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Transfer Matrix Method for Instantaneous Spike Rate Estimation
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SUMMARY The spike timings of neurons are irregular and are con-
sidered to be a one-dimensional point process. The Bayesian approach is
generally used to estimate the time-dependent firing rate function from se-
quences of spike timings. It can also be used to estimate the firing rate
from only a single sequence of spikes. However, the rate function has too
many degrees of freedom in general, so approximation techniques are often
used to carry out the Bayesian estimation. We applied the transfer matrix
method, which efficiently computes the exact marginal distribution, to the
estimation of the firing rate and developed an algorithm that enables the
exact results to be obtained for the Bayesian framework. Using this estima-
tion method, we investigated how the mismatch of the prior hyperparameter
value affects the marginal distribution and the firing rate estimation.
key words: spike rate estimation, Bayesian estimation, transfer matrix
method, smoothness prior

1. Introduction

A neuron interacts with other neurons through current
pulses, which are called “spikes”. Since the pulses of volt-
age have common forms between neurons, the activity of a
neuron can be simplified into a sequence of spike timings.
Since a spike sequence is affected by other neurons and/or
external factors, it exhibits irregular behaviour and can be
viewed as a stochastic process [1], [2]. There is assumed to
be an underlying firing rate function which determines the
probability of spike occurrence. This function is apparently
used for conveying information between neurons.

Several methods have been developed for estimat-
ing the time-dependent firing rate function from spike se-
quence data. In the histogram method, a commonly used
method [3]–[5], multiple spike sequences are recorded un-
der the same conditions, and the firing rate is estimated from
a histogram of the spike counts. However, it is generally dif-
ficult to obtain the same conditions in subsequent trials, and
averaging over several trials can average the correlation with
other neurons, thus reducing the informational value of this
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measure.
One way to overcome this problem is to use a Bayesian

framework to estimate the firing rate from a single sequence
of spikes [6], [7]. With this approach, the generative pro-
cess of the spike firing and the prior distribution of the fir-
ing rate are appropriately modelled, and the firing rate that
has the largest posterior probability is selected. However,
the firing rate is represented as a function of continuous
time and has too many degrees of freedom to estimate. It
is thus difficult to apply the Bayesian framework to such
a large-scale model. Approximation methods, such as us-
ing the expectation-maximisation algorithm combined with
Laplace approximation, have often been used [7]–[9].

We have applied the transfer matrix method to the
Bayesian framework for use in estimating the firing rate
and developed an algorithm that enables exact results to
be obtained for the Bayesian framework. The transfer ma-
trix method corresponds to belief propagation on a graph
without any loops [10], [11]. It effectively computes the ex-
act marginal distribution. The properties of the proposed
method were investigated by calculating the marginal likeli-
hood and estimation error of the firing rate. The rate func-
tion is estimated using a piecewise constant function over
finely divided intervals of time called “bins”. A method to
estimate the number of bins from the Bayesian framework
was also developed.

The rest of this paper is organised as follows. Section 2
describes the model for the firing rate estimation and its
Bayesian framework. Section 3 presents the transfer matrix
method for marginalisation. Section 4 describes the prop-
erties of the method as demonstrated by numerical exper-
iments. Section 5 discusses the bin-width estimation and
describes its experimentally demonstrated properties. Sec-
tion 6 concludes the paper with a brief summary.

2. Firing Rate Estimation

2.1 Time-Dependent Poisson Process

Suppose we are given a single spike sequence {s} =
{s1, s1, · · · , sn} observed in [0,T ], where si is the time when
a neuron fires and 0 < s1 < s2 < · · · < sn < T . The
sequence is assumed to be generated in accordance with an
underlying firing rate, λ(t). Let P ({s}|λ(t)) be the probability
distribution for spikes occurring in {s} for a given λ(t) ≥ 0.
If spikes are assumed to occur independently at each instant
of time, the probability density of the time-dependent Pois-
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son process is given by

P ({s}|λ(t)) =
n∏

i=1

λ(si) exp

(
−

∫ T

0
λ(t)dt

)
, (1)

where the exponential term is the survivor function, which
represents the probability that no events occur in the inter-
event intervals. Equation (1) is a probability density func-
tion of {s} satisfying s1 < s2 < · · · < sn. The time-
dependent Poisson process is a special case of the rate-
fluctuating gamma process discussed by Koyama and Shi-
nomoto [7].

2.2 Prior Distribution

Here, we assume the smoothness of the rate function [6], [7]
and use a prior distribution of N variables {λ} = {λ1, · · · , λN}
to reduce the number of degrees of freedom of the rate func-
tion. By dividing the observation period (0 = t1 < t2 < · · · <
tN+1 = T ), we get λi = λ(ti). The prior distribution is defined
as

P (λ(t), {λ}) = T̃ (λ(t))P ({λ}) , (2)

where

P ({λ}) = 1
Z0(γ, σ, θ)

exp

⎧⎪⎪⎨⎪⎪⎩−
1

2γ2

N∑
i=1

(λi+1 − λi)
2

τi

− 1
2σ2

N∑
i=1

τi(λi − θ)2

⎫⎪⎪⎬⎪⎪⎭ (3)

and τi = ti+1 − ti. In the following, we consider the intervals
to be of equal length (τ = τi) for simplicity. The first term
of the exponential part of P ({λ}) corresponds to the smooth-
ness and the second term corresponds to the variation from
the mean of the firing rate. Here, Z0 is the normalization fac-
tor. The adjustable parameters (γ, σ, and θ) in the prior dis-
tribution are called “hyperparameters” [12]. The prior distri-
bution P({λ}) is similar to that used by Tanaka et al. [13] for
the image restoration problem and provides a unified frame-
work.

The T̃ in Eq. (2) describes a binding condition of the
firing rate between λi and λi+1. We introduce a “bar-graph”
model for use as a histogram representation of the firing rate.
Let δ be the delta function and 1A be the indicator function
of set A. The binding condition is given by

T̃ (λ(t)) = δ(λ(t) − λ̂(t)), (4)

where

λ̂(t) =
N∑

i=1

λi1[ti ti+1)(t). (5)

Using Eqs. (2), (4), and (1) and marginalising over λ(t), we
get

Fig. 1 Spike sequences ({s}) and numbers of spikes ({η}).

P ({s}|{λ}) =
∫

P ({s}|λ(t)) P (λ(t)|{λ}) d{λ(t)}

=

∫
P ({s}|λ(t)) T̃ (λ(t))d{λ(t)}

=

N∏
i=1

(λi)
ηi exp

⎛⎜⎜⎜⎜⎜⎝−
N∑

i=1

τλi

⎞⎟⎟⎟⎟⎟⎠ , (6)

where ηi is the number of spikes in the bin, ti ≤ t ≤ ti+1, as
shown in Fig. 1.

2.3 Posterior Distribution

From Eqs. (3) and (6), Bayes’ formula yields the posterior
distribution of the N dimensional vector {λ} = {λ1, · · · , λN}:

P ({λ}|{s})

=
1
Z

N∏
i=1

(λi)
ηi exp

⎛⎜⎜⎜⎜⎜⎝−
N∑

i=1

(τλi + g0(λi+1, λi))

⎞⎟⎟⎟⎟⎟⎠ (7)

for which we have defined

g0(λi+1, λi) = − 1
2γ2τ

(λi+1 − λi)
2 − τ

2σ2
(λi − θ)2, (8)

for i = 1, 2, · · · ,N and λN+1 = λN . The normalisation con-
stant,

Z =
∫ ∞

0

N∏
i=1

dλi

N∏
i=1

(λi)
ηi

exp

⎛⎜⎜⎜⎜⎜⎝−
N∑

i=1

(τλi + g0(λi+1, λi))

⎞⎟⎟⎟⎟⎟⎠ (9)

is called the “partition function”.
We need to determine the restored rate from the poste-

rior probability, Eq. (7). Here we use the posterior mean as
the estimator:

〈λi〉 ≡
∫ N∏

j=1

dλ j λiP ({λ}|{s}) . (10)

The posterior mean minimises the expected loss measured
by the square error over the posterior distribution.

2.4 Hyperparameter Estimation

Since there are hyperparameters on which the right hand
side (rhs) of Eq. (10) depends, we need to estimate them
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from the spike sequence. We estimate these hyperparam-
eters by using the maximum marginal likelihood method. In
this method, the hyperparameters are determined by max-
imising the marginal likelihood function,

P({s}) =
∫ ∞

0

N∏
i=1

dλiP ({s}|{λ}) P ({λ}) , (11)

which gives the probability of a particular spike sequence
occurring. Equation (11) is proportional to Eq. (9) as a func-
tion of {s}. Therefore, we define the free energy as

F ≡ − 1
T

log P({s}) (12)

The maximisation of the marginal likelihood function is
equivalent to the minimisation of the free energy. Using
Eqs. (1), (2), (3), and (4), we get

P({s}) =
∫ ∞

0

∏
i dλi exp

(∑N
i=1 g(λi+1, λi)

)
∫ ∞

0

∏
i dλi exp

(∑N
i=1 g0(λi+1, λi)

) , (13)

where

g(λi+1, λi) = ηi log λi − τλi + g0(λi+1, λi), (14)

for i = 1, 2, · · · ,N − 1 and

g(λN+1, λN) = g0(λN+1, λN) = − τ
2σ2

(λN − θ)2. (15)

3. Transfer Matrix Method

The transfer matrix algorithm used to obtain the marginal
distribution of the posterior distribution (Eq. (7)) and the
marginal likelihood (Eq. (9)) is applicable if a stochastic
process is a Markov chain.

The marginal distribution of the posterior distribution
can be written as

P (λk |{s}) = 1
Z

∫ ∞

0

k−1∏
i=1

dλi

k−1∏
i=1

W(λi+1, λi)

×
∫ ∞

0

N∏
i=k+1

dλi

N−1∏
i=k

W(λi+1, λi), (16)

where

W(λi+1, λi) = exp (g(λi+1, λi)) .

In Eq. (16), the rhs is divided into two integrals:

P (λk |{s}) =
Lk

k−1(λk)Rk
k+1(λk)∫ ∞

0
dλkLk

k−1(λk)Rk
k+1(k)

,

for which we have defined

Lk
k−1(λk) ≡

∫ ∞

0

k−1∏
i=1

dλi

k−1∏
i=1

W(λi+1, λi),

and

Rk
k+1(λk) ≡

∫ ∞

0

N∏
i=k+1

dλi

N−1∏
i=k

W(λi+1, λi).

Both integrals can be respectively reinterpreted as recursive
relations:⎧⎪⎪⎨⎪⎪⎩

Li
i−1(λi) =

∫ ∞
0

dλi−1Li−1
i−2(λi−1)W(λi, λi−1),

L1
0(λ1) = 1,

(17)

and ⎧⎪⎪⎨⎪⎪⎩
Ri

i+1(λi) =
∫ ∞

0
dλi+1Ri+1

i+2(λi+1)W(λi+1, λi),

RN
N+1(λN) = 1.

(18)

Equation (17) is the recursive relation in the forward direc-
tion, and Eq. (18) is in the backward direction. By defining
the time complexity of one integral in Eq. (17) and one in
Eq. (18) as M, we reduce the computational requirements
from O(MN) to O(M2N) by this algorithm. More efficient
algorithms based on the transfer matrix method have been
proposed for particular cases [14], [15].

In the same way, the marginal likelihood function
Eq. (13) can be reinterpreted as the recursive relation:

P ({s}) =
∫ ∞

0
dλN LN

N−1(λN)∫ ∞
0

dλN L′NN−1(λN)
,

where

L′ii−1(λi) =
∫ ∞

0
dλi−1L′i−1

i−2(λi−1)W ′(λi, λi−1),

W ′(λi, λi−1) = exp (g0(λi, λi−1)) .

4. Numerical Experiments

First, we investigated the averaged square error and free en-
ergy of our model. We define a prior distribution as

Ps ({λ}) = 1
Z0(γs, σs, θs)

exp

{
− 1

2γ2
sτ

N−1∑
i=1

(λi+1 − λi)
2

− τ

2σ2
s

N∑
i=1

(λi − θs)
2

}
. (19)

This is the same distribution as Eq. (3) except for the hyper-
parameters γs, σs, and θs. We generated the firing rate fol-
lowing Ps which we call the “population prior distribution”
in accordance with Tanaka et al. [13]. We refer to the gener-
ated rate as the “population firing rate” and to γs, σs, and θs

as the “population hyperparameters”. The spike sequences
were generated from the population firing rate. The prior
distributions P({λ}) and Ps({λ}) in Eqs. (3) and (19) corre-
spond to the model and source prior distributions of Nishi-
mori and Wong [16]. The population firing rate is referred to
as the “source pixels” in the image restoration context [16].

This means that the piecewise constant function was
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assumed to be the population firing rate function in our eval-
uation of the performance of the algorithm. This assumption
is not too restrictive when the variation in the population rate
function for a bin is sufficiently small.

The performance was evaluated using the mean square
error per unit time as the metric:

[L] =
∫

d{s}d{λ}P ({s}|{λ}) Ps ({λ}) L (20)

L =
1
T

∫ T

0
dt (λs(t) − λm(t))2 , (21)

where λs is the population firing rate given by {λ} and λm

is the estimated rate. The
∫

d{s} and
∫

dλ are the integrals
over the spike sequence and the firing rate function, respec-
tively. The averaged square error is also used in the image
restoration context [13]. It can be proven that the averaged
square error of the posterior mean estimation is minimised
when the hyperparameters are equal to the population ones.

Figure 2 shows the averaged square error as a function
of the hyperparameters. The population hyperparameters
were set as γs = 4, σs = 10, and θs = 15. Observation time
T was 30, and the number of bins, N, was 150. In this fig-
ure, the gray level corresponds to the averaged square error.
The transfer matrix algorithm was implemented using the
double-exponential fast Gauss transform method [14]. Fig-
ure 2 (top) shows the averaged square error on the γ (hori-
zontal axis)-σ (vertical axis) plane, Fig. 2 (middle) on the γ-
θ plane, and Fig. 2 (bottom) on the σ-θ plane. The right side
of each plane shows the averaged square error as a func-
tion of the horizontal axis. Note that the hyperparameters

Fig. 2 Averaged square error for hyperparameters γ, σ, and θ.
Population hyperparameters were γs = 4, σs = 10, and θs = 15.

for which the best performance was achieved were equal to
the population hyperparameters. Therefore, we need to find
hyperparameters close to the population ones to obtain good
performance.

Figure 3 shows the averaged free energy, which is de-
fined by

[F] =
∫

d{s}d{λ}P ({s}|{λ}) Ps ({λ}) F,

where F is defined by Eq. (12). The population hyperpa-
rameters were the same as for Fig. 2. Note that the hyper-
parameters that achieved the minimum value were equal to
the population hyperparameters. Therefore, using the max-
imum marginal likelihood method to select hyperparame-
ters implies that the estimated firing rate yields good perfor-

Fig. 3 Averaged free energy for hyperparameters γ, σ, and θ. Population
hyperparameters were γs = 4, σs = 10, and θs = 15 (T = 30, N = 150).

Fig. 4 Averaged square error [L] with histogram method for different
numbers of bins N.
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Fig. 5 Scatter plots of three hyperparameters determined using free en-
ergy minimisation and squared error. Dotted curve shows averaged free
energy. Population hyperparameters were γs = 4, σs = 10, θs = 15,
T = 30, and N = 300.

mance.
We also estimated the firing rate by using the histogram

method, in which the rate function is determined by the ratio
of the number of spikes within each bin to the bin size:

λi =
ηi

τ
. (22)

The averaged square error with the histogram method is
shown in Fig. 4. Figures 4 and 2 show that the best per-
formance with our model, about 7.3, is better than that with
the histogram method, about 12.

Fig. 6 Example of population firing rate generated from Eq. (19), the rate
estimated using the transfer matrix method, and rate estimated by histogram
method.

Next, we investigated the performance of the poste-
rior mean estimation and the maximum marginal likelihood
method for each spike sequence. Figure 5 shows scatter
plots of the square error as a function of hyperparameters
γ (a), σ (b), and θ (c). The population hyperparameters
are the same as for Fig. 2. The estimated hyperparame-
ters are distributed around the population hyperparameters.
The Nelder-Mead algorithm was used for minimisation. It
sequentially generates simplexes in the space of hyperpa-
rameters, for which the function values of F at the ver-
tices are evaluated. The overall computational complexity
is O(M2N) for the transfer matrix method, multiplied by the
number of evaluations of F in the Nelder-Mead algorithm.
Figure 6 shows examples of the population firing rate, the
rate estimated using the transfer matrix method, and the rate
estimated using the histogram method with the bin size that
achieved the best performance. The parameters were γs = 4,
σs = 10, θs = 15, T = 30, and N = 300. We can see that the
proposed method had better performance than the histogram
method.

5. Bin Width Estimation

In the discussion above, the size of the histogram, τ, was
fixed. Here it is considered a hyperparameter of the prior
distribution and dealt with in the same way as γ, σ, and
θ. We estimate the bin width by maximising the marginal
likelihood. For simplicity, we divide the interval [0,T ] into
N bins with equal width and vary the number of bins instead
of the width. The bin width and number of bins are related
by τ = T/N.

We examine the averaged free energy using the trans-
fer matrix method. As an example of the simplest case, we
assume that the population firing rate sampled from Eq. (19)
has a relatively small number of bins, as there are in Fig. 7.
This true number of bins is denoted by Ns. We fix the other
hyperparameters (γ, σ, and θ) to the population values al-
though we can simultaneously estimate all the hyperparam-
eters in practice. Figure 8 shows the averaged free energy
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Fig. 7 Example of firing rate and spike sequence for Ns = 10.

Fig. 8 Averaged free energy for different numbers of bins for Ns = 10.
Hyperparameters γ, σ, and θ were set to population values.

Fig. 9 Averaged free energy for different numbers of bins for Ns = 30.
Hyperparameters γ, σ, and θ were set to population values.

for different numbers of bins. The population prior distribu-
tion is defined by γs = 4, σs = 15, θs = 15, and Ns = 10.
We can see that the averaged free energy takes a minimum at
N = Ns. It also takes relatively small values at the multiples
of Ns, N = 20, 30, · · · . This means that the change points
of the firing rate can be accurately estimated using free en-
ergy minimisation. The overall trend shows that the larger

Fig. 10 Averaged free energy for different numbers of bins for Ns = 100.
Hyperparameters γ, σ, and θ were set to population values.

the number, the smaller the free energy. This is because the
degrees of freedom increase with the number of bins.

Figures 9 and 10 show the averaged free energy for
Ns = 30 and 100. In both cases, the free energy takes a
minimum at N = Ns, demonstrating the practical applicabil-
ity of bin-width estimation. We can see that the difference
in the free energy between the optimal number, N = Ns,
and the number around it decreases as Ns increases. This re-
flects the fact that, when N is large, the degrees of freedom
are sufficiently large around Ns and the effect of a change in
the number of bins is relatively small.

6. Conclusion

We have applied the transfer matrix method to the estima-
tion of the time-dependent firing rate function from a single
spike sequence, which enables exact results to be obtained
for the Bayesian estimation. The prior distribution of the fir-
ing rate is described by a Gaussian model, and the binding
condition is described by a bar-graph model. These models
can be generalised to other models and binding conditions.

We evaluated the performance of the posterior mean
estimation numerically by implementing the transfer matrix
method. We demonstrated that the averaged square error
is minimised when the model hyperparameters are equal to
the population ones. We also demonstrated that the aver-
aged free energy is minimised when they are equal to the
population ones. These results imply that using the maxi-
mum marginal likelihood method to determine the hyperpa-
rameters and using the posterior mean estimation method to
estimate the firing rate is an effective way to achieve accu-
rate estimation. We also demonstrated that this combination
had better performance than the histogram method.

Finally, we demonstrated that our unified framework
using free energy minimisation also accurately estimates the
bin width. This Bayesian treatment of bin-width estimation
has generality and applicability to various statistical models.
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