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Estimation of Optimal Parameter in ε-Filter Based on Signal-Noise
Decorrelation

Mitsuharu MATSUMOTO†a) and Shuji HASHIMOTO††, Members

SUMMARY ε-filter is a nonlinear filter for reducing noise and is ap-
plicable not only to speech signals but also to image signals. The filter
design is simple and it can effectively reduce noise with an adequate filter
parameter. This paper presents a method for estimating the optimal filter
parameter of ε-filter based on signal-noise decorrelation and shows that it
yields the optimal filter parameter concerning a wide range of noise levels.
The proposed method is applicable where the noise to be removed is un-
correlated with signal, and it does not require any other knowledge such as
noise variance and training data.
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1. Introduction

Noise reduction plays an important role in signal process-
ing. It is crucial not only for acoustical signal processing
but also for image processing. In acoustical signal pro-
cessing, the approaches to noise reduction can be catego-
rized into two types: multi-channel signal processing and
single-channel signal processing. There are many stud-
ies about multi-channel signal processing for noise reduc-
tion in acoustical signal processing such as microphone ar-
ray [1], independent component analysis [2], and sparseness
approaches [3]. However, single-channel approaches have
several advantages compared to multi-channel approaches,
e.g. system downsizing, system applicability and system
simplification.

The spectral subtraction (SS) is a well-known approach
for reducing the noise from a single-channel signal [4]. It
can reduce the noise effectively despite the simple proce-
dure. However, it can handle only the stationary noise.
It also needs to estimate the noise in advance. Although
Kalman filter technique has been used for noise reduc-
tion [5], [6], the calculation cost is relatively large due to its
statistical calculation. Some authors have reported a model-
based approach for noise reduction [7]. In this approach, we
can extract the objective sound by learning the sound model
in advance. However, it is not applicable to the signals with
the unknown noise as well as SS.

To solve the problems, we look to a nonlinear filter la-
beled ε-filter, which has various applications in signal pro-
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cessing [8]–[10]. It can reduce the noise with preserving the
speech signal in acoustical signal processing, while it can re-
duce the noise with preserving the edge in image signal pro-
cessing. ε-filter is simple and has some desirable features
for noise reduction. It does not need to have the signal and
noise models in advance. It is easy to be designed and the
calculation cost is small because it requires only switching
and linear operation. In image processing, although many
studies have been reported to reduce the noise with pre-
serving the edge [11]–[16], it is considered that ε-filter is
a promising approach because of its simple design.

However, empirical operations were required to set the
adequate parameter of ε-filter to reduce the noise effectively.
Moreover, we only have a single-channel noisy signal, that
is, the original signal and noise are unknown. Hence, even
if we set the parameter of ε-filter manually, it is difficult to
evaluate whether the parameter is optimal or not. We cannot
know the difference between the original signal and the filter
output from the observed signal. So far, there are no studies
on the appropriateness of the parameter setting of ε-filter.

Recently, decorrelation criterion is proposed to se-
lect the optimal stopping time for nonlinear diffusion filter-
ing [17]. The algorithm is simple and can be applied where
the noise to be removed is uncorrelated with signal, and it
does not require any other knowledge such as noise vari-
ance and training data. In this paper, we employ the crite-
rion to obtain the optimal parameter of ε-filter. By using
the proposed method, we can obtain the optimal parameter
of ε-filter based on decorrelation criterion without any other
knowledge such as noise variance and training data as well
as the study [17].

2. ε-Filter

We firstly explain the algorithm of ε-filter. To clarify the
feature of ε-filter, we first describe the one dimensional case.
Let us define x(k) as the input signal (For instance, the signal
including speech signal with noise) at time k. Let us also
define y(k) as output signal of ε-filter at time k as follows:

y(k)=x(k) +
K∑

i=−K

a(i)F(x(k + i) − x(k)). (1)

where a(i) represents the filter coefficient. a(i) is usually
constrained as follows:

K∑
i=−K

a(i) = 1. (2)
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Fig. 1 Basic concept of ε-filter.

The window size of ε-filter is 2K + 1. F(x) is the nonlinear
function described as follows:

|F(x)| ≤ ε : −∞ ≤ x ≤ ∞, (3)

where ε is the constant number. This method can reduce
small amplitude noise while preserving the speech signal.
For example, we can set the nonlinear function F(x) as fol-
lows:

F(x) =

{
x (−ε ≤ x ≤ ε)
0 (else).

(4)

Figure 1 shows the basic concept of ε-filter in case that
we utilize Eq. 4 as F(x). Fig. 1 (a) shows the waveform of
the input signal. Executing ε-filter at the point A in Fig. 1 (a),
we replace all the points where the difference from A is
larger than ε by the value of the point A. We then sum-
mate the signals in the same window. Fig. 1 (b) shows the
basic concept of this procedure. In Fig. 1 (b), the dotted line
represents the points where the difference from A is larger
than ε. In Fig. 1 (b), the solid line represents the values re-
placed through this procedure. As a result, if the points are
far from A, the points are ignored. On the other hands, if
the points are close to A, the points are smoothed. Because
of this procedure, ε-filter reduces the noise with preserving
the precipitous attack and decay of the speech signal, In the
same way, executing ε-filter at the point B in Fig. 1 (c), we
replace all the points where the difference from B is larger
than ε by the value of the point B. The points are ignored
if they are far from B, while the points are smoothed if the
points are close to B. Consequently, we can reduce the small
amplitude noise near by the processed point while preserv-
ing the speech signal.
ε-filter can easily be improved not only for one dimen-

sion but also for two dimension. Let us define x(k, l) as the
two dimensional input signal at (k, l). When we apply ε-
filter to two dimensional data such as image, ε-filter is de-
signed as follows:

y(k, l) = x(k, l)

+

K∑
i=−K

K∑
j=−K

a(i, j)F(x(k + i, l + j) − x(k, l)), (5)

where a(i, j) represents the filter coefficient. a(i, j) is usually
constrained as follows:

K∑
i=−K

K∑
j=−K

a(i, j) = 1. (6)

The feature of two dimensional ε-filter is similar to that
of one dimensional ε-filter. We can smooth the small am-
plitude noise near by the processed point while preserving
the edge. It requires fewer calculation compared to conven-
tional methods because it requires only switching and linear
operation. It is necessary to estimate the optimal parameter
to reduce the noise with preserving the signal effectively.

In ε-filter, ε is an essential parameter to reduce the
noise appropriately. If ε is set to an excessively large value,
the ε-filter becomes similar to linear filter and smoothes not
only the noise but also the signal. On the other hand, if ε is
set to an excessively small value, it does nothing to reduce
the noise anymore. Due to these reasons, ε values should be
set adequately.

3. Estimation of Optimal Parameters Based on Signal-
Noise Decorrelation

Let us consider a vector x including the signal vector s with
the noise n. xi is the element of x and corresponds to x(i) in
the acoustical signal or is the sorting of x(k, l) in the image.
si and ni are the elements of s and n, respectively. N is the
number of the elements. For instance, when we consider
L [pixel] × M [pixel] image (N = L × M), we can sort the
element of the image such that i is constrained as

i = k + (l − 1) × L. (7)

x = (x1, x2, · · · , xN)T can be represented as

x = s + n. (8)

x is defined as the mean of a vector x and is defined as

x =
1
N

N∑
i=1

xi. (9)

We define the variance of the vector x as

var(x) =
1
N

N∑
i=1

(xi − x)2. (10)

The covariance of two vectors x and y is given by

cov(x, y) =
1
N

N∑
i=1

(xi − x)(yi − y). (11)

where y is the average of y. yi is the ith element of y. The
normalized form of the covariance is called the coefficient
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of correlation and is defined as

corr(x, y) =
cov(x, y)√

var(x)
√

var(y)
. (12)

The correlation between s and n often becomes small in both
cases of acoustical and image signals. Although the origi-
nal s and n cannot be obtained, the filter output y is similar
to s when the parameters of ε-filter is set optimally. The
estimated noise ñ is described as follows:

ñ = x − y. (13)

Hence, the optimal εopt can be obtained as

εopt = arg min
ε

corr(y, x − y). (14)

Let us test and evaluate this criterion experimentally.

4. Experiment

To evaluate the effectiveness of the proposed method, we
conducted the evaluation experiments using various types
of image data. As an example, we show the results us-
ing “Lena” as shown in Fig. 2. We added various levels of
random noise with uniform distribution to the original im-
age. The maximal intensity of noise changes from 10 to 40.
When the maximal intensity of noise is J, the noise range
is [−J, J]. Throughout the experiments, the filter coefficient
ai is set to 1/(2K + 1)2 to make it uniform weight. To test
the robustness of the the proposed method concerning the
window size, the window size was changed from 3 × 3 to 9
× 9. We show the results when the window size was set to 7
× 7 as examples. Similar results could be obtained through-
out all the experiments regardless of the window size. The
mean absolute errors between the original image and the in-
put image with noise were 2.37, 4.72, 7.10 and 9.45, respec-
tively. Figure 3 shows the relation between the correlation
and ε values. Figure 4 shows the relation between the mean
absolute error and ε values. As the value of image data is
constrained [0, 255], the ε values were changed from 10 to
250 with 10 interval in the experiments. As shown in Figs. 3
and 4, the mean absolute error was minimal when the cor-
relation was minimal throughout all the experiments. The

Fig. 2 Image of “Lena”.

improved mean absolute errors between the original image
and the output image were 1.81, 2.88, 3.73 and 4.33, re-
spectively. In other words, we could obtain the optimal εopt

based on signal-noise decorrelation. Figures 5 and 6 show
the image with two types of random noise and the output im-
age of ε-filter with obtained εopt. As shown in Figs. 5 and 6,
we could obtain the smoothed images with preserving edge
regardless of the noise levels. We also could obtain similar
results concerning other images.

Fig. 3 Relation between coefficient of correlation and ε values depend-
ing on noise intensity.

Fig. 4 Relation between mean absolute error and ε values depending on
noise intensity.

Fig. 5 Experimental result. (Noise intensity is 20.)
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Fig. 6 Experimental result. (Noise intensity is 40.)

5. Conclusions

In this paper we proposed a method for optimal parame-
ter settings based on signal-noise decorrelation. The algo-
rithm is simple and the optimal parameters could be ob-
tained throughout all the experiments without any other in-
formation except signal-noise decorrelation. We reported
the experimental results concerning the image signal in the
paper. We also would like to investigate the effectiveness of
the proposed method in acoustical signal processing.
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