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AMJoin: An Advanced Join Algorithm for Multiple Data Streams
Using a Bit-Vector Hash Table

Tae-Hyung KWON†, Hyeon-Gyu KIM†, Myoung-Ho KIM†, Nonmembers, and Jin-Hyun SON††a), Member

SUMMARY A multiple stream join is one of the most important but
high cost operations in ubiquitous streaming services. In this paper, we pro-
pose a newly improved and practical algorithm for joining multiple streams
called AMJoin, which improves the multiple join performance by guaran-
teeing the detection of join failures in constant time. To achieve this goal,
we first design a new data structure called BiHT (Bit-vector Hash Table)
and present the overall behavior of AMJoin in detail. In addition, we show
various experimental results and their analyses for clarifying its efficiency
and practicability.
key words: multiple stream join, hash table, bit-vector, hashing

1. Introduction

The processing of continuous queries over a set of data
streams from multiple data sources is indispensable to ubiq-
uitous streaming applications. For example, in order to
monitor which items sell in all target department stores, the
following query type that joins multiple data sources us-
ing one or more attributes common to each pair of sources
should be issued [6].

Q1: SELECT A.ItemName

FROM Store1 A, Store2 B, Store3 C, Store4 D

WHERE A.ItemID = B.ItemID AND

B.ItemID = C.ItemID AND

C.ItemID = D.ItemID

Other useful applications include areas such as object
tracking or duplicate detection in sensor networks [4], [5],
traffic monitoring in an IP network [2], monitoring streams
of stock exchanges [14], and so on.

To support the join of multiple streams continuously,
the Symmetric Hash Join (SHJ) has been proposed and im-
proved to allow join results to be produced before com-
pletely reading all target data sources [1], [12]. A simple
way to implement an n-way join of n streams using SHJ is
to combine n−1 binary join operators, which are the general
method in the conventional DBMSs.

Figure 1 (a) shows a logical query plan to combine 3
binary join operators for query Q1, where Ti is a hash table
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(a) Pipelined binary join operators.

(b) A multiple join operator.

Fig. 1 n-ary join operation.

for input stream S i and Ti �� T j is the join results of Ti and
T j. In a pipelined binary join operation like Fig. 1 (a), the
intermediate join results are materialized to make a fast bi-
nary join such as that between T1 �� T2 and T3, and they are
incrementally updated whenever new tuples arrive at related
input streams. For example, if a new tuple arrives at S 3, it is
inserted into T3 and the only change obtained from joining
T1 �� T2 with S 3 is reflected to the intermediate join result
T1 �� T2 �� T3. On the other hand, this method has two
main limitations: One is that the intermediate join results
are quite large and require high maintenance cost, and the
other is that the pipelined binary join tree is not adaptable to
the changes in the properties of multiple data streams.

A multiple join method called MJoin [10] is proposed
to get over the problems of the pipelined binary join, which
joins multiple streams at once as in Fig. 1 (b). Whenever a
new tuple arrives at a certain input stream, it is inserted into
the corresponding hash table and the new tuple is joined
with all the other hash tables at once without delaying the
join processing and maintaining any intermediate results. It
also does not have any predetermined join order. As you can
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imagine, it is important to determine an optimal join order
in MJoin. However, finding an optimal n-way join order is
known as an NP-hard problem by Toshihide and Tiko [11].
To address this issue, Avnur and Hellerstein [7] have intro-
duced an algorithm for adaptively finding the optimal order
of hash table probes. In their algorithm, the join order of
each stream is periodically changed to adapt fluctuated se-
lectivity. Assuming selectivity of each stream is indepen-
dent, they apply a simple heuristic approach where a stream
with the lowest selectivity joins first. Babu et al. [9] have
discussed the issues when the selectivities of streams are
not independent, and have proposed a greedy algorithm to
capture correlations among the join selectivities of streams.
But, the selectivities may vary among individual tuples (i.e.
one tuple may join with many S 1 tuples but few S 2 tuples,
while another tuple may behave in opposite way). More-
over, the optimal order can be continuously changed due to
the dynamic natures of data streams. At a bottom line, it is
difficult for MJoin to find an optimal join order upon a new
tuple arrival on any input stream at any time, resulting in
unnecessary probing of the other hash tables.

In this paper, we propose a new join algorithm called
AMJoin, which extends MJoin to avoid unnecessary probes.
For this purpose, we construct a Bit-vector Hash Table
(BiHT ) in which each hash entry has a bit-vector consisting
of n bits, where i-th bit denotes whether tuples from i-th data
stream exist or not. Our AMJoin with the BiHT can achieve
the following two important issues: i) It directly determines
whether a multiple join can be successfully performed or
not upon a new tuple arrival on any input stream. In other
words, the unnecessary probes for the other hash tables can
be eliminated in case of a multiple join failure. ii) It can
efficiently support a selective join query which is executed
over partial input streams on demand. The join failure in
this kind of a query can also be easily detected using BiHT.

The rest of this paper is organized as follows: Section 2
presents the detail algorithms of AMJoin by comparing with
them of previous MJoin. Section 3 shows several experi-
mental results and their analyses. Finally, we summarize

Fig. 2 Overall join process of MJoin.

our discussion in Sect. 4.

2. Advanced Multiple Join

We first discuss the MJoin algorithm of Stratis et al. [10]
and present our AMJoin by improving MJoin to get rid of
its unnecessary probes. In Sect. 2.1, we compare the two
algorithms in terms of the join processing where all input
tuples are fit to main memory. The join processing with
memory overflow will be discussed in Sect. 2.2. We discuss
the useful query patterns being able to utilize our AMJoin in
Sect. 2.3.

2.1 Basic Algorithm

MJoin maintains a hash table per input stream. Let the num-
ber of streams be n and a hash table for input stream S i be
Ti (1 ≤ i ≤ n). The address space of Ti corresponds to the
hash values of a join key k. We assume that all hash tables
use the same hash function h.

Figure 2 depicts the overall behavior of MJoin which is
composed of three consecutive procedures trigged whenever
a new tuple ri arrives in stream S i.

1. Hashing: Calculate a hash value vk using hash function
h(ri.k) on join key k for the input tuple ri, i.e., vk =

h(ri.k).
2. Moving: Insert ri to the hash table Ti as an entry for vk.
3. Probing: Check all T j (i � j) to see if each T j has

tuples hashed to bucket vk. If there exist any T j (i � j)
with no tuple hashed to the bucket vk, this join process
stops as a failure. Otherwise, ri joins T j(vk) (i � j) to
get the final result.

It is necessary to notice the case of the join failure. In
Step 3 of the join process of MJoin, the average (n − 1)/2
number of probes are required to detect the join failure. This
means that there exist unnecessary probes that need to be
avoided.

To resolve this problem, we maintain a special hash
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Fig. 3 Overall join process of AMJoin.

table called BiHT (Bit-vector Hash Table) which is denoted
as B in Fig. 3. We in this paper assume that the address
space of B corresponds to that of hash value vk which is
calculated by hash function h on a join key k, and the same
hash function h is used for both B and Ti (1 ≤ i ≤ n). Each
hash entry of B has a bit-vector consisting of n bits where
i-th bit is set to 1 if tuple ri from S i which is hashed to hash
value vk exists. By only checking a proper entry of B, we
can easily detect a join failure in real-time. For example, let
an input tuple be r j from stream S j and its hash value on
join key k be v j, i.e., v j = h(r j.k). We can easily find out that
r j cannot be joined with Ti(v j) if all bits in the bit-vector
for hash value v j of B are not set to 1. Figure 3 depicts the
overall behavior of our AMJoin which is composed of three
consecutive procedures triggered whenever a new tuple ri

arrives in the stream S i. The main difference between MJoin
and AMJoin is for the probing procedure.

1. Hashing: Calculate a hash value vk using hash function
h(ri.k) on join key k for the input tuple ri, i.e., vk =

h(ri.k).
2. Moving: Insert ri to the hash table Ti as an entry for vk.
3. Probing: Set i-th bit of an entry vk in B to 1, and check

whether all bits of the entry vk are set to 1. If all bits
of the entry vk are not set to be 1, stop the process.
Otherwise, ri joins T j(vk) (i � j) to get the final result.

According to our proposed algorithm described above,
the join failure can be easily detected in constant time by
simply checking every bit of an entry in B as shown in
Step 3. As a result, we can avoid the somewhat large over-
head for probing all hash tables to find out whether the join
can be processed or not. We will provide various experi-
mental results and their analyses in Sect. 3 to clarify that our
AMJoin outperforms previous MJoin.

2.2 Managing Memory Overflow

In this section, we discuss how to deal with memory over-
flow in both MJoin and AMJoin when input tuples are not fit

to main memory. Basically, these two algorithms similarly
handle memory overflow except that our AMJoin utilizes
BiHT to improve its efficiency.

When an arrival rate of input tuples exceeds the capac-
ity of join processing and then available memory space is ex-
hausted, MJoin temporally prohibits receiving input tuples.
And then, it flushes some tuples to make memory available
for the join process to be restarted with newly incoming tu-
ples. The flushed tuples remain disks until they are called
back when there are no input tuples to be processed. In this
way, MJoin tries to process as many as input tuples, while
it may not produce the join results in the incoming order.
MJoin introduces a method called coordinate flush to choose
candidate tuples that should go to disks when memory is ex-
hausted. Explaining in detail, it randomly chooses a hash
value v and then it flushes all tuples hashed to v from all of
the hash tables. After that, newly incoming tuples with a
hash value v directly go to disk, because there are no tuples
hashed to v in memory. To trace which tuples are flushed to
disks, MJoin maintains a flag for each hash entry.

Notice that MJoin randomly chooses a hash value for
candidate tuples to be flushed to disks. However, it is nec-
essary to flush as many tuples as possible at once to reserve
a sufficient space for restarting the join process. We can
achieve this requirement by exploiting BiHT proposed in
our AMJoin.

Consider that we want to choose a hash value to flush
tuples at the hash tables of Fig. 4. Assume that each hash
entry has 3 tuples on the average. If we choose vi−1 as the
hash value to be flushed, we can reserve a space for 3 tuples
because 3 tuples can be flushed to disks. If we, however,
choose vi+1, we can reserve a space for 9 tuples. A hash
value to flush tuples to disks can be efficiently chosen by
probing bit-vectors of BiHT. To meet this purpose of re-
serving a sufficient space, we expect that the selected hash
value should be for a bit-vector whose bit values are almost
set to 1.
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Fig. 4 Coordinate flush in MJoin.

2.3 Useful Query Patterns

As you can imagine, we can identify several useful query
patterns which are efficiently processed by AMJoin algo-
rithm. Firstly, consider a query to trace moving objects’
trajectory which requires their identifiers, i.e., join key, as
query results. For example, consider the following simple
query on five sensors as multiple input stream sources.

Q2: SELECT A.id

FROM Sensor1 A, Sensor2 B, Sensor3 C,

Sensor4 D, Sensor5 E

WHERE A.id = B.id and B.id = C.id

and C.id = D.id and D.id = E.id

The results of query Q2 can be simply obtained only
by maintaining and probing BiHT, not hash tables for input
streams.

The next query pattern is to join partial input streams
on demand. If there are n input streams and we want a mul-
tiple stream join on just m input streams (m < n) selectively
according to the requirements, the join failure can be easily
detected with BiHT of AMJoin. This kind of a query pattern
can be considerable for the future streaming applications.

3. Experiments and Analysis

In this section, we present several experimental results to
clarify AMJoin’s efficiency compared to MJoin in the as-
pects of join selectivity, application types, and handling
memory overflow. First of all, we have implemented a data
generator for the experiments based on the given input pa-
rameters such as number of input streams, number of tuples
per stream, and join selectivity. Each data set is composed
of <key, timestamp,misc> which denotes a join key, an ar-
rival timestamp, and a miscellaneous information, respec-
tively. Our experiments have been conducted on Intel Core
2 Duo 2.66 GHz machine running on Window XP with 4 G
memory.

We have observed the execution time required to join
input tuples from 5 stream sources for two multiple stream
join algorithms discussed in this paper, MJoin and AMJoin.
These experiments have been performed by varying the join
selectivity from 0.01 to 0.1, which is enough to notice these
algorithms’ characteristics. Figure 5 shows that our AMJoin
gives better performance than MJoin. It is noticeable that
AMJoin is more better in case of the lower join selectivity.

(a) Join selectivity 0.01.

(b) Join selectivity 0.05.

(c) Join selectivity 0.1.

Fig. 5 Performance of 5-way join.

This is because AMJoin can efficiently detect join failures,
i.e., the cases that not all input streams participate in join,
using the BiHT. On the other hand, if the join selectivity is
high, it is expected that AMJoin’s advantages may be nulli-
fied. However, some existing work [13] and [3] shows that
the join selectivity in most of the real-world streaming ser-
vices is known to be relatively low. Actually, [13] and [3]
give their experimental results performed with join selectiv-
ity less than 0.1. As a result, our AMJoin utilizing BiHT is
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said to be practical and efficient.
As we mentioned in Sect. 2.3, there are several query

patterns on which AMJoin is always superior to MJoin. To
clarify this, we have compared the performance for query
Q2 mentioned in Sect. 2.3 under the conditions that the join
selectivity is set to 0.1 and there are 5 number of stream
sources. Figure 6 shows that our AMJoin provides approxi-
mately 3 times better performance than MJoin.

The next experiment is on the flush methods in case
of memory overflow mentioned in Sect. 2.2. We have com-
pared the execution time of flush methods in both MJoin and
AMJoin as Fig. 7. As we discussed in the above, MJoin con-
ducts the flush by randomly choosing a hash value for candi-
date tuples flushed to disks. On the other hand, our AMJoin
flushed as many tuples as possible at once to reserve a suf-
ficient space for restarting the join process by appropriately
selecting a hash value using BiHT proposed in this paper.
For this experiment, we configured the memory size to make
one third of input tuples to be discarded (i.e., overflow). In
addition, the join selectivity is set to 0.1 and we choose one
of hash values whose bit-vector has at least 2 bits set to 1.
Figure 7 shows that AMJoin copes with memory overflow
more efficiently than MJoin.

From now, we need to make various analyses on some
performance factors such as memory usage, management
overhead, and memory overflow. Our method has somewhat
space and management overhead incurred by additional data

Fig. 6 Performance of Q2. (monitoring moving object trajectory)

Fig. 7 Performance of 5-way join in memory overflow situation.

structure, BiHT. With regard to the space overhead, our
method uses 6 bytes, 4 bytes for a hash value and 2 bytes for
a bit vector, per hash entry in BiHT. Let us consider a real
data streaming application illustrated in [2] as an example.
In the AT&T IP backbone, traffic data stream produced by
routers are about ten billion fifty-byte records per day (i.e.,
115,000 tuples per second) [2]. If we assume to perform a
join with the window size of 5 minutes, the total number of
independent tuples is 35,000,000 and then the memory size
required for hash tables is, after all, about 1.7 Gbytes (i.e.,
50 bytes per tuple × 35,000,000 tuples). For estimating the
memory size required for our bit vector, it is important to de-
cide the number of unique tuples within their survival time.
Based on the general survival time of network traffic pack-
ets [8], if 115,000 tuples generated per second are assumed
to survive for 10 seconds, we require about 7 Mbytes for our
bit vector table, BiHT (i.e., 115,000 tuples per second × 10
seconds × 6 bytes per tuple). As you find out, this amount
of additionally required memory is so trivial compared with
the size of hash tables for maintaining input tuples.

With intent of assessing the BiHT management over-
head, we have compared the probe costs for MJoin and our
AMJoin. The probe cost of MJoin includes the inspection
of the hash table, i.e., fetching an entry in a hash table and
checking the existence of tuples with a given join key in the
entry, while the cost in our AMJoin includes toggling a bit
to 1 and checking a bit vector entry within BiHT. Note that
we exclude the cost of joining tuples in order to focus on
discussing the BiHT management overhead. In our exper-
iments, we find out that it takes 2.88 × 10−4 ms to inspect
each hash table in the MJoin probing process. Because it
may be necessary to inspect other hash tables for finally de-
ciding whether the join processing should be performed or
not, the MJoin probing process may take multiple times of
2.88 × 10−4 ms. On the other hand, our AMJoin probing
process takes 1.61 × 10−4 ms which is tightly related with
the BiHT management overhead. No additional probes are
required for finally deciding the join processing in case of
utilizing our BiHT.

Let us consider the memory overflow issue. It is true
that our AMJoin is more apt to get into the memory overflow
than MJoin because AMJoin additionally keeps its bit vector
table, BiHT. As we discussed the memory usage of BiHT
above, its space overhead is trivial compared to hash tables.
Because of that, the overflow probability occurred by BiHT
can be negligible not to affect the overall performance of our
AMJoin.

Another performance factor necessary to be considered
is the number of input streams. The number of input streams
n is more sensitive to the performance of MJoin rather than
AMJoin. Its increase may directly make the performance of
MJoin degraded due to its average number of probes (n −
1)/2 which increases in proportion to n. On the other hand,
there is no effect on the performance of our AMJoin except
of the slight increase of BiHT memory space. This is caused
by the property of the constant time of probing as mentioned
in Sect. 2.
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4. Conclusions

In this paper, we proposed a new multiple stream join al-
gorithm called AMJoin which extends MJoin to improve its
performance in detecting join failures and managing mem-
ory overflow, and supports new application requirements
such as a query pattern to selectively join partial input
streams. To achieve these goals, we first proposed a new
data structure called BiHT (Bit-vector Hash Table) in which
each hash entry has a bit-vector with n bits corresponding
to n input streams. By simply checking a certain bit-vector
in BiHT, we can detect the join failure immediately. Based
on the BiHT structure, we presented a multiple stream join
algorithm called AMJoin. Finally, we showed various ex-
perimental results to clarify the efficiency of the algorithm
proposed in this paper.
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