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PAPER

Single-View Sketch Based Surface Modeling

Alexis ANDRE†a), Nonmember, Suguru SAITO†, and Masayuki NAKAJIMA†, Members

SUMMARY We propose a sketch-based modeling system where all
user input is performed from a unique viewpoint. The strokes drawn by
the user must not then be restricted to the drawing plane: their orientation
in the 3D space is automatically determined by the system. The desired
surface is reconstructed from a grid made of two groups of similar lines,
that are considered co-planar. The orientation of the two sets of planes is
determined by assuming that at the intersection of a representative line of
each group, those two lines are perpendicular.
key words: sketch-based modeling, single view, computer vision

1. Introduction

The current design workflow often starts with the designer
sketching a rough idea on a piece of paper, then modeling
the shape in a 3D modeling software, using the previous
sketch as reference. The ultimate goal of this research is
to create the 3D shape directly from a unique design sketch.
To help the user understand the shape of an object, tradi-
tional modeling tools rely on various projections of 3D ob-
jects on the screen, while the human brain is able to infer the
shape of even complex objects by looking at a single view
of the object, in our case, a drawing or a sketch. This work
describes a framework to reconstruct shapes drawn from a
unique viewpoint.

How our brain reconstructs the shape from a few visual
clues is a challenging topic dealing with phenomena out-
side the scope of this paper. We refer the reader to [1] that
presents the state of the art in the domain. While the process
is complex, some rules that govern how we interpret shapes
exist, and we will base this work on them.

The problem we are tackling is not obvious. One sil-
houette drawing is the projection of a infinity of various
shapes, so the traditional approach is to produce natural
shapes, where the contours determine the boundaries of a
volume that is inflated like a balloon. The issue here is that
the same outline gives always the same shape.

We think there is a need to give more control to the
user on the inner shape in order to produce more complex
surfaces, and for that purpose, we need to find other sources
of information (that is, not only the contour information) to
define the inside part of a surface.

We propose here a method able to construct one sur-
face with a few strokes drawn from a single view, where the
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user specified the inside of the surface. In this paper, we do
not inflate the shape, but rather construct the surface from
the drawing. We chose to use only one view to stay close
to the way people draw on paper, with the ultimate goal of
automatic single sketch-recognition in mind.

The main contributions of this paper can be stated as
follows. First, we propose an algorithm to reconstruct three
dimensional surfaces from a grid of two-dimensional lines,
where two of them are planar and perpendicular to each
other, based on simple rules of the human visual intelli-
gence. Second, we describe an interface that covers key
points of sketch drawing, producing grids of lines with the
properties needed for the previous algorithm. The system
described in this paper allows then the sketching of free-
form surfaces without changing the drawing viewpoint. It is
then possible to create the 3D shape of a previously existing
paper sketch, directly in the correct orientation and position,
by tracing over the concept sketch.

The paper is organized as follows. After a review of
prior work, we describe the rationale behind our reconstruc-
tion method (Sect. 3). We then describe how we process the
user drawn strokes (Sect. 4 and Sect. 5) before reconstruct-
ing the surface in 3D (Sect. 6).

2. Related Work

The creation of three dimensional objects from two dimen-
sional input is a really challenging topic that various re-
searchers have already heavily investigated.

SKETCH [2] is one of the first attempts to combine
mouse gestures and non-photo realistic rendering to create
and modify three dimensional models. It uses a set of ges-
ture strokes that are then interpreted as basic shapes. The
resulting objects are afterward positioned where the user
wants them to be.

The pioneer work by Igarashi et al., Teddy [3], is an in-
tuitive interface that creates round shapes from closed con-
tours, then allows the user to extrude, cut, or bend the ini-
tially created shape. Here, the user draws at each step the
contour of the object he wants to model, and the system
presents a plausible inflation of the shape. Such blob-like
creation systems [3]–[6] are easy to use, as they provide
good-looking shapes with a few strokes, but the main issue
here is that the nature of the produced shape is fixed by the
system, as the user has little control on the inner aspect of
the shape. Furthermore, those systems are not able to cre-
ate sharp features without using a cut operation, and every
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stroke is drawn on a different virtual canvas, seen from a
different viewpoint, that is not the focus of this paper. The
following systems allow some control on the inner shape.

“Harold, a world made of Drawings” [7], proposed one
simple way to generate terrain by drawing a stroke starting
and ending on the ground, indicating the silhouette of the de-
sired terrain. Our system takes a similar view of modeling,
by drawing planar strokes that lie on the desired surface.

Cherlin et al. [8] used various techniques to generate in-
teresting shapes. Their approach was inspired by real draw-
ing techniques, such as the spiral method, where the shape
depiction comes from a spiral stroke bounded by the silhou-
ette. Their system is able to generate complex shapes with
few strokes, but only one part at a time. As a result, the cre-
ation of complex objects takes some time, but most of it is
used to assemble the various parts.

Ijiri et al. [9] present a sketch-based system focused
on plants, especially leaves and petals, in a well-thought
combination of free-form modeling and bending operations.
While the system can create realistic models of various flow-
ers, the purpose is too specific for the system we want to
build.

Some sketching interfaces uses additional information
such as shade and shadow to reconstruct the object with
more details. In [10], the amount of shade is used to in-
flate more or less the volume. Narrower shadows result in
more elongated shapes.

Another related work can be found with the sketch
based interface for mesh editing by Nealen et al. [11], with
its extension [12]. They provide a framework able to mod-
ify existing meshes using various types of strokes while pre-
serving the details. The available operations can deform one
part of the silhouette, or modify one line drawn on the mesh.

Another approach is to construct the shape once the
user has finished his drawing. 3D Sketch [13] takes the
sketch of an object, maps the strokes to the edges of a cube,
and inflates the corresponding cubic form, while preserving
the style of the strokes. The system provides a nice inter-
face to sketch a whole range of objects, as long as they can
be mapped to a cube, and present strong symmetry. Such
limitation makes the strength and the weakness of their sys-
tem. We want a system able to model any shape, without
any constraint.

While it is not strictly the same domain of application,
single-view reconstruction of images (with some user inter-
action) present many similarities with our objective. Prasad
et al. [14] mapped the visible edges of an object to a plane
in the 3D contour generator domain, then inflate the shape
with the constraints on the contours. The method works
well with objects of cylindrical shape and of various genus.
The approach we use is different, as our method does not
rely on contour information. Zhang et al. [15] proposed a
method to reconstruct 3D models using a sparse set of user-
specified constraints on the local shape, such as normal vec-
tor constraints, depths discontinuities, and plane constraints.
While the results are interesting, the user is deeply involved
in the reconstruction process, specifying non-intuitive infor-

mation.
We also refer the reader to a survey of sketch-based

modeling [16] for a broader overview.

3. Perceptual Insights

The problem is the following: the user draws strokes in the
z = 0 plane, under an orthographic projection. The chal-
lenge is then to find the desired z coordinate or height of
every point in the sketch, not only for points on strokes but
also for points in-between. A given line drawing is however
the projection of an infinite number of objects, so how do
we reconstruct the correct surface?

3.1 Perception of Lines

Stevens [17], as well as Hoffman [1] provide a set of rules
that the visual part of the brain follows, that will act as
guidelines for the reconstruction process. The rules of in-
terest for our setting are the following:

1. Similar lines in 2D are seen similar in 3D.
2. One curved stroke is seen as lying on a plane.
3. Two intersecting lines are seen as orthogonal to each

other.

These rules hold under the general viewpoint assump-
tion [18]: the drawing is stable under slight changes of the
viewpoint. We suppose that the user draws from such a gen-
eral viewpoint, a safe assumption as the user wants to model
one surface without ambiguity.

The human perception of such grids of lines has also
been investigated in order to improve the quality of line ren-
dering of 3D shapes. The widely adopted principal direc-
tions of curvature are always perpendicular to each other
and form grids of lines with similar orientations: an argu-
ment for their use can be found in [19], and an evaluation
of various grids made of different types of lines showed that
such grids do efficiently convey the underlying shape [20].
A study on the orientation of texture patterns also showed
that grid-like patterns helped to understand the shape [21].

These rules allow us to reconstruct the shape from a
grid of two sets of similar lines. Figure 1 explains of how
our brain might reconstruct a 3D structure from such a grid.
From a grid made of two sets of similar lines, lines in one
set can be thought as coplanar. We now need to know the
orientation of one plane per set to project the lines in 3D
space. For this purpose, we extract one representative line
of each set, the backbones, and as they appear perpendic-
ular, we suppose that they are really perpendicular in 3D
space. From these assumptions, we can compute the ori-
entations of the planes, and project each line back to 3D
space. From now on, we will refer to such strokes as “hatch-
ing” lines. Such strokes are not to be confused with cross-
hatching lines used to depict shade or shadows, and whose
orientation may not be related to the underlying object.
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Fig. 1 From a grid of lines that can be split in two similar groups, the
rules of our visual system make us see each group as lying on parallel
planes, and the representatives of the groups are seen orthogonal to each
other.

Fig. 2 A cubic corner: the angles made by the projection of the three
edges of the corner of a cube are enough to know their orientation in 3D.

3.2 Cubic Corners

Assuming that the two planes are orthogonal is not enough
to compute their orientation, as there is still one degree of
freedom available. We will use here the geometric proper-
ties of the corner of a cube to estimate the normal vector
(a third vector that is orthogonal to both backbones) to the
surface at this particular point.

Cubic Corners, three edges orthogonal to each other,
studied by Perkins [22] while investigating the perception
of cubic shapes from the point of view of human vision,
are easy to visualize and to draw with three right angles.
His main interest was to understand when human beings see
the corner of a cube in three concurring lines. Meanwhile,
he established the relation between the angles of the lines
and the perceived depth under an orthographic projection.
This result has been used in [23] to reconstruct objects with
orthogonal faces.

Using the notations of Fig. 2, we have:

zD = zC ± LC′D′ tan(arcsin(
√
α)), (1)

α = cot ̂A′C′D′ cot ̂B′C′D′ (2)

where zX represents the z-coordinate of the point X, LC′D′

is the length of the segment C′D′. The two possible results
come from Necker’s reversion [24].

Fig. 3 Sampling process and extension: from the raw input data (top),
the stroke’s corners are detected then the segments in-between are approxi-
mated as Bezier curves (middle), finally the stroke is extended at both ends
(bottom).

4. Stroke Processing Toolbox

Strokes are essential in this paper, as they contain all the
information available. We therefore apply specific pre-
processing to the strokes in order to get the most meaningful
information. We describe the various processing methods
we are using: stroke sampling, stroke elongation and stroke
similarity.

4.1 Stroke Beautification and Elongation

Our system accepts as input strokes ordered sets of points,
coming from any conventional 2D input device. A pen
tablet, for example, was used to produce all the figures of
this paper. We implemented the sampling method of [25],
where corners of the strokes are extracted from the set of
local minima of speed (the user tends to slow down at cor-
ners) and from the set of local maxima of curvature (cor-
ners present high curvature profiles). The segments be-
tween corners are then approximated as Bezier curves. We
modified [25] by enforcing C2 continuity on the strokes (by
moving the control points at the junctions so that they are
aligned), to get smooth shading. Figure 3 shows one exam-
ple of beautification.

One particular advantage of this method is that the
stroke is sampled between corners: each segment (between
two corners) can be resampled with any sampling interval.
This also allows the user to draw strokes with sharp angles.
As the reconstruction method is able to deal with such an-
gles, this gives more freedom to the category of shapes this
system can reconstruct.

In order to elongate the strokes in a natural manner,
we compute the curvature along one stroke every three sam-
ple points using the triangular approximation of a circle. We
then take the average of the curvature in the neighborhood of
the ending points of the strokes, then we extend the strokes
with new points, keeping the curvature equal to the min-
imum of the mean curvature and the last curvature calcu-
lated, as the strokes tend to present higher curvature near
the ending points. In order to get smoother lines, we slightly
decrement the desired curvature along the extension points,
resulting in strokes that tend to straight lines. See Fig. 3 for
examples of the extension process.
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4.2 Similarity between Two Strokes

To measure the similarity of two strokes, we use a modified
version of the Hausdorff distance, similar to the one used in
[26] to register objects in photos. Adding a possible trans-
lation to the distance allows us to consider the result as a
measure of the similarity in shape of the two strokes. We
use the following definition to calculate the similarity S be-
tween two sets of points A and B:

S (A, B) = min
t

max
a∈A

min
b∈B
‖a − b + t‖, (3)

where t is the translation vector, and ‖.‖ is some norm in the
considered space. We use the L2 norm in the drawing plane.
To apply this measure to strokes, each stroke is re-sampled
as a set of equidistant segments, and the extremities of these
segments form the set of points needed for computation.

5. Grid Generation from User Input

In this section, we describe the steps needed to create two
sets of similar lines from user input. We require the user
to draw only guidelines of the grid, specifying only a few
strokes that will be interpolated to create a grid. In the ex-
amples, strokes drawn by the user are bold, and the other
strokes comes from the grid generation process described in
this section.

5.1 Classification of the Strokes

When drawing with a pencil, there is no modes or any-
thing that holds information about the type of strokes be-
ing drawn. Once the drawing is done, any human being
can classify the strokes between two groups, silhouette (or
edges) and hatching (two directions), without any doubt for
most cases. We want here to reach a similar level of simplic-
ity, that is the user must be able to draw his sketch without
specifying anything.

We start by classifying the strokes into edges. We then
trace connected strokes until we find a loop, and we consider
the inside of the loop as a surface. Each stroke inside this
surface is then classified as a hatching stroke.

Now we need to separate all the hatching strokes into
two groups, as we made the assumption that a surface con-
tains two sets of hatching lines. We will create the two
groups incrementally, i.e. when a new hatching stroke is
drawn, we classify it with the information available at this
point.

When the stroke crosses an existing hatching stroke,
the new stroke belongs to the other hatching group. How-
ever, when no intersection point can be found, we look for
the most similar (as in Sect. 4.2) strokes in the already clas-
sified ones. The new stroke is then classified as belonging
to the same group as its closest match. In the initial case,
the first hatching stroke is labeled as first group of hatching
lines, then as long as new strokes are similar to this group,

they end up in the same group. If the new stroke’s minimum
similarity value to the first group is higher than a threshold,
the stroke is then categorized as second group of hatching
lines. After that, the closest group or the one that the new
stroke crosses is chosen.

As a result, two strokes from the same hatching group
can not intersect, as such cases are not included in the do-
main of shapes we aim to reconstruct.

5.2 Populating the Surfaces

Once we have some samples of the hatching strokes inside
one surface, we need to extend them to the whole surface.
The problem has two aspects. First we need to elongate the
strokes until they reach the surface boundaries, while match-
ing the length of the other strokes. We then need to approx-
imate the hatching strokes where the user did not draw any-
thing.

We interpolate here new strokes between the input
strokes, in order to cover the whole surface with hatching in-
formation. Our approach is similar to the method described
in [27], when building hatching lines from the principal di-
rections of curvature. On the contrary, we want here to inter-
polate hatching lines from the input lines, in a natural way.

For a given set of user-given hatching strokes, each
stroke is re-sampled to a series of angles, that is, each stroke
is made of segments of equal length, and we know the angle
between one segment and the next one. Then, along the cor-
responding backbone, we interpolate strokes (ribs) between
the reference strokes (the strokes the user drew) using a lin-
ear interpolation of the series of angles, on both sides of the
backbone.

Figure 4 shows the process. The stroke on the left is
sampled as the set {Ai|i = 0 . . . n} while the stroke on the
right comes as {Bi|i = 0 . . . n}. Each stroke in the middle of

Fig. 4 The ribs generation. For a given backbone stroke (the light gray
line), we sample the crossing lines as a series of segments of constant
length, taking the relative angles for the calculation of the approximation
along the sampled backbone. A similar interpolation is done on the other
side of the backbone.

Fig. 5 Example of surface population. Strokes in bold denote user input.
At first, with only two strokes, the hatching structure is constructed with
extended and translated copies of the original strokes. As the number of
strokes increases, the hatching lines between two strokes of the same group
are interpolated.
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those two strokes in created as {Xi = (1 − t)Ai + tBi|i =
0 . . . n}, where t is the corresponding sampling parameter
of the backbone stroke, and n is the length of the small-
est stroke. Thanks to the previous extension, the length of
the smallest stroke is enough to cover all the surface. For
strokes on the sides, we use the last user-given stroke in that
direction, and we translate it to populate the sides.

This method gives natural results (seen on Fig. 5). This
allows us to generate hatching structures with only two or
three strokes. However, since we interpolate the strokes us-
ing the arc-length of the user-drawn stokes, unexpected re-
sults may occur, for example when one really long stroke,
shaped like a V, used to depict a bump, is interpolated with
a straight stroke half the size. The bump will spread along
the stroke direction instead of a more natural decrease in
amplitude.

6. 3D Reconstruction of a Grid

We suppose that we have a grid, similar to the one on Fig. 1,
with two groups of similar lines. We describe here how to
infer the 3D information for all lines in the grid.

6.1 Backbone Selection and Normal Vector Estimation

The backbones are selected as follows: the first user drawn
stroke of each group is the backbone for the other group.
We will now estimate the normal vector at the intersection
point of the two backbones to determine the orientation of
the planes on which they lie, using the previously described
Cubic Corner (Eq. (1)).

For a given pair of vectors, the third vector must lie in
a specific zone for the triplet to be a possible projection (see
Fig. 6), due to the square root in Eq. (1): In the case where
only two vectors are available, Stevens [17] suggested the
use of the bisector of the available domain, when strongly
restricted, as an approximation of the third vector. This co-
incides with the bisector of the two other vectors (if the cor-
responding α is positive), or its perpendicular (otherwise).
We apply the same approach on the point where the back-

Fig. 7 For a given set of hatching lines, and from the normal vector, we reconstruct the two backbone
strokes (second from the left). We then use these 3D strokes to create a series of projection planes for
the other group of strokes, resulting in two groups of 3D hatching lines. Finally, we take the mean of the
two groups to reconstruct the object.

bones cross. In most cases, taking the bisector of the avail-
able domain as an approximation of the normal vector to the
surface at that particular point acceptable results.

While the method gives a plausible orientation (for pos-
sible pairs of romantic), the user might disagree with the
estimation and in such cases is allowed to draw the projec-
tion of the normal vector at the intersection of two hatching
strokes that become then the backbones. Now that we have
the projection of the normal vector, we have enough infor-
mation to calculate the orientation of the planes of the two
sets of co-planar hatching lines.

6.2 Propagation along the Backbones

Once a normal vector on the surface is known, we can ex-
tend the 3D information to the whole surface. Figure 7
shows the whole process. The first step is to determine
the two planes on which the backbones lie. Using the nor-
mal vector and Eq. (1), we compute the orientation of these
two planes in 3D. We then project the drawn strokes on the
3D planes. The orientation of the strokes is now fixed, and
the strokes are reconstructed (Fig. 7, second from the left).
From these two backbones, we will reconstruct the other
hatching strokes in a similar way. For simplicity, we will
describe the process for one group of hatching line.

Now that the backbone for a particular group is known,
(for example, the dark gray backbone on the Fig. 7, top line).
All the light gray strokes (the opposite hatching group) are
reconstructed in 3D by projecting them on planes orthogo-

Fig. 6 For the two vectors vec1 (dark gray) and vec2 (light gray), the pro-
jected normal (middle gray) must be inside the black arc regions to form a
cubic corner as shown in Fig. 2. We choose the bisector of that region to
estimate the normal vector. The symmetric region with respect to the inter-
section point is also a possible choice, but this gives inverted orientations,
similar to Necker’s inversion.
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Fig. 8 Details added using the oversketching feature: from sharp to
round shapes. The range of the modification depends on the length of the
stroke. Parts in bold correspond to user input.

Fig. 9 Automatic generation of the hatching strokes from the edges, and
its reconstruction, with the two sets of co-planar lines shown.

nal to the backbone, that is, all the strokes lie on parallel
planes. Once the hatching strokes of both groups have been
reconstructed, the height z of the intersections points (on the
drawing plane) of the two hatching groups are averaged to
produce the final shape.

7. Sketch Metaphors for Grid Edition

7.1 Detail Addition with Small Strokes

The previous interpolation is done as soon as there is enough
information to create hatching strokes on the whole surface.
The user might then want to add detail to the surface with-
out having to draw a whole new complete profile curve. We
allow then the user to draw small strokes on the surface, in
a oversketching way. The surface then is only locally modi-
fied to match the new input. As the user is given interpolated
hatching lines over the whole surface, he is able to see ex-
actly what and where he needs to provide more detail.

When the user inputs a small stroke (where the length
of the stroke is less than the mean of the other strokes times
a reducing factor, 0.3 in our implementation), the system
will categorize the stroke as a correction stroke, that is, the
user wants to modify the surface locally rather than globally.
We then localize the stroke in the previously created hatch-
ing structure, and we smoothly interpolate the over-sketched
stroke with the existing hatching structure: we first compute
the difference between the existing hatching stroke and the
newly drawn one, we then consider the neighbor strokes of
the corresponding hatching group and we shift the points by
the original difference weighted by the distance to the orig-
inal stroke.

This allows oversketching in a natural way: the user
can redraw on the strokes, and the corresponding stroke will
be corrected locally, removing the need for an undo func-
tion. The resulting modeling process can then be thought as
a two step operation: the first long strokes decide the global
shape of the surface, then the following smaller strokes add

(a) (b) (c) (d)

Fig. 10 A chair and a plane, from the design sketches (a) to the final
models (d). (b) shows the corresponding user inputs and (c) the grids auto-
matically generated by the system. The shading is performed using ambient
occlusion.

Fig. 11 An mask modeled by our system. The middle figure corresponds
to the two sets of coplanar lines. User input is shown in bold.

details to the shape.
For example, Fig. 8 (left) shows the result of adding

small strokes on a previously established grid, while Fig. 8
(right) shows the resulting shapes that can be added using
this feature.

7.2 Automatic Hatching from Edges and Stroke Copy

When a surface with one pair of two similar edges is drawn,
the system suggests the use of such edges as strokes of one
group of hatching lines. Moreover, for four-sided surfaces
with two pairs of similar edges, the system interprets such
input as distorted planes, where the hatching strokes are the
same as the edges. This allows the quick modeling of var-
ious surfaces. See Fig. 9 for an example of recognition of
similar strokes and the automatic generation of the hatching
strokes from the edges.

Since two strokes similar on the drawing are interpreted
as similar strokes in the 3D space, we also implemented a
copy tool, that performs a translation of the stroke in space
along the translation on the drawing plane. This allows the
creation of perfectly aligned surfaces, by using the same
stroke at both ends of the surface.

8. Results and Discussion

We present here some results obtained by our system. Fig-
ure 10 gives examples of modeling from existing sketches:
by allowing every operation to be performed from a unique
viewpoint, we were able to create the corresponding sur-
faces by tracing over the sketches. Figure 11 shows a mask
modeled in less than two minutes (drawing and processing
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Fig. 12 A skirt, where the wavy pattern is determined by the stroke on
the bottom. (a) shows the input strokes, (b) the grid automatically generated
and (c) the resulting shaded (Gouraud) model.

Fig. 13 A leaf modeled with three strokes. (a) Input strokes. (b) Grid.
(c) Shaded model. The angle is close to 90◦.

Fig. 14 A shape difficult to draw using traditional modeling software.
Strokes in bold are the user input.

time included) by a trained user, using the oversketching
feature to add detail. Figure 12 illustrates how three strokes
are enough to model a skirt with a wavy line: this could be
used to change what a model is wearing in a picture. Fig-
ure 13 shows a single leaf modeled with just two strokes to
specify the inner shape, resulting in a simple shape, while
the contour of the surface is complex: a silhouette-based
system can not generate such surface. While the strokes
needed to model such a leaf are similar to the ones needed
to model a similar leaf using the cross-sectional blending
surface method of [8], our method was meant to allow the
modeling of objects in the correct orientation. More-over,
the stroke needed by [8] to specify the cross-section seems
to be drawn from a different viewpoint, while for our sys-
tem, everything is done from the same viewpoint.

Figure 14 shows how the grid generation algorithm is
able to create coherent grids from a complex input, with an
interesting resulting shape. The stroke copy feature com-
bined with the previous automatic hatching feature allows
the modeling of CAD-oriented objects really fast. Two
straight lines are enough to model a plane, cylinders are
done with one arc and an edge (experienced users can an-
ticipate how the normal vector will be estimated). It also al-
lows us to model structures whose interpretation is not clear
on the paper alone by specifying which strokes are coplanar
during the drawing process, for example the famous Yonas’s

Fig. 15 Yonas’s Curves: for the same input curves (in the middle, shown
by the arrow), two different objects can be generated, according to the order
of drawing.

curves (see Fig. 15).
The fact that we are performing all the operations

from a unique viewpoint requires less operations than ex-
isting multi-view systems. For example, in order to control
the shape of a surface in Fibermesh [12], one of the latest
Teddy [3] improvements, the user needs to draw the outline
of the object, draw another stroke on the surface, change the
viewpoint, and finally drag the stroke in a local way (so two
strokes, one change in viewpoint, and one or more dragging
operations). In our system, we generate the surface accord-
ing to the user drawn strokes, without any other operation
needed (three strokes). Our system produces the desired sur-
face with less operations.

The rules about the human visual system are merely
guidelines, they do not hold under any circumstances. For
surfaces close to a plane, or a cylinder, the proposed guide-
lines apply, and we can reconstruct the surface with confi-
dence. In the case of a spherical surface, however, the grid
that complies with the chosen rules is not natural to draw:
the system is not suited for such surfaces.

Another limitation of the system is the fact that only
frontal geometry is reconstructed, and self-occluding parts
are impossible. As a result, models designed with this sys-
tem are meant to be viewed from a viewpoint close to the
one used during modeling. A system able to produce hi-
erarchical objects with frontal and back geometry might be
more suited. Our main focus was however to allow complex
modeling from a single drawing, with small details. As our
method works for a single view point, we look forward to
implement it in a wider system, where our system could be
used to specify local details or global changes.

9. Conclusion

We proposed a system able to model free-form surfaces
from sketching operations performed from a unique view-
point. The variety of the results make us believe that this
system could help accelerate the current design workflow by
offering to designers a quick preview of the object they are
trying to put on paper, for example by showing them various
shadings as well as different materials. We also believe that
an understanding of the reconstruction of one single draw-
ing can lead to a more direct link between artists, used to
draw on one piece of flat paper, and modelers, used to think
in a 3D world. In the future, we hope to extend the system to
more complex objects by allowing the modeling of the back-
facing parts of the object, as well as allowing the modeling
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of complex scenes that contain various objects, still from a
unique viewpoint.
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