
1500
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

LETTER

Adaptive Scanline Filling Algorithm for OpenVG 2D Vector
Graphics Accelerator

Daewoong KIM†,††a), Student Member, Kilhyung CHA†, and Soo-Ik CHAE†, Nonmembers

SUMMARY We propose an optimized scanline filling algorithm for
OpenVG two-dimensional vector graphics. For each scanline of a path,
it adaptively selects a left or right scanning direction that minimizes the
number of pixels visited during scanning. According to the experimental
results, the proposed algorithm reduces the number of pixels visited by 6 to
37% relative to that with a constant scanning direction for all the scanlines.
key words: OpenVG, two-dimensional vector graphics, adaptive, scanline
filling, scanning direction, skew

1. Introduction

Recently, applications using two-dimensional (2D) vector
graphics such as SVG viewers, portable mapping applica-
tions, E-book readers, games, and scalable user interfaces
have been widely accepted for mobile devices because the
2D vector graphics requires input data files with relatively
smaller size, provides compression without artifacts, and of-
fers easy scalability for various display panels sizes [1], [2].
OpenVG, which is the 2D vector graphics standard consti-
tuted by the Khronos Group., provides a royalty-free, cross-
platform API for vector graphics libraries such as Flash and
SVG [2]. Path, paint, and image are three basic components
in OpenVG 2D vector graphics. All the geometric objects
to be drawn are defined by one or more paths, each of which
consists of a sequence of segment commands. Each seg-
ment command in the standard format may specify a move,
a straight line segment, a quadratic or cubic Bézier segment,
or an elliptical arc. A paint command defines a color and
a transparent effect, which is called a filtered alpha value
(FAV), for each pixel being drawn, and images are rectan-
gular collections of pixel effects such as texturing.

In designing an efficient accelerator for OpenVG 2D
vector graphics, optimization of its rendering part is impor-
tant because of its computational complexity is substantially
higher than that of its geometry part [3]–[6]. We found that
the rendering part occupies more than 80% of the total com-
putational complexity in most of the test images we used [6].
The rendering architecture can be classified into three types:
vector, raster, and hybrid [4]–[6]. Among them, we focus
on hybrid (or scanline-based) rendering architecture, which

Manuscript received November 28, 2008.
Manuscript revised February 6, 2009.
†The authors are with the School of Electrical Engineering and

Computer Sciences, Seoul National University, 151–742 Korea.
††The author is with Media Development Team, Samsung Elec-

tronics Ltd., 446–711 Korea.
a) E-mail: dwkim316@sdgroup.snu.ac.kr

DOI: 10.1587/transinf.E92.D.1500

Fig. 1 A scanline-based rendering architecture.

is more suitable for low-power and high-performance mo-
bile applications because it requires only a scanline-sized
buffer and removes unnecessary memory accesses associ-
ated with the sorting procedure [5], [6]. This architecture
also consists of a geometry part and a rendering part, as
shown in Fig. 1. After processing geometry operations for
each path, three processing steps for rendering such as ac-
tive edge generation, scanline filling, and pixel processing
are pipelined for each scanline in the path. The scanline fill-
ing step, which calculates the FAV for each pixel, is the most
complex among the three steps [6] and its complexity for
each scanline is proportional to the number of active edges
as well as the resolution of display panels (i.e. the number
of pixels).

In this paper, we propose an optimized scanline filling
algorithm to alleviate a performance bottleneck of the ren-
dering algorithm.

2. Adaptive Scanline Filling Algorithm

2.1 Motivation

To obtain the FAV of a pixel, the partial winding value con-
tributed from each active edge is accumulated according to
the crossing direction of the active edge. Figure 2 illustrates
two examples for filling a triangle path: one scanned with
a constant direction and the other with an adaptively selected
direction for each scanline, together with another example
for filling a two-polygon path with adaptively selected di-
rection for each scanline. When the scanning direction is
right, the partial winding value of each pixel on its right side
is decremented by 1 if an active edge is downward; other-
wise, incremented by 1, as shown in Fig. 2 (A). When the
scanning direction is left, the partial winding value of each
pixel on its left side is incremented by 1 if an active edge is
downward; otherwise, decremented by 1.

Note that the partial winding values of a pixel

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



LETTER
1501

Fig. 2 Filling a triangle path: (A) scanned with a constant direction and
(B) scanned with both directions, and (C) filling a path with two polygons
scanned with both directions.

contributed from two opposite directional active edges are
cancelled. According to these rules, we can obtain correct
filling even though we adaptively select the scanning direc-
tion, as shown in Fig. 2 (B) and 2 (C), as long as we use
a constant scanning direction for each scanline. The dark
grey region in Fig. 2 (C) should be filled if a non-zero fill
rule is applied or not filled if an even/odd fill rule is applied.
Note that filling the overlapped region depends on which
fill rule is selected [2]. We can fill a path correctly either
with constant direction scanning or with adaptive one. With
adaptive scanning, therefore, we can further optimize the
scanline filling step by selecting a scanning direction that
requires fewer operations.

The scanline filling algorithm first evaluates the edge
functions for the edge pixels that intersect with the active
edge as well as the first non-edge pixel in the scanning di-
rection. Then it copies the partial winding value of the first
non-edge pixel to those of all the remaining pixels in the
scanning direction. In Fig. 3, each edge pixel is represented
as a grey-color rectangle and two candidates of the first non-
edge pixel are represented with a circle. Note that the first
non-edge pixel is selected from the two candidates accord-
ing to the scanning direction. For example, three active
edges exist in the scanline shown in Fig. 3. If the scanning
direction is right, fourteen copy operations are required for
the pixels annotated with a rectangle; otherwise, ten copy
operations for the pixels with a triangle. In this example,
therefore we should scan to the left to reduce the number of
copy operations, or the number of pixels visited.

Fig. 3 Winding value calculations of each pixel for active edges in
a scanline.

Fig. 4 A scanline with N active edges.

2.2 Criterion for Selecting the Scanning Direction

Now we will derive a simple criterion to select for each scan-
line a scanning direction that minimizes the number of pix-
els visited while evaluating their partial winding values.

Let ai be the pixel coordinate of the midpoint for an ac-
tive edge i, and N be the total number of the active edges
in a scanline. We calculate the leftmost and rightmost
crossover points of a polygon with the scanline in the ac-
tive edge generation step, which will be referred to as leftX
and rightX respectively, as illustrated in Fig. 4.

Because it is efficient to confine the copy operation
only for the pixels within the interval of the leftmost and
rightmost crossover points, the number of copy operations
can be approximated as follows:

Cleft = (a1 − leftX) + · · · + (aN − leftX)

=

N∑

1

ak − N · leftX (1)

Cright = (rightX − a1) + · · · + (rightX − aN)

= N · rightX −
N∑

1

ak, (2)

where Cleft and Cright represent the number of copy opera-
tions for the left, or right, scanning direction, respectively.
Here, we define the skew of a scanline as (Cleft −Cright)/2N,
which is equal to the mean pixel coordinate of the midpoints
for all active edges minus (rightX + leftX)/2. We use it as
a selection measure for deciding the scanning direction for
the scanline like the following. If a scanline has a positive
skew, scan it to the right; otherwise, to the left. Conse-
quently, the number of the pixels visited during scanning
is reduced.



1502
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

Table 1 Features of test images.

Table 2 Scanning direction and the number of pixels visited for the pro-
posed algorithm.

3. Experimental Results

We used eight test images summarized in Table 1 to verify
the efficiency of our algorithm and their full color images
are shown in Appendix. Among them, Tiger and Dude are
representative test images released from Khronos Group [2],
and the others are translated from SVG files by the authors.
In the experiment we employed an equal-weight 8-Queen
box filter for anti-aliasing filtering and assumed a QVGA
display panel.

We compared the proposed algorithm to a conventional
one. Table 2 shows the number of scanlines scanned in ei-
ther direction in the proposed algorithm for each test image
as well as the number of the pixels visited for three scan-
ning schemes: right only, left only, or adaptive. The pro-
posed algorithm always reduces the number of the pixels
visited relative to that with a constant direction. Note that
the proposed algorithm performs better especially for Tiger
and Pelican because they include many scanlines with more
positive, or negative, skew.

4. Conclusions

In the proposed scanline filling algorithm, the scanning di-
rection for each scanline is adaptively selected according

to its skew, which is equal to the mean pixel coordinate of
the midpoints for all active edges minus (rightX + leftX)/2.
Experimental results show that the proposed algorithm con-
siderably improves the performance with minimal compu-
tational overhead. Presently, we are focusing our efforts on
reducing the memory bandwidth of the OpenVG 2D vector
graphics accelerator by optimizing its memory architecture.

Acknowledgments

This work was supported by “System IC2010” project of
Korea Ministry of Knowledge Economy and Inter-university
Semiconductor Research Center (ISRC) in Seoul National
University.

References

[1] K. Pulli, “New APIs for mobile graphics,” Proc. SPIE — The Interna-
tional Society for Optical Engineering, vol.6074, no.607401, 2006.

[2] Khronos Group Inc. OpenVG 1.0.1 Specification:
http://www.khronos.org/openvg/

[3] G. He, B. Bai, Z. Pan, and X. Cheng, “Accelerated rendering of vec-
tor graphics on mobile devices,” Lecture Notes in Computer Science,
vol.4551, pp.298–305, 2007.

[4] S.-Y. Lee and B.-U. Choi, “Vector graphic reference implementation
for embedded system,” Lecture Notes in Computer Science, vol.4761,
pp.243–252, 2007.

[5] K. Kallio, “Scanline edge-flag algorithm for antialiasing,” Theory and
Practice of Computer Graphics Conference, pp.81–88, June 2007.

[6] D.-W. Kim, K.-H. Cha, and S.-I. Chae, “A high-performance OpenVG
accelerator with dual-scanline filling rendering,” IEEE Trans. Con-
sum. Electron., vol.54, no.3, pp.1303–1311, 2008.

Appendix

Fig. A· 1 Test images: Tiger, Dude, E-book, Picture, Basket, Bottle,
Snow, and Pelican (from left-to-right and top-to-bottom).


