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Approximation Preserving Reductions among Item Pricing
Problems

Ryoso HAMANE†a), Nonmember, Toshiya ITOH††b), Member, and Kouhei TOMITA†††c), Nonmember

SUMMARY When a store sells items to customers, the store wishes to
determine the prices of the items to maximize its profit. Intuitively, if the
store sells the items with low (resp. high) prices, the customers buy more
(resp. less) items, which provides less profit to the store. So it would be
hard for the store to decide the prices of items. Assume that the store has
a set V of n items and there is a set E of m customers who wish to buy
those items, and also assume that each item i ∈ V has the production cost
di and each customer e j ∈ E has the valuation v j on the bundle e j ⊆ V
of items. When the store sells an item i ∈ V at the price ri, the profit for
the item i is pi = ri − di. The goal of the store is to decide the price of
each item to maximize its total profit. We refer to this maximization prob-
lem as the item pricing problem. In most of the previous works, the item
pricing problem was considered under the assumption that pi ≥ 0 for each
i ∈ V , however, Balcan, et al. [In Proc. of WINE, LNCS 4858, 2007] intro-
duced the notion of “loss-leader,” and showed that the seller can get more
total profit in the case that pi < 0 is allowed than in the case that pi < 0
is not allowed. In this paper, we derive approximation preserving reduc-
tions among several item pricing problems and show that all of them have
algorithms with good approximation ratio.
key words: item pricing problem, approximation preserving reductions,
price models, selfloops

1. Introduction

1.1 Background

When a store sells items to customers, the store wishes to
determine the prices of the items to maximize its profit. In-
tuitively, if the store sells the items with low (resp. high)
prices, then the customers buy more (resp. less) items,
which provides less profit to the store. So it would be hard
for the store to determine the prices of items. Assume that
the store has a set I = {1, 2, . . . , n} of n items and there is
a set C = {c1, c2, . . . , cm} of m customers who wish to buy
those items. The goal of the store is to decide the price of
each item to maximize its profit. We refer to this maximiza-
tion problem as the item pricing problem. We classify the
item pricing problem according to how many items the store
can sell and how the customers valuate items. If the store
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can sell every item i with unlimited (resp. limited) amount,
we refer to this as the unlimited supply model (resp. the lim-
ited supply model). The item pricing problem is said to be
single-minded [9] if each customer c j ∈ C is interested in
only a single bundle e j = {i1j , i2j , . . .} ⊆ I of items with val-
uation v j ≥ 0 and has valuation “0” on all other bundles of
items. Note that each customer c j purchases the whole bun-
dle e j if and only if the sum of prices included in the bundle
e j is not greater than the valuation v j. We say that the item
pricing problem is unit-demand [9] if each customer c j ∈ C
assigns valuation vi

j ≥ 0 to each item i ∈ I and buys one of
the most beneficial items for c j ∈ C.

By regarding the set I of n items as the set V of n
vertices and the set C of m customers as the set E of m
hyperedges, each of which has weight v j ≥ 0, this can
be formulated by a weighted hypergraph G̃ = (V, E, {v j}).
Note that the hypergraph G̃ might have selfloops (corre-
sponding to customers that are interested in a single item)
and multiedges (corresponding to customers that want to
get the same bundle of items). For a weighted hypergraph
G̃ = (V, E, {v j}), assume that each item i ∈ V has the pro-
duction cost di and each customer e j ∈ E has the valuation
v j. For G̃, we define a reduced instance G = (V, E, {wj}) to
be wj = v j − ∑

i∈e j
di for each e j ∈ E. If an item i ∈ V is

assigned a price pi in the reduced instance G, then its selling
price is given by ri = pi + di. In this paper, we focus on the
single-minded and unlimited supply model and consider re-
duced instances G’s of weighted hypergraphs. We say that
G = (V, E, {wj}) is an instance of the k-hypergraph vertex
pricing problem if |e j| ≤ k for each e j ∈ E, an instance of the
graph vertex pricing problem if |e j| ≤ 2 for each e j ∈ E, and
an instance of the bipartite graph vertex pricing problem if
G is a bipartite graph. As a special case of the hypergraph
vertex pricing problem, we also say that G = (V, E, {wj}) is
an instance of the highway problem if each e j ∈ E is an in-
terval on V (the definition will be given in Definition 2.7 for
the line highway problem and in Definition 2.8 for the cycle
highway problem).

In most of the previous works [1], [4], [5], [9], the item
pricing problem is considered under the model that pi ≥ 0
for each item i ∈ V (this is called the positive price model).
By introducing the notion of loss-leader [6], however, Bal-
can, et al. [3] consider several price models in which pi < 0
for some item i ∈ V (these are referred to as the discount
model, the B-bounded discount model, the coupon model,
etc., and are formally defined in §2.1), and showed that the
seller could get more profit in the case that pi < 0 is allowed
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than in the case that pi < 0 is not allowed.

1.2 Related Works

Positive Price Models: For the hypergraph vertex pric-
ing problem, Guruswami, et al. [9, Theorem 5.2] show
an O(log m + log n)-approximation algorithm. On the other
hand, Demaine, et al. [7, Theorem 3.2] present that it is
hard to approximate the hypergraph vertex pricing prob-
lem within a factor of logδ n for some δ > 0 under the
assumption that NP � BPTIME(2nε ) for some ε > 0.
For the k-hypergraph vertex pricing problem, Briest and
Krysta [4, Theorem 5.1] show an O(k2)-approximation al-
gorithm, which is improved to an O(k)-approximation algo-
rithm [1, Theorem 2]. For the graph vertex pricing problem,
Balcan and Blum derive a 4-approximation algorithm [1,
Theorem 1], while by the reduction from the vertex cover,
Guruswami, et al. [9, Theorem 3.1] show that the graph
vertex pricing problem is APX-hard even when all valu-
ations are identical (if selfloops are allowed) or all valua-
tions are either 1 or 2 (if selfloops are not allowed). For the
highway problem, Balcan and Blum [1, Theorem 3] show
an O(log n)-approximation algorithm and for the highway
problem that forms a hierarchy, Balcan and Blum [1, Theo-
rem 4] show a fully polynomial time approximation scheme
(FPTAS). For the nonapproximability for the highway prob-
lem, see [4], [8].

Other Models Based on Loss-Leader: For the highway
problem, we know the Ω(log n) gap between the positive
price model and the (B-bounded) discount model [2, Theo-
rem 1], and the Ω(log n) gap between the coupon model and
the (B-bounded) discount model [2, Theorem 2]. For the
graph vertex pricing problem, the Ω(log n) gap between the
positive price model and the B-bounded discount model [2,
Theorem 3] is known. For the highway problem, Balcan, et
al. [3, Theorem 3] show a 2.33-approximation algorithm un-
der the coupon model if all valuations are identical and for
the highway problem on tree, Balcan, et al. [2, Theorem 15]
show a 4-approximation algorithm under the coupon model
if all valuations are identical. For the k-hypergraph vertex
pricing problem, Balcan, et al. [3, Theorems 4 and 7] show
a fully polynomial time approximation scheme (FPTAS) un-
der the coupon and (B-bounded) discount models if the bun-
dles of different customers form a hierarchy. For the graph
vertex pricing problem, Balcan, et al. [3, Theorem 5] show
a fully polynomial time approximation scheme (FPTAS) un-
der the coupon model if the graph is minor-free.

1.3 Main Results

In this paper, we consider several kinds of the item pricing
problem such as

• graph sl— the graph vertex pricing problem with self-
loops;
• graph nsl— the graph vertex pricing problem with no

selfloops;
• bpt nsl — the bipartite graph vertex pricing problem

with no selfloops;
• bpt owhw— the bipartite oneway highway problem;
• line hw— the line highway problem;
• cyc hw— the cycle highway problem,

and show that any two of them are reducible to each other
with preserving approximation ratio within a constant factor
(see Lemmas 3.1–3.9).

To derive approximation algorithms for the item pric-
ing problems shown above, we consider the case with [s, �]-
valuations, i.e., the valuations wj’s range over nonnegative
integer interval [s, �], and we show that

(1) Under the coupon model, there exists a (1 + ln �s )-
approximation algorithm Algnsl

graph for graph nsl with
[s, �]-valuations (see Theorem 4.1 in §4.1).

Note that s is the smallest valuation and � is the largest val-
uation. From the result (1) and Lemmas 3.1–3.9, we can de-
rive algorithms with good approximation ratio for the other
problems, i.e.,

(2) Under the coupon model, there exists a (2 + ln �s )-
approximation algorithm Algsl

graph for graph sl with
[s, �]-valuations (see Corollary 4.1 in §4.2).

(3) Under the coupon model, there exists a (1 + ln �s )-
approximation algorithm Algnsl

bpt for bpt nsl with [s, �]-
valuations (see Corollary 4.2 in §4.2).

(4) Under the coupon model, there exists a 4(1 + ln �s )-
approximation algorithm Alghw

line for line hwwith [s, �]-
valuations (see Corollary 4.3 in §4.2).

(5) Under the coupon model, there exists a 4(1 + ln �s )-
approximation algorithm Alghw

cycle for cyc hw with
[s, �]-valuations (see Corollary 4.4 in §4.2).

The results (1) and (2) hold for graphs that are not
minor-free [12], and are general results for the graph vertex
pricing problem. The result (4) holds for the line highway
problem with multiple valuations, but the result by Balcan,
et al. [3, Theorems 3] holds only for the one with identical
valuations. The result (5) holds for the cycle highway prob-
lem with multiple valuations, which is introduced in this pa-
per, but the result by Balcan, et al. [3, Theorems 3] holds
for the line highway problem with identical valuations and
the results by Balcan, et al. [2, Theorems 15] holds for the
highway problem on tree with identical valuations.

The result (2) is derived by the result (1) and the re-
duction from graph sl to graph nsl (Lemma 3.2). By a dif-
ferent (direct) approach, we derive an algorithm with better
approximation ratio for graph sl, which improves the result
(2).

(6) Under the coupon model, there exists a ( 3
2 + ln �s )-

approximation algorithm Algsl
graph for graph sl with

[s, �]-valuations (see Theorem 4.2 in §4.2).
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2. Preliminaries

2.1 Price Models

Let G = (V, E, {wj}) be a reduced instance of the item pricing
problem. For a hyperedge e j ∈ E and a price vector p =
(p1, p2, . . . , pn) over the n vertices, let p(e j) =

∑
i∈e j

pi be
the sum of the profit on e j ∈ E, i.e., the profit that is returned
from the customer e j ∈ E for the price vector p. In most of
the previous works [1], [4], [5], [9], the item pricing problem
is considered under the model that pi ≥ 0 for each item
i ∈ V . By introducing the notion of loss-leader, however,
Balcan, et al. [3] considered several price models in which
pi < 0 for some item i ∈ V , and showed that the seller could
get more profit in the case that pi < 0 is allowed than in the
case that pi < 0 is not allowed.

In the following, we formally present the definitions of
positive price model, discount model, B-bounded discount
model, and coupon model [3] with respect to the reduced
instance.

Definition 2.1 (Positive Price Model): Under the condi-
tion that pi ≥ 0 for each i ∈ V , find a price vector p =
(p1, p2, . . . , pn) that maximizes

Profitpos(p) =
∑

e j∈E:w j≥p(e j)

p(e j).

Definition 2.2 (Discount Model): Find a price vector p =
(p1, p2, . . . , pn) that maximizes

Profitdisc(p) =
∑

e j∈E:w j≥p(e j)

p(e j).

Note that pi < 0 is allowed in the discount model. For a
fixed B > 0, if we assume that pi ≥ −B in the discount
model, then it is called the B-bounded discount model.

Definition 2.3 (Coupon Model): Find a price vector p =
(p1, p2, . . . , pn) that maximizes

Profitcoup(p) =
∑

e j∈E:w j≥p(e j)

max{p(e j), 0}.

Under the coupon model, if wj ≤ 0, then e j never contributes
to the profit for any price vector p. So without loss of gen-
erality, we assume that wj > 0 for each e j ∈ E under the
coupon model.

2.2 Item Pricing Problems

Graph Vertex Pricing Problem: As mentioned in §1.1, the
graph vertex pricing problem may have selfloops. We clas-
sify the graph vertex pricing problem according to whether
it is allowed to have selfloops or not.

Definition 2.4: We say that G = (V, E, {wj}) is a reduced
instance of the graph vertex pricing problem with selfloops
(graph sl) if G is allowed to have selfloops.

Definition 2.5: We say that G = (V, E, {wj}) is a reduced
instance of the graph vertex pricing problem with no self-
loops (graph nsl) if G does not have selfloops.

Definition 2.6: We say that G = (V, E, {wj}) is a reduced in-
stance of the bipartite graph pricing problem with no self-
loops (bpt nsl) if G is a bipartite graph and does not have
selfloops.

For any pair of integers a ≤ b, let [a, b] = {a, a +
1, . . . , b}. We say that G = (V, E, {wj}) is a reduced instance
of graph sl, graph nsl, or bpt nsl with [s, �]-valuations if
the valuations wj’s range over integer interval [s, �], where s
is the smallest integer valuation in G and � is the largest inte-
ger valuation in G. In particular, we say that G = (V, E, {wj})
is a reduced instance of graph sl, graph nsl, or bpt nslwith
a single valuation if wj = w > 0 for each e j ∈ E.

Highway Problem: Informally, we say that G = (V, E, {wj})
is an instance of the line highway problem [9] if each e j ∈ E
is an interval in the line on V . We introduce the cycle high-
way problem as a generalization of the line highway prob-
lem, and we say that G = (V, E, {wj}) is an instance of the
cycle highway problem if each e j ∈ E is an interval in the
cycle on V .

Definition 2.7: We say that G = (V, E, {wj}) is a reduced
instance of the line highway problem (line hw) if e j =

[s j, t j] ⊆ V for each e j ∈ E, where V = [1, n] and
1 ≤ s j ≤ t j ≤ n.

Definition 2.8: We say that G = (V, E, {wj}) is a reduced
instance of the cycle highway problem (cyc hw) if e j =

[s j, t j] ⊆ V or e j = [t j, n] ∪ [1, s j] ⊆ V for each e j ∈ E,
where V = [1, n] and 1 ≤ s j ≤ t j ≤ n.

We can similarly define a reduced instance of line hw or
cyc hw with [s, �]-valuations and a single valuation.

2.2.1 DAG Representation of LINE HW

In this subsection, we present the DAG representation of the
line highway problem due to Balcan, et al. [3, §3]. For a
reduced instance G = (V, E, {wj}) of the line highway prob-
lem, define the DAG representation H = (U, F, {wj}) of G
as follows: For V = {1, 2, . . . , n}, let U = {u0, u1, . . . , un} be
the set of n + 1 vertices, and for each e j = [s j, t j] ∈ E, let
f j = (usj−1, ut j ) ∈ F be the arc usj−1 → ut j with weight wj.

Let p = (p1, p2, . . . , pn) be a price vector for G =

(V, E, {wj}). For the DAG representation H = (U, F, {wj})
of G, define the partial sum for ui ∈ U by si =

∑i
h=1 ph,

where s0 = 0. On the other hand, let s = (s0, s1, . . . , sn) be
the partial sum vector for the DAG representation H of G.
For the partial sum vector s, we can recover the price vector
p = (p1, p2, . . . , pn) for G by pi = si− si−1 for each i ∈ [1, n].

Definition 2.9: We say that G = (V, E, {wj}) is a re-
duced instance of the bipartite oneway highway problem
(bpt owhw) if the DAG representation H = (L ∪ R, F, {wj})
of G is a directed bipartite graph such that i ∈ L and j ∈ R
for each arc f = (i, j) ∈ F.
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We can define a reduced instance of bpt owhw with [s, �]-
valuations and a single valuation analogously.

3. Approximation Preserving Reductions

We say that a maximization problem A is approximation
preserving reducible to a maximization problem B if for an
α-approximation algorithm for B and some constant c > 0,
it is possible to construct a cα-approximation algorithm for
A that runs efficiently (it is similarly defined for the case of
the minimization problem).

In this section, we show approximation preserving re-
ductions among the problems graph sl, graph nsl, bpt nsl,
bpt owhw, line hw, and cyc hw.

3.1 GRAPH SL vs. GRAPH NSL

We show that there exist approximation preserving reduc-
tions between graph sl and graph nsl.

Lemma 3.1: Under the coupon model, if there exists a
β-approximation algorithm Algsl

graph for graph sl, then we

can construct a β-approximation algorithm Algnsl
graph for

graph nsl.

Proof: This follows from the fact that graph nsl is a sub-
problem of graph sl.

Lemma 3.2: Under the coupon model, if there exists a β-
approximation algorithm Algnsl

graph for graph nsl, then we

can construct a (β+1)-approximation algorithm Algsl
graph for

graph sl.

Proof: For an instance G = (V, E, {wj}) of graph sl, let Esl

be the set of selfloops in E and Ec = E − Esl, i.e., the set of
edges in E that are not selfloops. For each vertex i ∈ V , let
Ei

sl be the set of selfloops incident to i ∈ V , and for a price
p, let Profitisl(p) be the profit from the selfloops in Ei

sl.
For a price vector p = (p1, p2, . . . , pn), we use

Profitsl(p) to denote the total profit returned from the self-
loops in Esl, i.e., Profitsl(p) = Profit1sl(p1) + Profit2sl(p2) +
· · · + Profitnsl(pn), and Profitc(p) to denote the total profit
returned from the edges in Ec. Let p∗ be the optimal price
vector for G. Let Opt(G) = Profit(p∗) be the maximum
total profit for G, Optsl(G) be the total profit returned from
the selfloops in Esl, and Optc(G) be the total profit returned
from the edges in Ec. By definitions, it is obvious that
Opt(G) = Optsl(G)+Optc(G). The reduction from graph sl
to graph nsl is given in Fig. 1.

From the definition of the price vector σ defined in
Step 1, we have that Profitsl(σ) ≥ Optsl(G). From the
assumption that Algnsl

graph is a β-approximation algorithm

for graph nsl, we have that Profit(τ) ≥ Opt(G̃)/β ≥
Optc(G)/β for the price vector τ defined in Step 3. Thus
it follows that

Profit(p) = max {Profit(σ),Profit(τ)}

Fig. 1 The reduction from graph sl to graph nsl.

≥ max

{
Optsl(G),

Optc(G)
β

}

≥ 1
β + 1

· Optsl(G) +
β

β + 1
· Optc(G)
β

=
1
β + 1

· {Optsl(G) + Optc(G)} = Opt(G)
β + 1

,

for the price vector p defined in Step 4.

3.2 GRAPH NSL vs. BPT NSL

We show that there exist approximation preserving reduc-
tions between graph nsl and bpt nsl.

Lemma 3.3: Under the coupon model, if there exists a
β-approximation algorithm Algnsl

graph for graph nsl, then

we can construct a β-approximation algorithm Algnsl
bpt for

bpt nsl.

Proof: This is due to the fact that bpt nsl is a subproblem
of graph nsl.

Lemma 3.4: Under the coupon model, if there exists a
β-approximation algorithm Algnsl

bpt for bpt nsl, then we

can construct a 2β-approximation algorithm Algnsl
graph for

graph nsl.

Proof: Let G = (V, E, {wj}) be an instance of graph nsl.
Let p∗ be the optimal price vector for G and Opt(G) =
Profit(p∗) be the maximum total profit for G. In Fig. 2, we
describe the reduction from graph nsl to bpt nsl.

Let ProfitG′ (p) be the total profit returned from the
edges in E′ for the price vector p of G′ = (V, E′, {wj}).
Note that each e ∈ E is included in E′ with probabil-
ity 1/2. From the linearity of expectation, it follows that
E[ProfitG′ (p∗)] = Opt(G)/2. Let q∗ be the optimal price
vector and Opt(G′) = ProfitG′ (q∗) be the maximum total
profit for G′ = (V, E′, {wj}). Note that the price vector p is
computed for an instance G′ = (V, E′, {wj}) of bpt nsl and
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Fig. 2 The reduction from graph nsl to bpt nsl.

G′ is defined according to the random choice of R. Then we
have that

E
[
ProfitG(p)

] ≥ E
[
ProfitG′ (p)

]
≥ E

[
Opt(G′)
β

]
= E

[
ProfitG′ (q∗)

β

]

≥ E
[
ProfitG′ (p∗)

β

]
=

1
β
· E [

ProfitG′ (p∗)
]

=
1

2β
· Opt(G),

where the 2nd inequality is due to the assumption that Algnsl
bpt

is a β-approximation algorithm for bpt nsl and the 3rd in-
equality is due to the definition of q∗.

Remark 3.1: To guarantee that each edge e ∈ E is in-
cluded in E′ with probability 1/2, it suffices to mark the
vertices in pairwise independent manner. Thus the reduc-
tion in Fig. 2 can be derandomized as follows: Let n = |V |
and let X1, X2, . . . , Xn : Ω → {0, 1} be pairwise independent
random variables such that Pr[Xi = 0] = Pr[Xi = 1] = 1/2
for each 1 ≤ i ≤ n and |Ω| = nO(1) (for the concrete con-
struction for such pairwise random variables, see [10], [11]).
For each ω ∈ Ω, (1) define R(ω) in such a way that i ∈ V
is included in R(ω) if and only if Xi(ω) = 1 in Step 1 of
Fig. 2; (2) define G′(ω) = (V, E′(ω), {wj}) in the same way
as Step 2 of Fig. 2;, (3) compute p(ω) in the same way as
Step 3 of Fig. 2. Finally, output p ∈ {p(ω)}ω∈Ω such that
ProfitG(p) = maxω∈Ω ProfitG(p(ω)).

3.3 BPT NSL vs. BPT OWHW

In this subsection, we show that the problems bpt nsl and
bpt owhw are efficiently reducible to each other with pre-
serving profits.

Lemma 3.5: Under the coupon model, the following holds
between bpt nsl and bpt owhw.

(1) For any instance G of bpt nsl and any price vector p for
G, it is possible to efficiently construct a price vector q
and an instance G′ of bpt owhw such that ProfitG′ (q) =
ProfitG(p);

(2) For any instance G of bpt owhw and any price vector q

for G, it is possible to efficiently construct a price vector
p and an instance G′ of bpt nsl such that ProfitG′ (p) =
ProfitG(q).

Proof: We first consider the statement (1). Let G = (L ∪
R, E, {wj}) be an instance of bpt nsl. Let F = { f j ∈ L × R :
e j ∈ E} by regarding each edge e j = (u j, v j) ∈ E as an
arc f j = (u j, v j) ∈ L × R. Let H = (L ∪ R, F, {wj}) be the
DAG representation of an instance G′ = (U, E′, {wj}) for
bpt owhw. For a price vector p = (p1, p2, . . . , pn) for G =
(L ∪ R, E, {wj}), the total profit returned from the customers
in E is given by

ProfitG(p)

=
∑

e j=(v j� ,v jr )∈E:w j≥p(e j)

max
{
p j� + p jr , 0

}

=
∑

e j=(v j� ,v jr )∈E:w j≥p(e j)

max
{
p jr −

(
−p j�

)
, 0

}
.

From the price vector p, define a partial sum vector s =
(s0, s1, s2, . . . , sn) of H as follows: Let s0 = 0 and for each
i ∈ [1, n], let si = −pi if i ∈ L and let si = pi if i ∈ R. From
the partial sum vector s, we can derive a price vector q for
G′ = (U, E′, {wj}) of bpt owhw that satisfies ProfitG′ (q) =
ProfitG(p).

Let us consider the statement (2). Let H = (L ∪
R, F, {wj}) be the DAG representation of an instance G =
(V, E, {wj}) for bpt owhw. Let E′ = {e j : f j ∈ L × R} by
regarding each arc f j ∈ L×R as a undirected edge e j and let
G′ = (L ∪ R, E′, {wj}) be an instance of bpt nsl. For a price
vector q for G = (V, E, {wj}), let τ = (τ0, τ1, τ2, . . . , τn) be
the partial sum vector for the DAG representation H of G,
where τ0 = 0. For the partial sum vector τ, the total profit
returned from the customers in E is given by

ProfitG(q)

=
∑

e j=(v j� ,v jr )∈E:w j≥p(e j)

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
jr∑

h= j�

qh, 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

∑
f j=(v js ,v jt )∈L×R:w j≥p(e j)

max
{
τ jt − τ js , 0

}
.

From the partial sum vector τ, define a price vector p =
(p1, p2, . . . , pn) for G′ of bpt nsl as follows: For each i ∈
[1, n], let pi = −τi if i ∈ L and let pi = τi if i ∈ R. Then
the price vector p for the instance G′ of bpt nsl satisfies that
ProfitG′ (p) = ProfitG(q).

3.4 LINE HW vs. BPT OWHW

We show that there exist approximation preserving reduc-
tions between line hw and bpt owhw.

Lemma 3.6: Under the coupon model, if there exists a
β-approximation algorithm Alghw

line for line hw, then we
can construct a β-approximation algorithm Algowhw

bpt for
bpt owhw.
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Fig. 3 The reduction from line hw to bpt owhw.

Proof: This follows from the fact that bpt owhw is a special
case of line hw.

Lemma 3.7: Under the coupon model, if there exists a
β-approximation algorithm Algowhw

bpt for bpt owhw, then

we can construct a 4β-approximation algorithm Alghw
line for

line hw.

Proof: Let G = (V, E, {wj}) be an instance of line hw.
Let p∗ be the optimal price vector for G and Opt(G) =
Profit(p∗) be the maximum total profit for G. In Fig. 3, we
describe the reduction from line hw to bpt owhw.

For the price vector p of G′ = (V, E′, {wj}), let
ProfitG′ (p) be the total profit from the customers in E′.
Note that each e ∈ E is included in E′ with probabil-
ity 1/4. From the linearity of expectation, it follows that
E[ProfitG′ (p∗)] = Opt(G)/4. For the optimal price vector
q∗, let Opt(G′) = ProfitG′ (q∗) be the maximum total profit
for G′ = (V, E′, {wj}). Note that the price vector p is com-
puted for an instance G′ = (V, E′, {wj}) of bpt nsl and G′ is
defined according to the random choice of R. Then we have
that

E
[
ProfitG(p)

] ≥ E
[
ProfitG′ (p)

]
≥ E

[
Opt(G′)
β

]
= E

[
ProfitG′ (q∗)

β

]

≥ E
[
ProfitG′ (p∗)

β

]
=

1
β
· E [

ProfitG′ (p∗)
]

=
1

4β
· Opt(G),

where the 2nd inequality is due to the assumption that
Algowhw

bpt is a β-approximation algorithm for bpt nsl and the
3rd inequality is due to the definition of q∗.

Remark 3.2: In a way similar to the argument in Remark
3.1, the reduction in Fig. 3 can be easily derandomized by
applying pairwise independent 0/1-random variables with a
small sample space [10], [11] in Step 2.

3.5 CYC HW vs. BPT OWHW

We show that there exist approximation preserving reduc-
tions between cyc hw and bpt owhw.

Fig. 4 The algorithm Algnsl
graph for graph nsl.

Lemma 3.8: Under the coupon model, if there exists a
β-approximation algorithm Alghw

cycle for cyc hw, then we

can construct a β-approximation algorithm Algowhw
bpt for

bpt owhw.

Proof: This follows from the fact that bpt owhw is a special
case of cyc hw.

Lemma 3.9: Under the coupon model, if there exists a β-
approximation algorithm Algowhw

bpt for bpt owhw, then we

can construct a 4β-approximation algorithm Alghw
cycle for

cyc hw.

Proof: In a way similar to the proof of Lemma 3.7.

4. Item Pricing Problems with [s, �]-Valuations

4.1 Approximation Algorithm for GRAPH NSL with [s, �]-
Valuations

In this subsection, we show an approximation algorithm for
graph nsl with [s, �]-valuations.

Theorem 4.1: Under the coupon model, there exists a (1 +
ln �s )-approximation algorithm Algnsl

graph for graph nsl with
[s, �]-valuations.

Proof: In Fig. 4, we describe the approximation algorithm
for graph nsl with [s, �]-valuations. As noticed in §1.3, we
assume that the valuations wj’s range over nonnegative inte-
ger interval [s, �].

Let G = (V, E, {wj}) be an instance of graph nsl with
[s, �]-valuations. Let p∗ be the optimal price vector for G
and Opt(G) = Profit(p∗) be the maximum total profit for
G. For each x ∈ [s, �], let Ex = {e j ∈ E : wj = x} be
the set of edges with valuation x and mx = |Ex|. Then we
have that m = |E| = ms + ms+1 + · · · + m� and Opt(G) ≤
sms + (s + 1)ms+1 + · · · + �m�. For each x ∈ [s, �], the price
vector px provides Profit(px) = xmx + xmx+1 + · · · + xm�.
So we have that

Opt(G) ≤ sms + (s + 1)ms+1 + · · · + �m�
= Profit(ps) +

�∑
x=s+1

Profit(px)
x

≤ Profit(p) +
�∑

x=s+1

Profit(p)
x
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≤
⎛⎜⎜⎜⎜⎜⎜⎝1 +

�∑
k=s+1

1
k

⎞⎟⎟⎟⎟⎟⎟⎠ · Profit(p).

Since
∑�

k=s+1 1/k ≤ ln �s , we have that Opt(G) ≤ (1 + ln �s ) ·
Profit(p).

4.2 Approximation Algorithm for the Other Problems
with [s, �]-Valuations

From Theorem 4.1 and lemmas given in §3, we can imme-
diately show the following results.

Corollary 4.1: Under the coupon model, there exists a
(2 + ln �s )-approximation algorithm Algsl

graph for graph sl
with [s, �]-valuations.

Proof: From Theorem 4.1 and Lemma 3.2.

Corollary 4.2: Under the coupon model, there exists a (1+
ln �s )-approximation algorithm Algnsl

bpt for bpt nslwith [s, �]-
valuations.

Proof: From Theorem 4.1 and Lemma 3.3.

Corollary 4.3: Under the coupon model, there exists a
4(1+ln �s )-approximation algorithm Alghw

line for line hwwith
[s, �]-valuations.

Proof: This follows from Theorem 4.1 and Lemmas 3.3,
3.5, and 3.7.

Corollary 4.4: Under the coupon model, there exists a
4(1+ln �s )-approximation algorithm Alghw

cycle for cyc hwwith
[s, �]-valuations.

Proof: This follows from Theorem 4.1 and Lemmas 3.3,
3.5, and 3.9.

By the direct approach to graph sl with [s, �]-
valuations, we can show the following theorem, which im-
proves Corollary 4.1.

Theorem 4.2: Under the coupon model, there exists a ( 3
2 +

ln �s )-approximation algorithm Algsl
graph for graph sl with

[s, �]-valuations.

Proof: For an instance G = (V, E, {wj}) of graph sl, let Esl

be the set of selfloops in E and Ec = E − Esl, i.e., the set
edges in E that are not selfloops. For each vertex i ∈ V , let
Ei

sl be the set of selfloops incident to i ∈ V , and for a price p,
let Profitisl(p) be the profit returned from the selfloops in Ei

sl.
For a price vector p = (p1, p2, . . . , pn), we use Profitsl(p) to
denote the total profit returned from the selfloops in Esl, i.e.,

Profitsl(p) =
n∑

i=1

Profitisl(pi),

and use Profitc(p) to denote the total profit returned from
the edges in Ec. Let p∗ be the optimal price vector and
Opt(G) = Profit(p∗) be the maximum total profit for G.
Let Optsl(G) be the total profit returned from the selfloops

Fig. 5 The algorithm Algsl
graph for graph sl.

in Esl and Optc(G) be the total profit returned from the
edges in Ec. By definitions, it is obvious that Opt(G) =
Optsl(G) + Optc(G). The algorithm Algsl

graph for graph sl is
given in Fig. 5. As noticed in §1.3, we assume that the valu-
ations wj’s range over nonnegative integer interval [s, �].

From the definition of the price vectorσ defined in Step
1, it follows that Profit(σ) ≥ Optsl(G). For each x ∈ [s, �],
let msl

x be the number of selfloops in Esl with valuation x and
mc

x be the number of edges in Ec with valuation x. From
the definition of the price vector τx, we have that for each
x ∈ [s, �],

Profitsl(τx) ≥ x
2

msl
x +

x
2

msl
x+1 + · · · +

x
2

msl
� ;

Profitc(τx) = xmc
x + xmc

x+1 + · · · + xmc
�.

From the definitions of msl
x and mc

x, it follows that

Optsl(G) ≤ smsl
s + (s + 1)msl

s+1 + · · · + �msl
� ;

Optc(G) ≤ smc
s + (s + 1)mc

s+1 + · · · + �mc
�.

Then from the definition of the price vector τ computed in
Step 3, we have that

Optsl(G)
2

≤ Profitsl(τs) +
�∑

x=s+1

Profitsl(τx)
x

Optc(G) ≤ Profitc(τs) +
�∑

x=s+1

Profitc(τx)
x

.

Since Profitsl(τx) + Profitc(τx) = Profit(τx) for each x ∈
[s, �], we have that

Optsl(G)
2

+ Optc(G)

≤ Profitsl(τs) +
�∑

x=s+1

Profitsl(τx)
x
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+ Profitc(τs) +
�∑

x=s+1

Profitc(τx)
x

= Profit(τs) +
�∑

x=s+1

Profit(τx)
x

≤ Profit(τ) +
�∑

x=s+1

Profit(τ)
x

=

⎛⎜⎜⎜⎜⎜⎜⎝1 +
�∑

k=s+1

1
k

⎞⎟⎟⎟⎟⎟⎟⎠ · Profit(τ)

≤
(
1 + ln

�

s

)
· Profit(τ),

where the 2nd inequality follows from the definition of the
price vector τ defined in Step 3. Thus it follows that

Profit(p) = max {Profit(σ),Profit(τ)}

≥ max

⎧⎪⎪⎨⎪⎪⎩Optsl(G),
Optsl(G)/2 + Optc(G)

1 + ln �s

⎫⎪⎪⎬⎪⎪⎭
≥ 1

3 + 2 ln �s
· Optsl(G)

+
2
(
1 + ln �s

)
3 + 2 ln �s

· Optsl(G)/2 + Optc(G)

1 + ln �s

=
2

3 + 2 ln �s
· {Optsl(G) + Optc(G)}

=
2

3 + 2 ln �s
· Opt(G),

for the price vector p defined in Step 4.

5. Concluding Remarks

In this paper, we have shown that there exist approxima-
tion preserving reductions between any two of the prob-
lems such as the graph vertex pricing problem with self-
loops graph sl, the graph vertex pricing problem with no
selfloops graph nsl, the bipartite graph vertex pricing prob-
lem with no selfloops bpt nsl, the bipartite oneway high-
way problem bpt owhw, the line highway problem line hw,
and the cycle highway problem cyc hw (see Lemma 3.1–
3.9). We have also shown that under the coupon model,
there exists a (1 + ln �s )-approximation algorithm Algnsl

graph
for graph nsl with [s, �]-valuations, which implies that the
other problems have algorithms with good approximation
ratio (see Corollaries 4.1–4.4).

All of the results in this paper depend on r = �/s (the
ratio between the largest valuation � and the smallest val-
uation s). This implies that our approximation algorithms
given in this paper may work well for smaller r (but may
not behave well for larger r). Thus the following issues re-
main as future works.

(1) Under all the price models, design algorithms with

better approximation ratio for the item pricing prob-
lems such as graph sl, graph nsl, bpt nsl, bpt owhw,
line hw, and cyc hw.

(2) Under all the price models, derive lower bounds on the
approximation ratio for the item pricing problems such
as graph sl, graph nsl, bpt nsl, bpt owhw, line hw,
and cyc hw.
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