log r2, and n is the number of sample points
on the contour. We can see that each fk is specified by a
group of parameters ak

0, ak
1, ak

2 and wk
j ( j = 1, . . . , n). When

we solve for fk as a spline function, let vi be the x-coordinate
of ui for k = 1, or y-coordinate of ui for k = 2. We consider
the deformation with regularization:

H[ fk] =
n∑

i=1

(vi − fk(xi, yi))
2 + λI( fk),

where I( f ) is defined for a function f as

I( f ) =
�
R2

(
∂2 f
∂x2

)2

+ 2

(
∂2 f
∂x∂y

)2

+

(
∂2 f
∂y2

)2

dxdy.

When λ = 0, the deformation model realizes apparently ex-
act interpolation, and often the model becomes distorted in
this point, which is not desirable. The introduction of λ re-
laxes interpolation. To solve for the model with regulariza-
tion, we minimize H[ fk] with respect to the parameters of
fk.

3.2.2 TPS Deformation

In [2], the solution is given by linear system L, in a matrix
form:(

G + λI Ψ

ΨT 0

) (
W
a

)
=

(
Φ

0

)
,

where W is the column vector of wj, a is the column
vector of {a0, a1, a2}, Φ is the column vector of vi. And
Gi j = U(‖(xi, yi) − (x j, y j)‖), Ψ is an n × 3 matrix whose
i-th row is (1, xi, yi). [2] shows the system is nonsingular,
and by inverting the system, we can solve for the weights
for the spline function fk. We combine two separate spline
functions, and that gives the whole deformation T (x, y).

We apply the transformation to the patches calculated
in the first step to measure their corresponding positions in
each reference shape. An example of shape patches apply-
ing TPS deformation is shown in Fig. 2.

Fig. 2 (a) The target image, (b) A reference image in the same cate-
gory, (c) The roughly clustered point sets, or patches in the target image,
(d) Patches of the reference image under the TPS transformation estimated
from (a) to (b).

3.3 Partition of Similarity Graph

The last step of our framework involves graph partition.
First, a similarity graph is established based on the deforma-
tion behavior of each patch: G = <V,E,W>, which satisfies
the following:

1. V = {Pi|i = 1, . . . ,K}, each corresponds to a patch in
the target shape;

2. <Pi,P j> ∈ E, namely, patch Pi and P j are connected,
if the Hausdorff distance between Pi and P j satisfies
ε-neighborhood or k-nearest neighbor criterion;

3. Wi j = exp

(−ε(Pi,P j)2

2σ2

)
, the weight on edge <Pi,P j>

comes from Gaussian similarity function and the affine
error ε of Pi and P j, which we will discuss later.

Here, the Hausdorff distance between Pi, P j:

H(Pi,P j) = min{‖pl − pk‖ |pl ∈ Pi, pk ∈ P j},
This similarity graph essentially models the deforma-

tional patterns of patches. Because patches are small local
regions, affine transformation is enough to model their de-
formations in reference shapes. For every pair of patches
that are reasonably close, their dissimilarity in deforma-
tional patterns are reflected in their affine error. Hence, be-
tween two patches, the larger the affine error is, the more
dissimilar they are. The idea behind the construction and
detail of the graph is shown in Fig. 3. After the similarity
graph is constructed, we perform normalized cut graph par-
tition algorithm, which segments the graph into subsets.

3.3.1 Affine Error

We use affine error between two patches that represents the



GUO et al.: SEGMENTING SHAPE USING DEFORMATION INFORMATION
1299

Fig. 3 The construction of the graph to be partitioned from the affine error between two patches and
their correspondence in reference shapes.

deformation difference between them with considering the
similarity of the corresponding patches throughout all ref-
erence images. We start with the estimation of affine trans-
formation. The affine transformation matrix of a cluster of
points P to its counterpart in a reference image Q is given
as:

A(P,Q) = (Q+P)T ,

where P and Q are the homogeneous coordinates of patch P
(here, we view it as point cluster) and Q, respectively, i.e.,

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 p1x p1y
...

...
...

1 pnp x pnpy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,Q =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 q1x q1y
...

...
...

1 qnp x pnpy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Q+ is the pseudoinverse of Q, that satisfy QQ+Q = Q and
np is the number of points in patch P.

We now consider the affine error between patches Pi

and P j of target image. We denote Pi’s corresponding patch
in reference image m as Pm

i . For every two patches Pi and
P j, we define their pair-wise affine error as:

ε(Pi,P j) =
1

2M

M∑
m=1

⎛⎜⎜⎜⎜⎜⎝
npi∑
k=1

‖pm
ik − A(Pi,Pm

i )pik‖

+

np j∑
k=1

‖pm
jk − A(P j,Pm

j )p jk‖
⎞⎟⎟⎟⎟⎟⎠ ,

where M is the number of reference images, and pm
ik (k =

1, . . . , npi) and pik are column vectors with 1 and sampled
points in patch Pm

i and ones in Pi, respectively.

3.3.2 Normalized Cut

Consider first two-way graph partition to introduce k-way
graph partition. Let {A, B} be a partition of vertices V in

graph G, a cut in a graph is sum of the weights of the edges
connecting two parts:

cut(A, B) =
∑

u∈A,v∈B

Wuv.

In [12], Shi and Malik proposed normalized cut (Ncut) as
the graph partition to minimize the criterion:

Ncut(A, B) =
cut(A, B)

assoc(A,V)
+

cut(A, B)
assoc(B,V)

,

where assoc(A,V) is the total weights of edges connecting
vertices in A to all vertices, written as

assoc(A,V) =
∑

u∈A,t∈V
Wut.

Although finding normalized cut is NP-complete, it has
efficient approximate discrete solution when it is relaxed to
real value domain. Let W be the weight matrix of Wi j, D be
a diagonal matrix with Dii =

∑
j Wi j, and x be the indicator

vector of partition V:

xi =

⎧⎪⎪⎨⎪⎪⎩
1, vi ∈ A

−1, vi ∈ B
.

In [12], it is proved that finding real value solution for Ncut
problem can be done by getting the second smallest eigen-
vector of the generalized eigenvalue system:

(D −W)y = Dλy,

where

y = (1 + x) −
∑

xi>0 Dii∑
xi<0 Dii

(1 − x),

and 1 is a vector that all elements are one. It is solved by
transforming it to a standard eigenvalue system:
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Algorithm 1 k-way Normalized-cut algorithm
Input: the number k of clusters, the similarity graph G = <V,E,W>, constructed based on k-NN or ε-neighborhood.

Compute the normalized graph Laplacian of graph G: Lnorm = D−
1
2 (D −W)D−

1
2 .

Solve for the eigenvectors corresponding to the k smallest eigenvalues of Lnorm, u1,u2 . . .uk .
Let Y ∈ RK×k be the matrix composed of u1,u2 . . .uk .
Let {yi ∈ Rk |i = 1 . . . n} be i-th row vector of matrix Y.
Cluster {yi |i = 1 . . . n} into k clusters C1,C2, . . .Ck using k-means algorithm.

Output: Clusters C1,C2 . . .Ck

D−
1
2 (D −W)D−

1
2 z = λz,

where z = D
1
2 y, and D−

1
2 (D −W)D−

1
2 is called the normal-

ized graph Laplacian of graph G.
k-way normalized cut is based on the same idea, which

takes the eigenvectors corresponding to the k smallest eigen-
values of the normalized graph Laplacian for some k, and
then use another (e.g. k-means) algorithm to cluster them by
their respective k components. The trick behind the algo-
rithm is to change the representation of original data points
in Rn into points in Rk that enhances the cluster properties.
The complete algorithm is given as Algorithm 1.

For each i = 1, . . . ,K, Pi ∈ C j indicates patch Pi be-
longs to j-th component. By graph partition, the patches are
grouped into the desired number of components. As post-
processing, we group every pixel in the internal of the target
image into the component that its closest sample point be-
longs to.

4. Experiments

We used for statistic shape segmentation experiment shapes
from MPEG-7 Shape Silhouette Database CE-Shape-1 part
B [13], which provides 20 samples per category. For a shape
to be segmented, we prepared 9 images in a category as ref-
erence and one target image, forming a test set, as shown
in Fig. 4. Next, the method proposed in the previous sec-
tion was applied. In the experiment, we used similarity
graphs based on k nearest neighbor criterion. Experiment
with 15 categories of images was carried out. Some results
are shown in Fig. 5.

In the experiment, the number of nearest neighbor was
k = 10 and the initial number of clusters was K = 60, which
were determined experimentally. The parameters need not
to be exact and usually a large K and k produce better result
since this will allow the method to generate a more subtle
similarity graph. However, since K is the number of nodes
in the similarity graph, computation speed should also be
considered when choosing K. Solving eigenvectors for the
Laplacian of the similarity graph will become expensive if a
large value of K is used. The value of σ for Gaussian simi-
larity function was set to 10% of the total range of distance
function ε(Pi,P j), the same as it was recommended in [12].

While some segmentation results may contain faults in
the sense of human perception, they do not disprove the va-
lidity of the proposed method. The general problem of un-
supervised shape segmentation is not trivial and it is highly
possible that there exist multiple grouping from different

Fig. 4 A target image, reference images and segmentation result.
Number of segments is seven.

Fig. 5 Segmentation output of various images from MPEG7 CE Part B.
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Fig. 6 (a) The target image “fork” and its segmentation based on k-NN and fully-connected graph,
respectively; (b) and (c): Its eigenvalues and eigenvectors of the corresponding k-NN graph with k = 10
and that of the fully connected graph; (d) The segmentation of two target images from the same category
“bird”; (e) and (f): Their eigenvalues and eigenvectors of under k-NN similarity graph.

semantic hierarchical level that the segmentation can take
cue from. In the experiment, except simple shapes such as
“key,” “cup” and “hammer” in Fig. 5, in which segmenta-

tion is straight-forward, many complex objects can be seg-
mented in different ways. It is possible that two parts which
should be grouped together in geometric point of view may
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be separated since a shape share dissimilar deformational
patterns. It should be noted that error on shape segmenta-
tion can somewhat be eliminated by tweaking parameters K,
k and σ. However, we used uniform parameters to show that
the proposed method does not heavily depend on parameter
settings.

In the experiment with MPEG-7 database, we visual-
ized the eigenvalues and eigenvectors of the Laplacian of
the similarity graph, as illustrated. To visualize an eigen-
vector ui, we assigned every patch a grayscale value, based
on its value in the eigenvector, that is, the color of P j in
ui is assigned based on ui( j), with negative values repre-
sented by brighter colors and positive values represented by
darker colors. Figure 6 (b) and (c) show the effect of simi-
larity graphs of k-NN and fully connected.

Segmentation of different target images in the same
category of shapes are similar in nature in that the eigen-
values and corresponding eigenvectors of their similarity
graphs are alike. In Fig. 6 (e) and (f), two target images
from the same category, although different in shape, share
similar eigenvectors, which indicates the robustness of the
proposed method to variances. However, we observed that
in cases where reference images contain such drastic differ-
ence (e.g. reference images are taken from other categories
of shapes) that its TPS deformation model is virtually in-
valid and meaningless, the algorithm fails to produce in-
formative segmentation, and the result become resemble to
what directly applying k-means to data points gives.

Several important practical details affects the perfor-
mance of Ncut clustering algorithm, one of which is choos-
ing the appropriate number S of components. For the pro-
posed method, the number of components S can either be
assigned manually or automatically detected using eigengap
heuristic. This method observes the magnitude of eigenval-
ues of graph Laplacian, and chooses the number of clusters
to be k, such that k + 1-th smallest eigenvalue λk+1 is signif-
icantly larger than λ1, . . . , λk, or, the gap between k-th and
k + 1-th smallest eigenvalue is relatively large, such as that
plotted in Fig. 6 (e) and (f). Each eigenvector carries infor-
mation about the clusters. We observed that the eigenvec-
tors starting from that corresponds the smallest eigenvalue,
namely u2, . . . , uk, each eigenvector roughly serves to sepa-
rate two cluster from each other. For example, in Fig. 6 (e),
eigenvector 2 discriminate the bird’s head while eigenvec-
tor 3 discriminate the bird’s tail from the rest of the body.
However, as the eigenvalue grows larger, its eigenvector be-
comes less informative and therefore should not be used in
segmentation.

The eigengap approach finds its root in perturbation
theory [14]: the number of 0 eigenvalue in a graph with k
disconnected components is k, and its λk+1 is greater than
0. For the above reason, we can almost always find mean-
ingful and stable segmentation if eigengap heuristic is fol-
lowed. The segmentation number S in the proposed method
is found by setting the least number of clusters and then de-
tect the eigengap where |λk+1 − λk | > γ|λk − λk−1| occurs,
and γ is a parameter usually set to 2. However, we find in

practice that the number of clusters for the most stable seg-
mentation usually falls below k when k is large since there
are cases where one eigenvector separates more than two
clusters. In the experiment, we used the number of clusters
k − 1 for k greater than 5.

5. Conclusion and Outlook

We have described a novel framework for shape segmenta-
tion, which is based on the learning of deformation models
from multiple images instead of pure geometric analysis on
one single shape. Represented by patches, the transforma-
tion model of the target shape to reference images is esti-
mated. Using the affine error between patches, the defor-
mational patterns of patches are contained into a similarity
graph of patches and the segmentation is achieved by par-
titioning the similarity graph by normalized-cut algorithm.
Experimental results and analysis on shapes from MPEG-
7 database show that the proposed method is robust under
variance and gives good performance in segmentation. The
proposed segmentation method represents a shape as clus-
ters of sample points in the interior of the shape. This sam-
pling representation greatly enhances the robustness since
we do not process small shape flaws and captures a general
image of how the shape is like.

For further extensions and applications of the method
described in this paper, the generalization of the proposed
method in 3D shapes is required. Moreover, applications
other than shape segmentation can be developed, such as
segmentation based recognition algorithm (an example of
such algorithms can be found in [6]). Finally, we consider
that developing a good quantitative measure of shape seg-
mentation is also an important future work.
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