
1442
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

PAPER

Design and Implementation of a Real-Time Video-Based Rendering
System Using a Network Camera Array∗

Yuichi TAGUCHI†a), Student Member, Keita TAKAHASHI††, and Takeshi NAEMURA†, Members

SUMMARY We present a real-time video-based rendering system us-
ing a network camera array. Our system consists of 64 commodity network
cameras that are connected to a single PC through a gigabit Ethernet. To
render a high-quality novel view, our system estimates a view-dependent
per-pixel depth map in real time by using a layered representation. The ren-
dering algorithm is fully implemented on the GPU, which allows our sys-
tem to efficiently perform capturing and rendering processes as a pipeline
by using the CPU and GPU independently. Using QVGA input video res-
olution, our system renders a free-viewpoint video at up to 30 frames per
second, depending on the output video resolution and the number of depth
layers. Experimental results show high-quality images synthesized from
various scenes.
key words: real-time video-based rendering, light field, camera array,
depth estimation, GPGPU

1. Introduction

Image-based rendering (IBR) has attracted a lot of research
interest, since photorealistic rendering quality is affordable
by using a set of images of a 3D scene captured from mul-
tiple viewpoints. IBR is based on a framework in which vi-
sual information of a 3D scene is represented as a collection
of light rays, such as the 7D plenoptic function [2] and 4D
parameterizations using planes called ray space [3] and light
field [4], [5]. Early IBR techniques often used static multi-
view images captured by moving a single camera. More
recently, many camera array systems have been developed
with video-based rendering techniques to handle dynamic
3D scenes and produce interactive rendering applications,
commonly called free-viewpoint video and 3D TV.

This paper presents the design and implementation of a
system that renders a free-viewpoint video in real time from
the live multi-view videos captured with a network camera
array. As shown in Fig. 1, our system consists of 64 (8 × 8)
commodity network cameras that are connected to a single
PC through a gigabit Ethernet. The cameras are mounted
on a mobile cart so that we can easily move them to cap-
ture various scenes. We present an on-the-fly depth estima-
tion method to synthesize high-quality novel views. Using
a layered representation, our method reconstructs a view-

Manuscript received October 3, 2008.
Manuscript revised March 6, 2009.
†The authors are with the Graduate School of Information Sci-

ence and Technology, The University of Tokyo, Tokyo, 113–8656
Japan.
††The author is with IRT Research Initiative, The University of

Tokyo, Tokyo, 113–8656 Japan.
∗A preliminary version of this paper appeared in [1].

a) E-mail: yuichi@hc.ic.i.u-tokyo.ac.jp
DOI: 10.1587/transinf.E92.D.1442

Fig. 1 Our camera array system consists of 64 (8 × 8) network cameras
connected to a single PC through a gigabit Ethernet. The array can be easily
moved on a mobile cart.

dependent per-pixel depth map based on a color consistency
measure as well as a temporal smoothness constraint. The
rendering algorithm is fully implemented on the GPU us-
ing GPGPU (General-Purpose computation on GPUs) tech-
niques. This approach has the following advantages: 1) the
GPU is suitable for parallel processing of the same instruc-
tions for each pixel, which accelerates our rendering algo-
rithm; and 2) the software can use the CPU and GPU in-
dependently and in parallel for real-time processing. Using
QVGA (320 × 240) input video resolution, our system en-
ables a rendering rate of up to 30 frames per second (fps)
depending on the output video resolution and the number of
depth layers.

The rest of this paper is organized as follows. In
Sect. 2, we review prior work and identify our contribution.
Section 3 describes our rendering algorithm, and Sect. 4
presents the system implementation details. Section 5 shows
rendering results obtained from various scenes as well as the
performance measurement of our system, and Sect. 6 con-
cludes the paper.

2. Related Work

This section reviews prior multi-view video capturing sys-
tems and rendering algorithms. One of the pioneering
studies in this area is Kanade et al.’s Virtualized Reality
project [6], in which 51 cameras were mounted on a 5-meter
geodesic dome. Systems using such a sparse, circular cam-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

TAGUCHI et al.: DESIGN AND IMPLEMENTATION OF A REAL-TIME VIDEO-BASED RENDERING SYSTEM USING A NETWORK CAMERA ARRAY
1443

era arrangement basically aim at rendering objects inside the
capturing volume, and they often reconstruct voxel mod-
els by using the silhouette of the objects as well as color
consistency between views [7]–[12]. Einarsson et al. [13]
presented a dome-type system that captures cyclic human
motion from multiple viewpoints under a sequence of con-
trolled lighting conditions. The system enables rendering of
objects under variable illumination (image-based relighting)
as well as from variable viewpoints.

On the other hand, the following camera arrays (includ-
ing ours) aim at capturing whole scenes by using a relatively
dense, planar camera arrangement. Wilburn et al. [14],
[15] developed 100 custom video cameras that have ac-
curate timing control using a trigger signal. Using multi-
view videos captured by their first prototype, Goldluecke
et al. [16] presented warping-based dynamic light field ren-
dering. In [15], Wilburn et al. presented a spatiotemporal
optimal sampling method and an optical flow algorithm to
improve view interpolation quality. They also presented sev-
eral high-performance imaging applications, such as high-
speed imaging [17] and synthetic aperture photography [18].
Zitnick et al. [19] arranged eight cameras along a 1D arc
and presented high-quality view interpolation using a so-
phisticated stereo reconstruction method followed by mat-
ting at object boundaries. Tanimoto et al. presented a large
camera array system with 100 high-definition video cam-
eras [20] and a view interpolation method based on view-
dependent depth estimation [21]. Ng et al. [22] developed a
hand-held plenoptic camera, in which a microlens array is
placed in front of the photosensor. Using the captured static
(not video) light fields, they performed refocusing and all-
in-focus rendering by producing refocused images at multi-
ple depths and gathering in-focus parts from them. All of the
systems described in this paragraph need to process the cap-
tured data offline before interactive rendering, because they
use complex geometry reconstruction algorithms or handle
a large amount of data.

In contrast to the above offline rendering systems, the
systems described in the next paragraph perform capturing
and rendering all in real time. Such online rendering sys-
tems typically use simpler geometry reconstruction and ren-
dering algorithms than the offline rendering systems to per-
form real-time processing. Our goal is to develop an online
rendering system that renders higher-quality novel views
and has higher system performance than the existing sys-
tems.

Yang et al.’s distributed light field camera [23] per-
formed real-time rendering at a rate of 18 fps using 64
FireWire cameras (the camera capture rate was 15 fps).
Since their rendering method approximates the scene ge-
ometry as a single plane, their system produces low-quality
synthesized images in which only the objects at the depth of
that plane are clear (in-focus) and the objects at other depths
are blurred or appear with ghosting artifacts [24], [25]. This
single-plane rendering would produce enough results if we
use light field data densely sampled with a small camera
interval [25]. However, because the cameras cannot be ar-

ranged enough densely in practice, we need to estimate the
scene geometry (e.g., depth maps) for higher-quality ren-
dering. Schirmacher et al. [26] used an array of six FireWire
cameras and generated views at 1–2 fps with dense depth
maps estimated from the stereo camera pairs, but the ren-
dering quality was limited due to wrong depth reconstruc-
tion. Zhang and Chen [27] presented a self-reconfigurable
camera array using 48 network cameras, each of which can
move sideways and pan using servo motors. They estimate
depth values only on a multi-resolution 2D mesh for ren-
dering novel views at 4–10 fps. Our method, by contrast,
estimates per-pixel depth maps to improve rendering qual-
ity. Using commodity graphics cards, Yang et al. [28] pre-
sented an efficient GPU implementation of a depth estima-
tion method using plane-sweeping [29], [30] and view syn-
thesis. Their rendering rate was 15 fps using five input cam-
eras. We use similar, but more recent GPGPU techniques
to perform depth estimation and rendering fully on a GPU.
Moreover, they use all input cameras evenly as reference
cameras for the depth estimation and color interpolation.
Their approach is reasonable since their system has only five
cameras. However, such an approach is not suitable for di-
rectly applying to a larger camera array system consisting
of a larger number of cameras in a larger spatial arrange-
ment, because its computational complexity increases with
the increase of input cameras and it is more likely to be sub-
ject to occlusions due to the larger baseline. Our method, by
contrast, uses only neighboring input cameras of each target
light ray as the reference cameras, which can keep the com-
putational complexity constant regardless of the number of
the input cameras and make the occlusion effects small.

Finally, we summarize the previous work by our
research group. For real-time capturing and rendering,
Naemura et al. developed an array of 16 cameras [31]
with hardware specialized to estimate depth maps in real
time [32]. They render novel views at 10 fps by approxi-
mating the depth maps with three layers. Our system de-
scribed in this paper does not require such additional hard-
ware. Yamamoto et al. [33], [34] developed a system called
LIFLET that captures a 3D scene through a micro-lens ar-
ray with an XGA video camera. The captured image, called
integral photography, includes thousands of different view-
point images. They estimate a single depth value for each
viewpoint image and render novel views at 15 fps. Although
their system records dense light fields thanks to the dense
microlens array, the capturing volume is relatively small.
Takahashi et al. [35]–[37] presented a layer-based render-
ing algorithm that generates images and their corresponding
costs (what they call focus measure) at each depth layer, de-
tects in-focus parts from the images by evaluating the cost,
and synthesizes an all-in-focus novel view. Their rendering
rate was 13.9 fps from 81 static input views without offline
processing. Our rendering algorithm is based on this layer-
based approach, but we use 1) a more straightforward mea-
sure (i.e. variance) for evaluating the similarity of light rays,
instead of their focus measure; and 2) a temporal smooth-
ness constraint to make the depth estimation more stable.

1444
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

We also show a complete system implementation of the
rendering algorithm from live videos, while they use static
multi-view data sets.

3. Rendering Algorithm

Our rendering algorithm assumes that multi-view videos
are captured with calibrated cameras that roughly lie on a
plane and are arranged on a 2D grid, as shown in Fig. 1,
and that there is no prior knowledge of the scene geome-
try. As described in Sect. 2, since the cameras cannot be
arranged enough densely in practice, we need to estimate
the scene geometry (depth), rather than approximating it as
a single plane, to synthesize novel views without blur and
ghosting artifacts [24], [25]. This section first describes our
depth estimation method that calculates a view-dependent
per-pixel depth map in real time for each time frame. Next,
we present a temporal smoothness constraint for stabilizing
the depth estimation and reducing flickering artifacts on syn-
thesized videos. Because our rendering algorithm processes
each synthesized pixel independently, it can be efficiently
implemented on a GPU, as described in Sect. 4.4.

3.1 Depth Estimation and Color Interpolation

As shown in Fig. 2, a layered depth model, z = {zn|n =
1, 2, ..,N}, is assumed in the object space to equally divide
the disparity space as

1
zn
=

1
zmax
+

n − 1/2
N

(
1

zmin
− 1

zmax

)
, (1)

where zmax and zmin are the maximum and minimum depths
of the scene, respectively. As Chai et al. [25] showed, the
number of depth layers required for appropriate interpola-
tion of light field data depends on the camera intervals and
resolutions. Using more depth layers basically produces
higher-quality images, but needs more computational cost.
We empirically choose an appropriate number of depth lay-
ers that produces enough visual quality while keeping the
computational cost low.

Fig. 2 Configuration for rendering a desired view. The four-nearest input
cameras are used to compute the depth and color of the target light ray
passing within the positions of the cameras (the region with diagonal lines).

Our method estimates the depth for each target light
ray, r(x), where x represents the position of the light ray in
the desired view. At the intersection of the target light ray
with each of the depth layers (p(x, z)), the method evaluates
the color consistency (focus measure in [37]) of the refer-
ence light rays, which correspond to the back-projections of
the intersection point to the input cameras. The reference
light rays are denoted by ri(x, z), where i is the camera in-
dex. Using a larger number of input (reference) cameras to
compute the color consistency makes the evaluation stable
because of a larger stereo baseline. However, it increases
occlusion effects (some of the light rays may be occluded
by foreground objects) and needs higher computational cost.
To make the occlusion effects small and keep the compu-
tational cost low, our method performs the evaluation only
using nearby reference cameras of the target light ray, as
the methods described in [27], [37]. In our implementation,
we used four-nearest reference cameras, as shown in Fig. 2,
and the sum of variances for each RGB component of the
reference light rays as the consistency measure. The color
consistency cost is therefore given by

C(x, z) = consistency (I(ri(x, z))|i∈V)

=
1
|V |

∑
c=r,g,b

∑
i∈V

(
Ic(ri(x, z)) − Īc(r(x, z))

)2
. (2)

Here, V is the set of camera indices near the target light ray
and |V | = 4. I(·) and Ic(·) denote the color of the light ray and
its color component, respectively. Īc(r(x, z)) is the average
of the colors of the reference light rays:

Īc(r(x, z)) =
1
|V |

∑
i∈V

Ic(ri(x, z)). (3)

The color consistency cost is then smoothed in each
depth layer in order to reduce noise effects. We average the
cost over a square window

C̄(x, z) =
1
|W |

∑
x′∈W

C(x′, z), (4)

where W is a square window whose center is x. We used
a relatively large window of 11 × 11 pixels in the exper-
iments, because the captured images were noisy and had
large color variations. Using a large window size helps to
reduce noise effects and works well for smooth regions, but
produces artifacts near depth boundaries, as we discuss in
Sect. 5.3. This is a fundamental limitation of window-based
(local) depth estimation methods [38]. However, we use this
simple smoothing method to perform real-time processing
on a GPU.

Finally, the depth value that minimizes the cost is se-
lected for each target light ray:

zopt(x) = arg min
z

C̄(x, z). (5)

For the color interpolation of the target light ray, using
too many reference cameras would produce an unnecessar-
ily blurred result, because the object point from which the

TAGUCHI et al.: DESIGN AND IMPLEMENTATION OF A REAL-TIME VIDEO-BASED RENDERING SYSTEM USING A NETWORK CAMERA ARRAY
1445

target light ray comes may not be completely diffusive and
the projection of reference light rays may not be perfect.
Therefore, we only use nearby reference light rays similarly
to the depth estimation. This approach can keep the view-
dependent components of the target scene and prevent the
blur [39]. Using the reference light rays that correspond to
the estimated depth zopt(x), we compute the color of the tar-
get light ray by bilinear interpolation as follows:

I(r(x)) =
∑
i∈V
wi(x) I(ri(x, zopt(x)))

= s t I(ri00 (·)) + (1 − s) t I(ri01 (·)) + s (1 − t)

I(ri10 (·)) + (1 − s) (1 − t) I(ri11 (·))†. (6)

Here, wi(x) is the bilinear weight for the i-th reference light
ray ri(x, zopt(x)). As shown in Fig. 3 (a), it takes a floating-
point value between 0 and 1 depending on the positions of
the reference cameras (ci00 , ci01 , ci10 , and ci11) and the inter-
section of the target light ray with the input camera plane
(p′(x)), and

∑
i∈V wi(x) = 1. To efficiently calculate the

weight values s and t, we prepare an image that encodes the
weight values on a regular 2D grid, as shown in Fig. 3 (b),
and use texture mapping to apply this image to the quadran-
gle whose vertices are the positions of the reference cam-
eras.

3.2 Temporal Smoothness Constraint

If we use the above algorithm to estimate depth maps inde-
pendently for each time frame, the estimate becomes unsta-
ble, especially in textureless regions, due to camera noises.
This causes flickering artifacts on synthesized videos. To
reduce the artifacts and make our depth estimation stable,
we incorporate a temporal smoothness constraint into the
cost function. Given the depth estimate at the previous time
frame, zt−1

opt (x), this constraint is described as

Ĉ(x, z) =

{
C̄(x, z) if zt(x) = zt−1

opt (x)
C̄(x, z) + λ otherwise

, (7)

where λ is a small positive constant. We set it to 40 in the
experiments. The minimum cost search is then applied to
Ĉ(x, z), instead of Eq. (5). This constraint encourages that

Fig. 3 Bilinear weight used for color interpolation. (a) The weight is
determined by the positions of the four-nearest input cameras and the inter-
section of the target light ray with the input camera plane. (b) Image that
encodes the weight values for the camera ci00 on a regular 2D grid.

the current depth is similar to the previous depth, while
it allows for large depth changes (i.e. motion) because the
penalty λ is equal for all depths with zt(x) � zt−1

opt (x). If the
rendering viewpoint smoothly moves (as is often the case in
interactive rendering applications), we can still use this con-
straint because the depth map should change smoothly. If
the rendering viewpoint dynamically changes, we can sim-
ply ignore this constraint.

3.3 Discussion about the Rendering Algorithm

Since the reference camera set V depends on the position
of the target light ray x, the number of input cameras used
for rendering the entire view depends on the desired view-
point. Our method, however, has constant computational
complexity regardless of the number of input cameras, be-
cause it calculates the color and cost for each target light ray.
The computational complexity is determined by the number
of target light rays (i.e. the resolution of the desired view)
and the number of depth layers.

Our method may assign incorrect depth values in tex-
tureless regions, where several depth layers have similar
color consistency costs. For image-based rendering, how-
ever, the depth values do not need to be correct as long as the
interpolated color is visually correct. Our method interpo-
lates such visually correct colors by selecting the reference
light rays with the minimum color variance. It is also robust
to the color variations of the input cameras because of the
selection algorithm and bilinear color interpolation, as we
show in Sect. 5.1.

The bilinear weight we use for color interpolation con-
siders the distance penalty between the reference camera
and the intersection of the target light ray with the input
camera plane. As described in [39], the angular penalty be-
tween the reference light ray and the target light ray would
be a more natural measure. However, we use the distance
penalty because it can be efficiently implemented on a GPU
by using texture mapping of the image shown in Fig. 3 (b).

4. Implementation

4.1 System Setup

As shown in Fig. 1, our camera array consists of 64 (8 × 8)
Axis 210 network cameras. The distance between cameras
is about 100 mm both horizontally and vertically. The cam-
era employs a built-in HTTP server, which sends motion
JPEG sequences in response to HTTP requests from clients.
Its capture rate is up to 30 fps with 640 × 480 pixels. The
JPEG compression factor can be adjusted between 0 (the
best quality) and 100 (the worst quality). In our experi-
ments, we set the image resolution to 320 × 240 and the
JPEG compression factor to 10. This compression factor
was enough to prevent visible compression artifacts such as
blocking. In practice, we chose the relatively high-quality

†ri(x, zopt(x)) is abbreviated as ri(·).

1446
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

factor because the network bandwidth was not a bottleneck
in our system.

The cameras have 100 Mbps Ethernet ports. We con-
nected them to a single PC using gigabit Ethernet switches.
We used an Intel Xeon 5160 (3 GHz) dual processor ma-
chine with 3 GB main memory and an NVIDIA GeForce
8800 Ultra graphics card.

4.2 Camera Calibration

For geometric calibration of the cameras, we tried two stan-
dard methods proposed by Tsai [40] and Zhang [41]. Al-
though Zhang’s method can be easily used by capturing a
checkerboard pattern at several arbitrary positions, we found
that the calibration parameters computed by the method
produced good rendering results only within the volume
where the checkerboard was placed during the calibration,
as pointed out in [18]. For our camera array system that
aims to capture and render a large space, Tsai’s method,
which requires known 3D geometry of a calibration object,
worked better. We therefore used Tsai’s method by captur-
ing a checkerboard pattern at several depth positions with
known translations.

We did not use color calibration and only relied on au-
tomatic white balance and exposure control of each camera,
which is a similar setting to [27]. This is because the cam-
eras do not have the flexible control of capturing parameters.
In Sect. 5.1, we show that our method synthesizes visually
good images even from input images that have large varia-
tions.

4.3 Software Architecture

Figure 4 shows the software architecture and data flow of
our system. The system performs network I/O (receiving 64
motion JPEG sequences from cameras) and JPEG decoding
in parallel on the CPU. The decoded images are uploaded to
the GPU texture memory. The following rendering process
is fully implemented on the GPU, so there is no data trans-
mission from the GPU to the CPU. This allows our system

Fig. 4 Software architecture and data flow. No need for data transmis-
sion from the GPU to the CPU allows our system to efficiently perform the
processes as a pipeline by using these processors independently.

to efficiently perform the processes as a pipeline by using
the CPU and GPU independently.

The Axis 210 cameras do not have a synchronization
function. Our rendering process therefore uses the most re-
cently uploaded images. This approach mostly works well
because our method interpolates the colors with minimum
variance in any case and we use a relatively high frame rate.

4.4 GPU Implementation of Rendering

We implemented the rendering algorithm using OpenGL
and fragment programs with Cg (C for graphics) [42]. For
rendering a novel view, we first calculate the color consis-
tency costs (Eq. (2)) and the interpolated colors for each
depth layer in a single rendering pass. The interpolated col-
ors are therefore generated for all depth values, instead of
only for the optimal depth value (Eq. (6)), for computational
efficiency. As shown in Fig. 2, the four-nearest input cam-
eras are used to compute the depth and color of the target
light rays that pass through the quadrangle whose vertices
are the positions of the cameras. A novel image is therefore
generated as a set of quadrangle regions, each of which is
rendered by using the four-nearest cameras (see Fig. 7 (c),
for example). To each quadrangle, we apply the currently
uploaded input images with projective texture mapping, and
the images that encode the bilinear weight for each input
camera (Fig. 3 (b)) with normal texture mapping. In this ren-
dering pass, we use a fragment program that calculates the
interpolated colors and the costs at the same time and stores
them in the RGB channel and the alpha channel of the GPU
frame buffer, respectively.

The above process does not require to synthesize quad-
rangle regions that are out of the field of view of the render-
ing camera. Therefore, to accelerate the process, we com-
pute which quadrangle regions are necessary for the current
rendering viewpoint based on the positions of the input cam-
eras on the CPU, and perform the texture mapping only for
the necessary regions. Yang et al. [28] presented a similar
GPU implementation of the depth estimation and color in-
terpolation methods, but generated the color of target light
rays using the average color of reference light rays. Our
method, by contrast, uses bilinear interpolation of the col-
ors of reference light rays, which provides better rendering
quality. Note that too large cost values are automatically
truncated when the calculated colors and costs are rendered
to the GPU frame buffer, because the frame buffer limits the
calculated floating-point values to a range between 0 and 1.
This suppresses noise and outliers for the following smooth-
ing operation.

In the next rendering pass, the costs in each depth layer
are spatially and temporally smoothed (Eqs. (4) and (7)), and
then the optimal depth for each pixel are selected by compar-
ing the smoothed cost with the current optimal cost (Eq. (5)).
To apply the same instructions to each pixel, we set the pro-
jection matrix to orthogonal and use texture mapping of the
data to be processed, which is a standard GPGPU technique.
We use a fragment program that aggregates neighboring al-

TAGUCHI et al.: DESIGN AND IMPLEMENTATION OF A REAL-TIME VIDEO-BASED RENDERING SYSTEM USING A NETWORK CAMERA ARRAY
1447

pha values and add λ if the current depth layer is not equal to
the previous depth estimate. The current optimal depths are
stored in the texture memory together with their costs and
are updated by iteration over the depth layers. The optimal
color for each pixel is also selected similarly to the optimal
depth in another rendering pass. Consequently, our algo-
rithm uses 3N rendering passes for rendering a novel view,
where N is the number of depth layers.

Pseudocode of the above implementation is listed in
Appendix.

5. Experiments

In this section, we first show rendering results and vali-
date the effectiveness of the depth estimation and bilinear
color interpolation. The performance of our rendering algo-
rithm is then evaluated by changing the number of depth
layers and target light rays (output resolution). The pro-
cessing time was proportional to the numbers of layers and
target light rays, as discussed in Sect. 3.3, and our system
rendered a free-viewpoint video at up to 30 fps depending
on those parameters. Throughout the experiments, we used
320×240 pixels as input image resolution and a JPEG com-
pression factor of 10.

Note that output free-viewpoint videos, as well as com-
parison videos that show the effectiveness of the temporal
smoothness constraint, are available at

http://www.hc.ic.i.u-tokyo.ac.jp/project/camera-array/

5.1 Rendering Results

Figure 5 shows input and output images from Meeting room
sequence. We can see correct parallax in the synthesized im-
ages from different viewpoints. All of the objects are clearly
synthesized, although some artifacts are still visible as we
discuss in Sect. 5.3. Although some estimated depth values
are incorrect in textureless regions, the rendered colors are
visually correct.

Figure 6 compares images synthesized with different
numbers of depth layers. The image synthesized with a sin-
gle depth layer (Fig. 6 (a)) suffers from blur and ghosting
artifacts except for the left person on which the depth layer
is placed. The rendering quality increases with the increase
of the number of depth layers. However, as we have re-
ported in [36], [37], the rendering quality gradually reaches
a ceiling; that is, the earlier depth layers have a larger impact
on the rendering quality. Therefore, the image synthesized
with 7 depth layers (Fig. 6 (c)) and the one synthesized with
15 depth layers (Fig. 6 (d)) have no significant visual differ-
ence.

Figure 7 compares images synthesized with different
color interpolation methods. As shown in Fig. 5 (a), the cap-
tured images have large variations due to individual differ-
ences between cameras. Therefore, as shown in Fig. 7 (a),
average color interpolation produces annoying color dis-
continuities at the reference camera boundaries shown in
Fig. 7 (c). Our method using bilinear interpolation, by con-

trast, produces better-looking images (Fig. 7 (b)).
The videos on our website compare free-viewpoint

videos and depth maps computed either with or without
the temporal smoothness constraint, and show that the con-
straint suppresses flickering artifacts. This advantage can
be seen more clearly when we render videos at a fixed
viewpoint. Meanwhile, the videos rendered at a moving
viewpoint confirm that the temporal smoothness constraint
can be used even when the rendering viewpoint smoothly
moves.

5.2 Performance Measurement

Figures 8 and 9 plot the processing time of our rendering al-
gorithm versus the number of target light rays and depth lay-
ers, respectively. Here we used a set of static input images
(i.e. no texture uploading) and measured the average pro-
cessing time of 100 executions of the rendering algorithm.
The rendering viewpoint was set behind the center of the in-
put cameras such that all of the input cameras are used to
render the novel view†. The smoothing window size was
fixed to 11 × 11. We measured the time by rendering the re-
sults to back buffers, because the refresh rate of the display
(60 Hz) limits the processing time if we draw the resulting
images on the display.

The processing time was proportional to both the num-
ber of target light rays (output resolution) and that of depth
layers, as discussed in Sect. 3.3. These times are fast enough
for real-time interactive rendering. The difference in pro-
cessing time between bilinear and average interpolations is
small, which means that bilinear interpolation can be used
for higher-quality rendering. The most time-consuming pro-
cess is the spatial cost smoothing, which needs to aggregate
all neighboring values.

The total throughput of our system, including the CPU
processing and texture uploading, was 30 fps using 300×300
output resolution and 7 depth layers, and 20 fps using 500 ×
500 output resolution and 20 depth layers, for example. At
a throughput of 30 fps, the total network bandwidth from
the camera array to the PC was about 270–330 Mbps. The
system throughput was limited by the GPU processing (ren-
dering and texture uploading). The network I/O and JPEG
decoding were not bottlenecks even at 30 fps in our system.
When we tried to use higher-resolution input images, the
JPEG decoding became the bottleneck as well as the GPU
processing.

5.3 Discussion

Our system renders high-quality novel views in real time
†The complexity of our rendering method does not depend on

the number of input cameras used to render a novel view, as dis-
cussed in Sect. 3.3. In theory, therefore, the processing time does
not depend on the rendering viewpoint. In practice, however, the
processing time slightly increases with increasing the number of
input cameras used for rendering, because the software needs to
perform more texture mapping functions with a larger number of
input cameras.

1448
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

Fig. 5 Example images from Meeting room sequence. (a) Input 64 images. (b–d) Output synthesized images and their corresponding
depth maps from various viewpoints.

Fig. 6 Synthesized images and their corresponding depth maps using (a) a single layer, (b) 3 layers, (c) 7 layers, and (d) 15 layers.
Although the rendering quality increases with the increase of the number of depth layers, it gradually reaches a ceiling. Therefore, the
synthesized images in (c) and (d) have no significant visual difference.

by using the view-dependent depth estimation and bilinear
color interpolation methods. The interpolation method pre-
vents color discontinuities at reference camera boundaries
and generates visually natural images. We use bilinear inter-
polation for higher-quality rendering because the difference
in processing time between average and bilinear interpola-
tions is small. However, some artifacts are still visible in

the rendered views. They are caused by the following three
sources.

• Incorrect depth estimation at depth boundaries: Since
we use a normal square window for smoothing the
color consistency cost, the regions near depth bound-
aries tend to prefer the foreground depth value (the
“foreground fattening” effect [38]). This incorrect

TAGUCHI et al.: DESIGN AND IMPLEMENTATION OF A REAL-TIME VIDEO-BASED RENDERING SYSTEM USING A NETWORK CAMERA ARRAY
1449

Fig. 7 Comparison of the color interpolation methods. Synthesized images with (a) average interpolation and (b) bilinear interpolation.
(c) The camera grid superimposed on the synthesized image, where the intersections of horizontal and vertical lines correspond to the
positions of input cameras. To render a quadrangle region of the grid, four cameras at its corners are used as reference cameras. Average
interpolation causes annoying color discontinuities at camera boundaries, while bilinear interpolation generates better-looking images.

Fig. 8 Processing time of the rendering algorithm for different numbers
of target light rays (output resolution). The number of depth layers was
fixed to 15.

Fig. 9 Processing time of the rendering algorithm for different numbers
of depth layers. The output resolution was fixed to 300 × 300.

depth estimation produces halo artifacts near objects
boundaries (e.g., around the head of the foreground
person in Fig. 5). A simple method for preventing the

Fig. 10 Synthesized images from (a–c) Soccer and (d–f) Juggling se-
quences. Images in each row are rendered from different viewpoints at the
same time frame. Although these images have motion blur artifacts due to
the fast motions, the output videos have visually acceptable quality.

artifacts is using a shiftable window [38], which can
be also implemented on a GPU efficiently (Gong [43],
for example, showed a GPU implementation of the
shiftable window for trinocular stereo sequences). In
our system, however, the shiftable window often pro-
duced worse-looking images than the normal square
window, because the outliers in the color consistency
cost have a larger influence to the shiftable window.
We therefore used the normal square window in our
implementation.

• Unsynchronized input videos: Figure 10 shows images
synthesized from two sequences that have fast motions.
Since our camera array has no synchronization func-
tion, the frames used in the rendering process may be
captured at different times. This causes motion blur
artifacts in the fast moving parts (e.g., the soccer ball
and the juggling clubs in Fig. 10). Even in such parts,

1450
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

the bilinear interpolation produces better-looking re-
sults than the average interpolation, because it blends
the misaligned parts more naturally. Moreover, be-
cause our system can run at a relatively high frame rate,
the output videos are not so disturbing.

• Blur in the input images: Network cameras are suitable
for building a compact camera array system that can
run with only a single PC, because they can reduce the
amount of data sent to the PC to a reasonable level by
compressing the captured images. Unfortunately, how-
ever, the image quality of network cameras is generally
not very high. Some of the input images of our system,
in fact, suffer from blur and look unclean, as it can be
seen in Fig. 5 (a). They produce low-quality regions in
the final output images (e.g., the right person and chair
in Fig. 5 (c) and the chairs in Fig. 10 (c)). We found
that the degradation of the camera sensor causes the
inevitable blur, and the only way to prevent this prob-
lem was replacing the low-quality camera with a better
one. Such input images also increase outliers in the
color consistency cost. We therefore used a relatively
larger window of 11×11 pixels for smoothing the cost.

The processing time of our rendering method is pro-
portional to the output resolution and the number of depth
layers, as described in Sect. 5.2. However, note that synthe-
sizing a higher-resolution image requires more depth lay-
ers [25] as well as a larger smoothing window. Therefore,
the total processing time required for higher-resolution ren-
dering is typically not proportional. Moreover, although the
complexity of our rendering method is independent of the
number of input cameras, a smaller number of input cam-
eras (i.e. larger camera intervals) requires more depth layers,
resulting in longer processing time.

Since synthesizing a novel view requires only parts of
segments in the input images, several systems [23], [26],
[27] use the region of interest (ROI) approach to reduce the
amount of processed data. We could, for example, partially
decode the received JPEG images and only upload the de-
coded segments to the GPU memory by using the ROI ap-
proach. However, we did not use such an approach because
the current viewpoint is needed to determine the ROI. In this
case, the rendering result reflects the current viewpoint after
the CPU processing (i.e. JPEG decoding and texture upload-
ing), which causes less interactivity. Meanwhile, our imple-
mentation performs the JPEG decoding, texture uploading,
and novel view rendering independently. Because the ren-
dering process only requires the current viewpoint, our ap-
proach has less delay than the ROI approach. Moreover,
our system has a sufficient rendering rate without reducing
the data amount thanks to the advancement of hardware and
GPU functions.

6. Conclusions

We have presented a real-time video-based rendering sys-
tem using an array of 64 commodity network cameras. Our

system renders high-quality novel views from live multi-
view videos by using an on-the-fly per-pixel depth estima-
tion method. The rendering algorithm is fully implemented
on the GPU, which allows our system to efficiently perform
the capturing and rendering processes as a pipeline and to
render novel views at up to 30 fps depending on the render-
ing parameters. Since our system setup is simple, we can
capture various scenes by moving the camera array. The
rendering results show that our method produces visually
natural images even from the frames that have large varia-
tions and are captured at slightly different timings.

Acknowledgments

We would like to thank Prof. Hiroshi Harashima for valuable
discussions, Jinge Wang for his contribution to the camera
array development, and the anonymous reviewers for their
helpful comments and suggestions. We also thank Hideki
Hashimoto, Fumiya Ichino, and Takumi Kida for their jug-
gling performance.

References

[1] Y. Taguchi, K. Takahashi, and T. Naemura, “Real-time all-in-focus
video-based rendering using a network camera array,” Proc. 3DTV-
Conference 2008, pp.241–244, May 2008.

[2] E.H. Adelson and J.R. Bergen, “The plenoptic function and the ele-
ments of early vision,” in Computational Models of Visual Process-
ing, ed. M. Landy and J.A. Movshon, pp.3–20, MIT Press, 1991.

[3] T. Fujii, A Basic Study on the Integrated 3D Visual Communica-
tion, Ph.D. thesis, Department of Electrical Engineering, School of
Engineering, The University of Tokyo, 1994.

[4] M. Levoy and P. Hanrahan, “Light field rendering,” Proc. ACM
SIGGRAPH 96, pp.31–42, Aug. 1996.

[5] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen, “The lu-
migraph,” Proc. ACM SIGGRAPH 96, pp.43–54, Aug. 1996.

[6] T. Kanade, P. Rander, and P.J. Narayanan, “Virtualized reality: Con-
structing virtual worlds from real scenes,” IEEE Multimedia, vol.4,
no.1, pp.34–47, Jan. 1997.

[7] A. Laurentini, “The visual hull concept for silhouette-based im-
age understanding,” IEEE Trans. Pattern Anal. Mach. Intell., vol.16,
no.2, pp.150–162, Feb. 1994.

[8] K.N. Kutulakos and S.M. Seitz, “A theory of shape by space carv-
ing,” Int. J. Comput. Vis., vol.38, no.3, pp.199–218, July 2000.

[9] W. Matusik, C. Buehler, R. Raskar, S.J. Gortler, and L. McMillan,
“Image-based visual hulls,” Proc. ACM SIGGRAPH 2000, pp.369–
374, July 2000.

[10] S. Vedula, S. Baker, S. Seitz, and T. Kanade, “Shape and motion
carving in 6D,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR 2000), vol.2, pp.592–598, June 2000.

[11] B. Goldluecke and M. Magnor, “Real-time microfacet billboarding
for free-viewpoint video rendering,” Proc. IEEE Int. Conf. Image
Processing (ICIP 2003), vol.3, pp.713–716, Sept. 2003.

[12] B. Goldluecke and M. Magnor, “Space-time isosurface evolution
for temporally coherent 3D reconstruction,” Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition (CVPR 2004), vol.1, pp.350–
355, June 2004.

[13] P. Einarsson, C.F. Chabert, A. Jones, W.C. Ma, B. Lamond, T.
Hawkins, M. Bolas, S. Sylwan, and P. Debevec, “Relighting human
locomotion with flowed reflectance fields,” Proc. 17th Eurographics
Symposium on Rendering, June 2006.

[14] B. Wilburn, M. Smulski, H.H.K. Lee, and M.A. Horowitz, “The light
field video camera,” Proc. SPIE Media Processors 2002, vol.4674,

TAGUCHI et al.: DESIGN AND IMPLEMENTATION OF A REAL-TIME VIDEO-BASED RENDERING SYSTEM USING A NETWORK CAMERA ARRAY
1451

pp.29–36, Jan. 2002.
[15] B. Wilburn, N. Joshi, V. Vaish, E.V. Talvala, E. Antunez, A. Barth,

A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” Proc. ACM SIGGRAPH 2005, pp.765–
776, July 2005.

[16] B. Goldluecke, M. Magnor, and B. Wilburn, “Hardware-accelerated
dynamic light field rendering,” Proc. Vision, Modeling, and Visual-
ization (VMV 2002), pp.455–462, Nov. 2002.

[17] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz, “High-
speed videography using a dense camera array,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR 2004), vol.2,
pp.294–301, July 2004.

[18] V. Vaish, B. Wilburn, N. Joshi, and M. Levoy, “Using plane + par-
allax for calibrating dense camera arrays,” Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition (CVPR 2004), vol.1, pp.2–9,
June 2004.

[19] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski,
“High-quality video view interpolation using a layered representa-
tion,” Proc. ACM SIGGRAPH 2004, pp.600–608, Aug. 2004.

[20] M. Tanimoto, “FTV (free viewpoint television) creating ray-based
image engineering,” Proc. IEEE Int. Conf. Image Processing (ICIP
2005), vol.II, pp.25–28, Oct. 2005.

[21] N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “Free view-
point image generation using multi-pass dynamic programming,”
Proc. SPIE Stereoscopic Displays and Virtual Reality Systems XIV,
vol.6490, pp.460–470, March 2007.

[22] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P.
Hanrahan, “Light field photography with a hand-held plenoptic cam-
era,” Tech. Rep. CSTR 2005-02, Stanford University Computer Sci-
ence, April 2005.

[23] J.C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time
distributed light field camera,” Proc. 13th Eurographics Workshop
on Rendering, pp.77–85, June 2002.

[24] A. Isaksen, L. McMillan, and S.J. Gortler, “Dynamically reparam-
eterized light fields,” Proc. ACM SIGGRAPH 2000, pp.297–306,
July 2000.

[25] J.X. Chai, X. Tong, S.C. Chan, and H.Y. Shum, “Plenoptic sam-
pling,” Proc. ACM SIGGRAPH 2000, pp.307–318, July 2000.

[26] H. Schirmacher, M. Li, and H.P. Seidel, “On-the-fly processing of
generalized lumigraphs,” Proc. Eurographics 2001, vol.20, pp.165–
173, Sept. 2001.

[27] C. Zhang and T. Chen, “A self-reconfigurable camera array,” Proc.
15th Eurographics Symposium on Rendering, pp.243–254, June
2004.

[28] R. Yang, G. Welch, and G. Bishop, “Real-time consensus-based
scene reconstruction using commodity graphics hardware,” Proc.
Pacific Graphics 2002, pp.225–235, Oct. 2002.

[29] R.T. Collins, “A space-sweep approach to true multi-image match-
ing,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR ’96), pp.358–363, June 1996.

[30] S.M. Seitz and C.R. Dyer, “Photorealistic scene reconstruction by
voxel coloring,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR ’97), pp.1067–1073, June 1997.

[31] T. Naemura and H. Harashima, “Real-time video-based rendering
for augmented spatial communication,” Proc. SPIE Visual Commun.
and Image Process. (VCIP ’99), vol.3653, pp.620–631, Jan. 1999.

[32] T. Naemura, J. Tago, and H. Harashima, “Real-time video-based
modeling and rendering of 3D scenes,” IEEE Comput. Graph. Appl.,
vol.22, no.2, pp.66–73, March 2002.

[33] T. Yamamoto and T. Naemura, “Real-time capturing and interac-
tive synthesis of 3D scenes using integral photography,” Proc. SPIE
Stereoscopic Displays and Virtual Reality Systems XI, vol.5291,
pp.155–166, Jan. 2004.

[34] T. Yamamoto, M. Kojima, and T. Naemura, “LIFLET: Light field
live with thousands of lenslets,” ACM SIGGRAPH 2004 Emerging
Technologies, Aug. 2004.

[35] K. Takahashi, A. Kubota, and T. Naemura, “All in-focus view syn-

thesis from under-sampled light fields,” Proc. Int. Conf. Artificial
Reality and Telexistence (ICAT 2003), pp.249–256, Dec. 2003.

[36] K. Takahashi, A. Kubota, and T. Naemura, “A focus measure for
light field rendering,” Proc. IEEE Int. Conf. Image Processing (ICIP
2004), vol.4, pp.2475–2478, Oct. 2004.

[37] K. Takahashi and T. Naemura, “Layered light-field rendering with
focus measurement,” EURASIP Signal Processing: Image Com-
mun., vol.21, no.6, pp.519–530, July 2006.

[38] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vis.,
vol.47, no.1–3, pp.7–42, April 2002.

[39] C. Buehler, M. Bosse, L. McMillan, S.J. Gortler, and M.F. Cohen,
“Unstructured lumigraph rendering,” Proc. ACM SIGGRAPH 2001,
pp.425–432, Aug. 2001.

[40] R.Y. Tsai, “A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf TV cam-
eras and lenses,” IEEE J. Robot. Autom., vol.3, no.4, pp.323–344,
Aug. 1987.

[41] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Trans. Pattern Anal. Mach. Intell., vol.22, no.11, pp.1330–1334,
Nov. 2000.

[42] http://developer.nvidia.com/page/cg main.html
[43] M. Gong, “A GPU-based algorithm for estimating 3D geometry and

motion in near real-time,” Proc. 3rd Canadian Conf. Computer and
Robot Vision, June 2006.

[44] http://www.opengl.org/registry/specs/EXT/framebuffer object.txt

Appendix: Pseudocode

Algorithm 1 is pseudocode of OpenGL commands for our
rendering algorithm, and Algorithm 2 shows the details of
the fragment programs. Texture names in Algorithm 2 are
defined in Algorithm 1. The textures are passed to the frag-
ment programs by texture mapping functions, and the frag-
ment programs load the value corresponding to each pixel
on the rendered image from the textures. We could use
an OpenGL extension EXT framebuffer object [44] for out-
putting the processed data directly to the textures, instead of
copying the output data from the rendered frame buffer to
the textures in Algorithm 1. In the experiments in Sect. 5.2,
however, we did not use it because the processing times
were similar.

1452
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

Algorithm 1 Rendering algorithm
//Allocate texture memory on the GPU
Texture tInputImage [64]
Texture tBilinearWeight //Initialized with the image in Fig. 3 (b)
Texture tLayer, tCurOptImage, tCurOptDepth, tPrevDepth

procedure Rendering
for all camera idx do

UploadTexture (tInputImage [camera idx])
end for
//The view synthesis procedure is invoked
//after each uploading of 64 input views
ViewSynthesis(current viewpoint)

end procedure

procedure ViewSynthesis(viewpoint)
for all depth layer do

SetFragmentProgram (CalcCostInterpColor)
//The sets of 4-nearest input cameras used for rendering
//the current view are computed from the camera positions
for all 4-nearest cameras contributing to the view do

for idx← 1, 4 do
cIdx← FindCameraIdx (target 4 cameras, idx)
//Set matrices based on the current viewpoint
//and the calibration parameters of the camera
SetMatrices (viewpoint, CalibParams [cIdx])
ProjectiveTextureMapping (tInputImage [cIdx])
//The weight texture is mapped with different
//directions for each camera
SetMatrices (viewpoint, CalibParams [cIdx], idx)
TextureMapping (tBilinearWeight)

end for
end for
CopyFrameToTexture (tLayer)

//Set matrices to orthogonal for applying the same
//instructions to each pixel in the textures
SetMatrices (Orthogonal 2D)

//Smooth the cost and select the depth with the
//minimum cost
SetFragmentProgram (SmoothCostReconDepth)
TextureMapping (tLayer, tCurOptDepth, tPrevDepth)
CopyFrameToTexture (tCurOptDepth)
//Store the estimated depth map for the next iteration
if last depth layer then

CopyFrameToTexture (tPrevDepth)
end if

//Select the color with the minimum cost
SetFragmentProgram (CompositeLayerColor)
TextureMapping (tLayer, tCurOptDepth, tCurOptImage)
CopyFrameToTexture (tCurOptImage)

end for
end procedure

Yuichi Taguchi received the B.E. and M.E.
degrees in information and communication en-
gineering from The University of Tokyo, Japan,
in 2004 and 2006, respectively. He is currently
working toward the Ph.D. degree in Graduate
School of Information Science and Technology,
the University of Tokyo, as a Research Fellow of
the Japan Society for the Promotion of Science.
His research interests include image-based ren-
dering and 3D image processing.

Algorithm 2 Fragment programs
procedure CalcCostInterpColor
//Calculate color consistency cost
cost← Sumc←r,g,b (Variancei (tInputImage[i].c))
//Interpolate color
color← Sumi (tInputImage[i].rgb · tBilinearWeight[i])

//Output the calculated values to (RGB, A) channels
//of the frame buffer
Output (color, cost)

end procedure

procedure SmoothCostReconDepth
//Smooth cost in the neighborhood window W
smoothCost← AverageW (tLayer.a)

//Temporal depth smoothing
if current depth value � tPrevDepth then

smoothCost← smoothCost + λ
end if

//Update the current depth map
if smoothCost < tCurOptDepth.a then

Output (current depth value, smoothCost)
else

Output tCurOptDepth
end if

end procedure

procedure CompositeLayerColor
//Update the current color image
//Smoothed cost is stored in tCurOptDepth.a
if tCurOptDepth.a < tCurOptImage.a then

Output (tLayer.rgb, tCurOptDepth.a)
else

Output tCurOptImage
end if

end procedure

Keita Takahashi received the B.E., Mas-
ter, and Ph.D. degrees in information and com-
munication engineering from The University of
Tokyo, Japan, in 2001, 2003, and 2006, respec-
tively. He is currently a Project Assistant Profes-
sor of IRT Research Initiative, the University of
Tokyo. His research interests include 3D image
production, object recognition, and video seg-
mentation.

Takeshi Naemura received his B.E., M.E.,
and Ph.D. in Electronic Engineering from The
University of Tokyo in 1992, 1994 and 1997,
respectively. He is currently an Associate Pro-
fessor in Information and Communication Engi-
neering at the University of Tokyo. His research
interests include image-based rendering, 3D im-
age processing, human interface, mixed reality
and computational photography.

