
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.8 AUGUST 2009
1523

PAPER

Mining Noise-Tolerant Frequent Closed Itemsets in Very Large
Database

Junbo CHEN†, Member, Bo ZHOU†a), Nonmember, Xinyu WANG†, Member, Yiqun DING†,
and Lu CHEN††, Nonmembers

SUMMARY Frequent Itemsets(FI) mining is a popular and important
first step in analyzing datasets across a broad range of applications. There
are two main problems with the traditional approach for finding frequent
itemsets. Firstly, it may often derive an undesirably huge set of frequent
itemsets and association rules. Secondly, it is vulnerable to noise. There
are two approaches which have been proposed to address these problems in-
dividually. The first problem is addressed by the approach Frequent Closed
Itemsets(FCI), FCI removes all the redundant information from the result
and makes sure there is no information loss. The second problem is ad-
dressed by the approach Approximate Frequent Itemsets(AFI), AFI could
identify and fix the noises in the datasets. Each of these two concepts has
its own limitations, however, the authors find that if FCI and AFI are put to-
gether, they could help each other to overcome the limitations and amplify
the advantages. The new integrated approach is termed Noise-tolerant Fre-
quent Closed Itemset(NFCI). The results of the experiments demonstrate
the advantages of the new approach: (1) It is noise tolerant. (2) The number
of itemsets generated would be dramatically reduced with almost no infor-
mation loss except for the noise and the infrequent patterns. (3) Hence, it is
both time and space efficient. (4) No redundant information is in the result.
key words: noise-tolerant frequent closed itemsets, closed itemsets, ap-
proximate frequent itemsets, association rules

1. Introduction

It has been well recognized that FI mining [13] plays an es-
sential role in many important data mining tasks and pro-
vides the basis for deriving association rules, clustering data,
and building classifiers from relational databases.

There are two main problems of the FI mining. Firstly,
it may often derive an undesirably huge set of frequent item-
sets and association rules. Secondly, it is vulnerable to
noise.

The first problem is addressed by the approach named
FCI, which is proposed by [2]. FCI is a condensed rep-
resentation of all the frequent itemsets that guarantees no
information loss. No information loss is one of the advan-
tages of FCI. However, it turns out to be a defect if noise is
presented. It is because FCI keeps all the noise information
and redundant information caused by the noise: The recent
theoretical results [1] state that, in the presence of even low
levels of noise, large frequent itemsets are broken into frag-
ments of logarithmic size. These small fragments are similar

Manuscript received July 25, 2008.
Manuscript revised March 7, 2009.
†The authors are with Computer College of Zhejiang Univer-

sity, Hangzhou, Zhejiang, 310027, China.
††The author is with State Street Corporation, Hangzhou,

Zhejiang, 310027, China.
a) E-mail: bzhou@zju.edu.cn

DOI: 10.1587/transinf.E92.D.1523

to each other and they would be redundant information once
the large frequent itemsets were found.

The second problem is addressed by the approach
termed AFI, which is proposed by [9]. AFI could identify
and fix the noises in the datasets. However, the number of
AFIs is even larger than the number of FIs. The redundant
information contained by AFIs will lead to both time and
space inefficiency.

The authors find that FCI and AFI could work together
to help each other to overcome the limitations and amplify
the advantages. The novel integrated approach is termed
Noise-tolerant Frequent Closed Itemset(NFCI). In this new
approach: (1) AFI could fix the noise in the datasets, hence,
it could help FCI to overcome its noise vulnerability while
still amplifying the advantages of FCI because all the small
fragments of the large frequent itemsets which caused by
the noise could be identified and removed from the re-
sults as redundant information. (2) FCI could help AFI to
overcome the time/space inefficiency problem because the
search space is reduced dramatically (in one of our exper-
iments, the number of generated itemsets is reduced from
4,129,839 to 14) by FCI, since FCI removes all the redun-
dant information.

This paper proposes a novel algorithm called Noise-
tolerant Frequent Closed Itemsets Miner. In the rest of the
paper, it is referred to as NFCIM. The advantages of this
approach include: (1) It is noise tolerant. (2) The number
of itemsets generated would be dramatically reduced with
almost no information loss. (3) Hence, it is both time and
space efficient. (4) No redundant result will be generated.

1.1 Related Work

Two fields of the research are related to the concept ACFI.
The Frequent Closed Itemset mining and the Approximate
Frequent Itemsets mining. And as far as the authors know
there is no effort that has been carried out to integrate the
ideas from these two fields as this paper proposes.

1.1.1 Frequent Closed Itemsets

The concept of frequent closed itemsets mining was first
proposed in [2]. Since then, extensive studies have been
carried out in this area. Many fast algorithms have been
proposed, they are divided into three categories:

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



1524
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.8 AUGUST 2009

(1) Both A-Close [2] and TITANIC [15] exploit a level-
wise process to discover closed itemsets through a
breadth-first search strategy. Usually these algorithms
are required to scan the whole dataset many times.

(2) In contrast, CLOSET [4] and CLOSET+ [5] traverse
the itemset lattice in a depth first manner. With the
help of high compact data structure FP-Tree, they could
achieve better performance than the first kind of al-
gorithms. FPClose [6] is an improved algorithm of
CLOSET+.

(3) CHARM [3] exploits hybrid techniques which ex-
plores both the closed itemset space and transaction
space simultaneously. DCI-Closed [12], LCM [14] and
CFII [11] could be considered as improvement algo-
rithms of CHARM.

1.1.2 Approximate Frequent Itemsets

This topic is relatively new in the data mining community,
and limited efforts have been carried out in this field.

Yang et al. [7] proposed two error-tolerant mod-
els, termed weak error-tolerant itemsets and strong error-
tolerant itemsets. Jouni K. et al. [8] proposed to mine the
dense itemsets in the presence of noise where the dense
itemsets are the itemsets with a sufficiently large sub-matrix
that exceeds a given density threshold of attributes present.
Liu et al. [9] developed a general model for mining approx-
imate frequent itemsets which controls errors of two direc-
tions in matrices formed by transactions and items. Selim et
al. [10] proposed an algorithm that is obtained by modifying
a hierarchical agglomerative clustering algorithm and takes
advantage of the speed that bit operations afford.

All the proposed approximate algorithms share the
same problems: (1) The number of approximate frequent
itemsets is even more huge than that of the frequent itemsets.
(2) The Apriori Property [13] will no longer hold for the ap-
proximate frequent itemsets, so there’s no efficient search
space pruning technique †. Hence, The performance of these
algorithms is even worse than the Apriori algorithm [13] it-
self. So, they are not suitable for very large database either.

The rest of this paper is organized as follows. Sec-
tion 2 gives the formal definition of the problems. Section 3
presents the proposed NFCIM algorithm. The performance
evaluation is depicted in Sect. 4. Finally, Sect. 5 is the con-
clusion of this paper.

2. Problem Definition

2.1 Frequent Closed Itemset

Let T be the universal set of all the Transactions, I be the
universal set of all the Items, R ⊆ T × I is a binary relation
between T and I. Then the triple (T ,I,R) is called a For-
mal Context. If T ⊆ T , then T is named tidset; If I ⊆ I,
then I is named itemset.

We define two functions:

Table 1 NFCIM().

1: procedure NFCIM()
2: R′ = R;
3: do{
4: C = all the NFCI in R′

5: P = ∅;
6: for any similar I1, I2 ∈ C, where I1 ⊂ I2

7: for all (t, i) ∈ (I2 × g(I1))
8: if ((t, i) � R′ )
9: add (t, i) to P
10: R′ = R′ ∪ P
11: }while(P is not empty)
12: return C

f (T ) = {i ∈ I | (t, i) ∈ R,∀t ∈ T }

g(I) = {t ∈ T | (t, i) ∈ R,∀i ∈ I}

Where T is a tidset and I is an itemset. (t, i) ∈ R if and
only if transaction t contains i. f (T ) represents all the items
which is contained by every transaction in T . g(I) represents
all the transactions which contains every item in I.

A pair (T, I) is called a Formal Concept if and only if
f (T ) = I and g(I) = T . T is called the Extent and I is called
the Intent of the concept (T, I).

One common representation for the formal context is
a binary matrix as shown in Table 1. Rows in the matrix
correspond to transactions, while columns represent various
items. The binary value of each matrix entry indicates the
presence (1) or the absence (0) of an item for a given trans-
action in R.

Let (I × T ) denote the sub-matrix in the dataset which
has I as the universal set of items and T as the universal set
of transactions.

Definition 1 Let I be an item set, the support supp(I) is
defined as the number of transactions which contains I, that
is, supp(I) =

∥∥∥{t ∈ T | (t, i) ∈ R,∀i ∈ I}
∥∥∥ =
∥∥∥g(I)

∥∥∥

Definition 2 An itemset I is said to be closed if and only if
C(I) = f (g(I)) = f ◦ g(I) = I where the composite function
C = f ◦ g is called a Galois operator or a closure operator.

Definition 3 A closed item set is called frequent if and
only if the support of it exceeds a given threshold S

2.2 Noise-tolerant Frequent Closed Itemset

Definition 4 Let εc, εr ∈ [0, 1], T ⊆ T is a tidset, I ⊆ I is
an itemset. R(t, i) = 1 if and only if (t, i) ∈ R.
We say that the sub-matrix (I × T ) satisfies εr condition if
and only if:

∀t ∈ T,
1
I

∑

i∈I
R(t, i) ≥ (1 − εr)

We say that the sub-matrix (I × T ) satisfies εc condition if
†Although [9] proposed an approximate Apriori property.

However, it’s not efficient enough, the search space is till very
large.



CHEN et al.: MINING NOISE-TOLERANT FREQUENT CLOSED ITEMSETS IN VERY LARGE DATABASE
1525

and only if:

∀i ∈ I,
1
T

∑

t∈T
R(t, i) ≥ (1 − εc)

εc and εr are called slack parameters.

Definition 5 Itemset I ⊆ I is called approximate frequent
itemset(AFI) if there exists a tidset T ⊆ T with ‖T‖ > S
such that (I × T ) follow both εr condition and εc condition.

Definition 4 and 5 are cited from [9].

Definition 6 If ∃I1, I2, satisfies:
(1) I1, I2 are frequent closed itemsets.
(2) I1 ⊂ I2.
(3) The sub-matrix (I2 × g(I1)) follows the εr, εc conditions
in Definition 4.
Then, I1 and I2 are called similar frequent closed itemsets.

Similar frequent closed itemsets is referred to as simi-
lar FCIs in the rest of the paper.

Definition 7
(1) Let I1, I2 be similar FCIs, then all the ’0’ entries in the
sub-matrix (I2 × g(I1)) are called Noise Elements.
(2) The Noise Matrix, denoted as P, is defined as P(t, i) = 1
if and only if (t, i) is a noise element.
(3) The Fixed Matrix, denoted as R′ , is defined as R′ = R ∪
P, that is R′(t, i) = 1 if and only if R(t, i) = 1 or P(t, i) = 1.

The functions f () and g() could be redefined with two pa-
rameters, the second parameter R∗ could be any dataset:

Definition 8

f
′
(T,R∗) = {i ∈ I | (t, i) ∈ R∗,∀t ∈ T }

g
′
(I,R∗) = {t ∈ T | (t, i) ∈ R∗,∀i ∈ I}

It is easy to see that the original version of f () and g()
are special cases of f

′
() and g

′
() since

f (T ) = f
′
(T,R)

g(I) = g
′
(I,R)

That is, f () and g() could only be applied to the original
dataset R, and the new version f

′
() and g

′
() could also be

applied to the fixed matrix R′ .

Definition 9 An itemset I is said to be a Noise-tolerant
Frequent Closed Itemset(NFCI) if and only if C

′
(I,R′) =

f
′
(g
′
(I,R′),R′) = f

′ ◦ g
′
(I,R′) = I and the support of I

exceeds the threshold S .
According to definition 9, NFCIs are simply FCIs in

the fixed matrix R′ . So, we could define Similar NFCIs just
like the Similar FCIs:

Definition 10 If ∃I1, I2, satisfies:
(1) I1, I2 are noise-tolerant frequent closed itemsets.
(2) I1 ⊂ I2.

(3) The sub-matrix (I2 × g
′
(I1,R

′
)) follows the εr, εc condi-

tions.
Then, I1 and I2 are called similar noise-tolerant frequent
closed itemsets.

2.3 The Main Structure of the Algorithm

Initially, P is empty, so R′ = R∪P = R, after that, P and R′

will be updated iteratively until there is no similar (N)FCIs
could be found. It could be recognized that NFCIs are ac-
tually FCIs in dataset R′ . So, we may refer to “NFCI” as
“FCI” without explicit declarations in the rest of this paper.

This idea is expressed in the pseudo code in Table 4.
Actually, it is an intuitive implementation of NFCIM. The
improved algorithm will be given in Sect. 3.

Explanations about Table 4:

• P is initially empty. So, in line 2, the algorithm set
R′ = R.
• In line 4, the algorithm find all the NFCIs in R′ , and

put them to the set C.
This procedure could be implemented by any “exact”
FCI mining algorithm which satisfies the following two
conditions: Firstly, the FCIs should be well-organized
by the algorithm; Secondly, the algorithm should ex-
plore the item set space and transaction set space si-
multaneously, so that NFCIM could measure εc, εr to
find similar (N)FCIs. The algorithm chosen to produce
all the “exact” FCIs is termed BaseMiner.
In this paper, CAHRM † is chosen as the BaseMiner
because it’s simple enough to avoid wasting too much
time talking about the BaseMiner itself. However, the
simplicity is only an optional condition, and it’s easy
to replace CHARM with more complicated algorithm
like LCM [14], DCI-Close [12], FCII [11] etc.
• In line 5-9. If there’s any similar NFCIs in C, the algo-

rithm tries to merge them and put all the missing entries
in the sub-matrix (I2 × g(I1)) to P. For instance, in the
running example in the next section, the algorithm will
find that (be f × 2345) and (abe f × 345) are similar. so
the missing entry (2, a) will be added to P.
• If there’s any similar NFCIs found, R′ will be updated

in line 10, and the next iteration will begin. If there’s no
similar NFCIs found, the iteration will break in line 11,
and the NFCIs in C are all the itemsets the algorithm is
looking for.

2.4 Running Example

The essential concept of the proposed algorithm is Similar
(N)FCIs defined in Definition 6 and Definition 10. They are
actually the small fragments of the large frequent itemsets
broken by the noise. Table 1 shows a running example. Here
it’s used to illustrate what the similar (N)FCIs looks like.

(abe f × 345) and (be f × 2345) are two closed item-
sets and corresponding tidsets in the synthetic dataset. If

†Refer to Sect. 3.1.



1526
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.8 AUGUST 2009

Table 2 Running Example.

a b c d e f

1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9

Table 3 Sub Matrix.

a b e f

2 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1

Table 4 Number of itemsets in running example.

Support #FI #FCI #AFI #NFCI

3 38 21 64 2

we zoom in to see the sub-matrix that only contains these
itemsets, then we have Table 2.

From Table 2, it could be found that (abe f × 345) and
(be f ×2345) are similar intuitively. Because they are largely
overlapped. Also, they follows the conditions given in Defi-
nition 6, hence, they are similar FCIs. In this way, the entry
(2, a) is detected as a noise element and should be added to
the noise matrixP. As a result, the fixed matrixR′ = R∪P
contains the entry (2, a) and the two “exact” closed itemsets,
(abe f×345) and (be f×2345), could be merged to generate a
noise-tolerant frequent closed itemset and its correspond-
ing tidset (abe f × 2345).

To illustrate how many itemsets could be reduced, Ta-
ble 3 lists the numbers of Frequent Itemsets (#FI), Fre-
quent Closed Itemsets (#FCI), Approximate Frequent Item-
sets (#AFI) and Noise-tolerant Frequent Closed Itemsets
(#NFCI) in the synthetic dataset if the support threshold
is 3 and the slack parameters of AFI and NFCI are set as
εr = 0.4, εc = 0.3.

3. NFCIM

One of the biggest problem of approximate frequent item-
sets mining is that the Apriori Property is no longer hold.
So there is no efficient search space pruning technique avail-
able. The novel concept of Noise-tolerant Frequent Closed
Itemsets deals with the problem in a quite naturally way.
By the definition, the process of finding NFCIs requires no
information from any infrequent closed itemsets. So, any
NFCI which has support less than the threshold, S , could be
pruned safely. That is, Apriori Property still hold for noise-
tolerant frequent closed itemsets mining.

Since NFCIM does not store any infrequent FCI, it is
possible that the algorithm could lose some chances to dis-

cover “noise elements”. However the “missed” noise ele-
ments could be discovered in the following two ways:

(1) The “missed” noise elements could be found by the
“side-effect” of other similar frequent closed itemsets.
For instance, in the running example, (abde f × 45)
is a closed itemset (and its corresponding transaction
set), (abe f × 345) is another closed itemset. The sub-
matrix (abde f × 345) follows both the εc and εr condi-
tion, so (d, 3) should be discovered as a noise element.
Because the minimum support in the running exam-
ple is “3”, and “abdef” is pruned by the BaseMiner,
hence, the chance of detecting (d, 3) as a noise element
is lost. However, (d, 3) is not really “missed” because it
is discovered by another pair of similar frequent closed
itemsets (de f × 2458) and (e f × 23458). We call this
as “side effects” of the similar FCIs (de f × 2458) and
(e f × 23458).
Based on the above observations, we propose the fol-
lowing hypothesis: The “side effects” could find a
large portion of the “missed” noise elements. This hy-
pothesis could be verified in the experiment shown in
Sect. 4.2.

(2) The “missed” noise elements could be discovered by
set a smaller “minimum support” threshold. For in-
stance, if we set “2” as the minimum support in the
running example, then, (abde f × 45) and (abe f × 345)
will be found as similar frequent closed itemsets and
(d, 3) could be detected as noise element.
If the user is not satisfied with the quality of the output,
then (s)he could simply set a little bit smaller threshold
to detect more “noise elements”.

3.1 CHARM

From the definitions given in Sect. 2, it could be con-
cluded that when mining NFCI, the algorithm requires the
information from both the tidset space and the itemset
space. CHARM [3] is a well-known algorithm which ex-
plores these two dimensions simultaneously, so we choose
CHARM as the BaseMiner of NFCIM.

This section gives a short introduction about CHARM.
The CHARM algorithm is given in Table 5, Table 6 and
Table 7.

• CHARM assumes all the items are ordered according
to a total order f .
• CHARM provides a data structure called IT-tree. Each

node in the tree is represented by an itemset-tidset pair,
(I × T ), where T = g(I).
• The root of the IT-tree is initialized as (C(∅) × T ), and

every item i is added to root as a child in the ascending
order of f . As in Table 5, line 2-5.
• The input of the procedure process(node) is a node in

the IT-tree, the children of which are the candidate gen-
erators [12] of closed itemsets based on it. In this pro-
cedure, the algorithm tries to find the closed itemset
generated from each of the children of node.



CHEN et al.: MINING NOISE-TOLERANT FREQUENT CLOSED ITEMSETS IN VERY LARGE DATABASE
1527

Table 5 CHARM().

1: procedure CHARM()
2: root = (C(∅) × T );
3: for all i ∈ I (in order of f )
4: if(‖i‖ ≥ S )
5: add (i × g(i)) as a child of root;
6: process(root);

Table 6 process(node).

1: process(node)
2: for all child of node, denoted as ch
3: if(ch is a duplicated node)
4: delete ch;
5: return;
6: for all right sibling of ch, denoted as rs
7: check(node, ch, rs);
8: if(∃ child under ch)
9: process(ch)

Table 7 check(node, ls, rs).

1: check(node, ls, rs)
2: T = ls.T ∩ rs.T
3: if(‖T‖ < S )
4: return;
5: if(ls.T = rs.T )
6: ls.I = ls.I ∪ rs.I;
7: delete rs;
8: return;
9: else if(ls.T ⊂ rs.T )
10: ls.I = ls.I ∪ rs.I;
11: return;
12: else if(ls.T ⊃ rs.T )
13: delete rs;
14: add (ls.I ∪ rs.I × T ) as a child of ls;
15: return;
16: else
17: add (ls.I ∪ rs.I × T ) as a child of ls;
18: return;

• In line 3 in Table 6, it checks whether ch is duplicated.
If a node n1 is duplicated, that means ∃n2 ∈ IT-tree,
which satisfies that n2.I ⊃ n1.I and n2.T = n1.T , which
leads to the conclusion that n1.I is not a closed itemset.
So, a duplicated node could be deleted from the tree
safely. Refer to [3] to see the details of how to detect
the duplicated nodes.
• In line 6-7 in Table 6, the algorithm tries to find the

closed itemset generated from ch.I, meanwhile pruning
the search space in IT-tree. The procedure check() is
supported by Theorem 1 given bellow, which is proved
in [3].
• There’re two kinds of nodes in the IT-tree. One of them

has been checked by the code in line 6-7 in Table 6. The
itemset of this kind of node is proved to be a closed
itemset. The other kind of nodes has not been checked
yet, so the itemset of this kind of node is only a genera-
tor itemset which is not guaranteed to be a closed item-
set. We call the second kind of nodes Shadow Nodes,
since they are not proved to be a closed itemset yet.

Theorem 1 Let l, r be two child nodes under the same

parent, and l is the left sibling of r. The following four prop-
erties † hold

(1) If l.g(I) = r.g(I), then C(l.I) = C(r.I) = C(l.I ∪ r.I)
(2) If l.g(I) ⊂ r.g(I), then C(l.I) � C(r.I), but C(l.I) =

C(l.I ∪ r.I)
(3) If l.g(I) ⊃ r.g(I), then C(l.I) � C(r.I), but C(r.I) =

C(l.I ∪ r.I)
(4) Else, then C(l.I) � C(r.I) � C(l.I ∪ r.I)

The result IT-Tree of the running example in Table 1
(set support = 3) is shown in Fig. 1 ††.

The nodes in the IT-tree have internal structures. The
definition of each part of it is given in the following †††.

Definition 11 Let n be a node in the IT-tree, p be the
parent of the n, then we define

• ext pid of n as: ext pid = min f {n.I − p.I}, that is,
ext pid is the minimum item in the itemset {n.I − p.I}
according to the total order f .
• gen of n as: gen = p.I ∪ n.ext id. This is the gen-

erator of the closed itemset in n, which satisfies that
g(n.gen) = g(n.I)
• ext ids of n as: ext ids = n.I−n.gen. It could be proved

that ∀i ∈ n.ext ids, g(i) ⊇ g(n.gen)
• preset of n as: preset = {i ∈ I | i ≺ n.ext id, i � n.I}
• posset of n as: posset = {i ∈ I | i � n.ext id, i � n.I}

The itemset of every shadow node in the tree is actually
a generator [12] of a closed itemset. The generator, n.gen is
constructed by combining the closed itemset of it’s parent,
p.I, and the extended primary id ext pid, which is an item
in p.posset. After the shadow child is checked by the code
in Table 6, line 6-7, C(n.gen) is found, and the algorithm set
n.I = C(n.gen). For example, in Fig. 1, the generator of the
node (be f × 2345) is b, and after the check() procedure, the
algorithm finds that C(b) = be f .

[12] proved that in this way, all the closed itemsets
could be found.

3.2 NFCIM

Definition 12 Let n be a node in IT-tree, then L Tree(n) is
defined as a set of nodes, each element nl in this set has the
following property: exists an ancestor node of nl, denoted
as pl, and exists an ancestor node of n, denoted as p. which
satisfies that pl is a left sibling of p.

Visually, we could draw a line from the node n to the
root of the tree. All the nodes in the left of this line are in
L Tree(n). If the IT-tree is explored in depth first way as
NFCIM does, and n is the current node that the algorithm
is working on, then it could be proved that all the nodes
in L Tree(n) and all the ancestors of n have been explored
already.

†They are called CHARM Properties in the rest of the paper.
††We assume the total order f is a ≺ b ≺ c ≺ d ≺ e ≺ f .
†††This definition is quoted from [12].



1528
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.8 AUGUST 2009

Fig. 1 CHARM Result.

Definition 13 Let n be a node in IT-tree, then R Tree(n) is
defined as a set of nodes, each element nr in this set has the
following property: nr � L Tree and nr is not an ancestor
node of n.

It could also be proved that, if the IT-tree is explored
in depth first way as NFCIM does, and n is the current node
that the algorithm is working on, then there is no node in
R Tree(n) have been explored. That is, all the nodes in
R Tree(n) must be shadow nodes.

The intuitive implementation of NFCIM is given in Ta-
ble 4. However, this implementation is inefficient. For ex-
ample, in Fig. 1, (ae × 1345) and (ace × 135) are similar, so
the algorithm merges them and (4, c) is added to R′ . The
interesting thing is that the algorithm does not need to build
the whole IT-tree to find these similar nodes †. Actually, all
the nodes in the R Tree of (ace × 135) are not necessary.

Hence, the improved algorithm tries to update R′ with-
out building the whole IT-tree. This is a strategy that when-
ever similar nodes are found, they are merged immediately
and R′ is updated as soon as possible. The implementation
of the improved algorithm is the same as shown in Table 5, 6
and 7 except that the procedure process() should be rewrite
as in the following:

Explanations:

(1) Line 2-7 is exactly the same as in Table 5. Line 8-9 tries
to merge node and ch if they are similar. The proce-
dure, merge(), will be described in detail in Sect. 3.2.2.

(2) The procedure find similar supset() †† invoked in line
10 tries to find a node in L Tree(node), denoted as nsup,
which is similar with node and satisfies that nsup.I ⊃
node.I. If there’s such kind of node found, the algo-
rithm merges them and returns †††.

The improved algorithm has the following advantages:

• The merge procedure is invoked for the current work-
ing node as soon as possible. Hence, the algorithm will
not waste time to calculate the unnecessary information
of the nodes in R Tree of the current node.
• After R′ is updated, the improved algorithm will not

recalculate the whole IT-tree. It only requires to fixing

the related node in L Tree of the current node.
• Every time R′ is updated, the number of NFCIs in it is

reduced. Hence, the size of the IT-tree is reduced. So,
by updating the R′ as soon as possible, the search space
is reduced as soon as possible.

3.2.1 Find the Superset Nodes

Definition 14 Let n1, n2 ∈ IT-tree. If n2.I ⊃ n1.I, we say
that n2 is a Superset Node of n1.

If two nodes are similar, the itemset of one of them
must be a superset of the itemset of the other. Hence, the
first step of finding a similar node of the current node would
be to find all the superset node of it. However, the number
of such nodes could be very large in the IT-tree. Hence, we
introduce the concept of Direct Superset Node in the follow-
ing:

Definition 15 Let n1, n2 ∈ IT-tree. If n2.I ⊃ n1.I, and
�n3 ∈ IT-tree, satisfies that n2.I ⊃ n3.I ⊃ n1.I. We say that
n2 is a Direct Superset Node of n1.

It could be proved that the algorithm only needs to find
the direct superset nodes of the current node. For example,
if there’re 3 nodes, n1.I ⊂ n2.I ⊂ n3.I. Hence n3 is not a
direct superset node of n1. So, even if n1 and n3 are similar
nodes, they could not be merged directly. However, n3 and
n2 are similar nodes too and n3 is a direct superset node of
n2, so they could be merged as a new node n4. After that,
n4 is a direct superset node of n1 and they could be merged
too. The conclusion is that it has the same power as merge
n1 and n3 directly.

There’re two kinds of directly superset nodes of the
current node: (1) This kind of node nsup satisfies that �i ∈

†Two nodes is similar if and only if the closed itemsets of them
are similar.
††Refer to Sect. 3.2.1 for detailed information about this proce-

dure.
†††If node merges with nsup which is from L Tree(node), the

algorithm will delete node. Hence in line 12, the procedure returns
directly. For detailed information, refer to Sect. 3.2.2.



CHEN et al.: MINING NOISE-TOLERANT FREQUENT CLOSED ITEMSETS IN VERY LARGE DATABASE
1529

Table 8 process(node).

1: process(node)
2: for all child of node, denoted as ch
3: if(ch is a duplicated node)
4: delete ch;
5: return;
6: for all right sibling of ch, denoted as rs
7: check(node, ch, rs);
8: if(node, ch are similar)
9: merge(node, ch);
10: if((nsup = find similar supset(node)) != null)
11: merge(nsup, n);
12: return;
13: if(∃ child under ch)
14: process(ch)

Table 9 find(I, ipre).

1: procedure find(I, ipre)
2: cur node = root;
3: I = I ∪ ipre;
4: pid = min f {I};
5: while(∃child of cur node, child.ext pid = pid ){
6: I = I − child.I;
7: if(I is empty) return child;
8: pid = min f {I};
9: cur node = child;
10: }
11: return null;

nsup, i ∈ c node.preset. (2) This kind of node nsup satisfies
that ∃i ∈ nsup, i ∈ c node.preset.

It could be proved that the first kind of direct superset
node must be a child node of c node. So, the algorithm
need to check whether the current node is similar with its
children, as shown in Table 8, line 8-9.

For the second type, the algorithm tries to use a divide
and conquer strategy: for each item ipre ∈ c node.preset,
it tries to find a direct superset node that contains ipre and
none of the items i ≺ f ipre is contained. For example, in
Fig. 1, the preset of the node (ce×12357) is {a, b, d}. Hence,
the algorithm tries to find the direct superset node which (1)
contains a, (2) contains b, but not a, (3) contains d, but not
a and b.

These procedure is given in the pseudo code in Table 9.
The input parameters are (1) I, the itemset of the cur-

rent node, n.I; (2) ipre, an item id in n.preset. If there’s no
child found in line 5, then, either the direct superset includes
ipre is not frequent, or there must be another item i ≺ ipre ex-
ists in the direct superset node.

For example, in Fig. 1, the algorithm tries to find the
direct superset of (d f × 24568) which contains a. In line
3, the algorithm sets I = ad f , the minimum element of I
is a, and the cur node is root. So in the first iteration, the
child node is (ae × 1345), In line 6, I = ad f − ae = d f , the
minimum element of I is d, so in the second iteration, the
child is (ade × 145), then I = d f − ade = f , now there’s no
child under (ade × 145) which has f as it’s ext pid. Hence,
there’s no direct superset of d f which contains a in the IT-
tree. Actually, ad f is an infrequent itemset.

The pseudo code of find similar supset() is listed in Ta-

Table 10 find similar supset(c node).

1: procedure find similar supset(c node)
2: for each i ∈ c node.preset;
3: nsup = find(c node.I, i);
4: if(nsup != null && nsup and c node are similar)
6: return nsup;
11: return null;

Table 11 merge(n1, n2).

1: procedure merge(n1, n2)
2: if(n1 is parent of n2){
3: n1.I = n2.I
4: delete node(n2)
5: }else{
6: n2.T = n1.T
7: delete subtree(n1)
8: }
9: update R′ ;
10: fix existed nodes();

ble 10.

3.2.2 Merge Similar Nodes

Similar nodes will be merged. The merge procedure is given
in Table 11, here, we assume that n1.I ⊂ n2.I.

Explanations:

• If n1 is the parent of n2, then the original process is: (1)
delete n1, (2) put n2 at the position of n1 used to be, (3)
set n2.T = n1.T . Actually, this is equivalent with the
code in line 3-4.
• The algorithm need the procedure fix existed nodes()

in line 10, because since R′ is updated, the related
nodes in the IT-tree should be updated too.

There’re a lot of trivial operations to be carried out in
the procedure fix existed nodes(). This paper will not list
the pseudo code of it since it’s long and tedious. Instead, we
just give an introduction about the main structure of it in the
following:

Denote the current node the algorithm is processing
as c node. This procedure mainly deals with the situation
when the tidset of the generator of c node is expanded, that
is, g

′
(c node.gen,R′ ) is expanded. There’re 4 kinds of sub-

situations need to be concerned:

(1) Restore of a deleted node: If there exists an ances-
tor node na of c node, satisfies that before the up-
date of R′ , na.T is a superset of g

′
(na.parent.I ∪

c node.ext pid,R′). According to CHARM Property
3, there’s a child node of na.parent is deleted in this
kind of situation. Denote the deleted node as nd,
we have nd.ext pid = c node.ext pid and nd.gen =
na.parent.I ∪ c node.ext pid. If after R′ is updated,
na.T � g

′
(nd.gen,R′ ), then, the Charm Property 3 is

not applicable any longer. Hence the node nd should
be restored.

(2) Expand ext ids: If there exists left sibling, denote as
nl, of c node, before R′ is updated, nl.T � c node.T . If



1530
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.8 AUGUST 2009

Fig. 2 NFCIM Result.

after R′ is updated, nl.T ⊂ c node.T . Then, according
to CHARM Property 2, c node.ext pid could be added
to nl.I, that is, nl.I = nl.I ∪ c node.ext pid.

(3) Split node: If there exists right sibling, denoted as nr,
of c node, before R′ is updated, nr.T ⊃ c node.T , then,
according to CHARM Property 2, nr.pid ∈ c node.I. If
after R′ is updated, nr.T � c node.T . Hence, CHARM
Property 2 is no longer applicable. So, c node should
be split up to remove nr.ext pid from the itemset of it.

(4) Delete duplicated node: If there exists right sibling, de-
noted as nr, of c node, before R′ is updated, nr.T �
c node.T . If after R′ is updated, nr.T ⊂ c node.T .
Hence, CHARM Property 3 is applicable, so nr should
be deleted from the IT-tree.

3.2.3 The Running Example

In this section, we present how the IT-tree is build based on
the running example introduced in Sect. 1. Let εr = 0.3,
εc = 0.4 and S = 3. The algorithm proceeds as shown in
Fig. 2 †.

In step 1, NFCIM finds that (ae × 1345) and (ace ×
135) are similar nodes and should be merged. The IT-tree
after merge is displayed in step 2. The updated node (c ×
1234567) is marked with a grey border. In step 2, NFCIM
finds that (ace × 1345) and (acde × 145) are similar nodes.
The algorithm will keep merging similar nodes, until there’s
no similar nodes found. At last, there’re only two NFCIs
found in the running example.

4. Performance Evaluation

In this section, we report our performance study of the
three FCI algorithms: CHARM, FP-Close and NFCIM.
CHARM [3] is a base algorithm of NFCIM, and FP-
Close [6] is a state of arts algorithm of mining frequent
closed itemsets.

We do not compare NFCIM to FI and AFI algorithms
because it’s well recognized that FCI algorithms outperform
FI and AFI algorithms.

The experiments were conducted on a Windows XP PC
equipped with a 1.7 GHz Pentium IV and 1024 MB of RAM
memory.

We test the three algorithms on various datasets, in-
cluding synthetic ones generated by the standard procedure
described in [13], and two popular real datasets.

• synthetic dataset T25I20D10k with 1000 items: In this
dataset, the average transaction size and average max-
imal potentially frequent itemset size are set to 25 and
20, respectively, while there are totally 10k transac-
tions. This dataset is sparse. Most of frequent itemsets
are closed.
• Real dataset Connect-4: This dataset is from the UC-

Irvine Machine Learning Database Repository. It is
compiled from the Connect-4 game state information.
The total number of transactions is 67,557, while each
transaction is with 43 items. It is a dense dataset with
a lot of long frequent itemsets.
• Real dataset KDD-CUP 2007: This dataset comes from

KDD-Cup 2007. The dataset provide a list of 100,000
(user id, movie id) pairs where the users and movies
are drawn from the Netflix Prize training data set which
consists of more than 100 million ratings from over 480

†Each grey node in the tree is a shadow node.



CHEN et al.: MINING NOISE-TOLERANT FREQUENT CLOSED ITEMSETS IN VERY LARGE DATABASE
1531

Table 12 Number of itemsets in dataset Connect.

Support #FI #FCI #NFCI #FI
#AFIC

#FCI
#NFCI

64179(95%) 2,205 812 7 315.0 116.0
60801(90%) 27,127 3,486 7 3875.3 498.0
54046(80%) 533,975 15,107 12 44497.9 1258.9
47290(70%) 4,129,839 35,875 14 294988.5 2562.5

Table 13 The Precision and Recall of NFCIM and AFI.

s(%) precision recall

AFI NFCIM AFI NFCIMs
0.6 90.04 100 76.70 72.73
0.8 90.46 100 78.61 74.15
1.0 91.69 100 78.30 75.27
2.0 97.52 100 81.71 77.80
3.0 99.40 100 81.61 78.82

thousand randomly-chosen, anonymous customers on
nearly 18 thousand movie titles. In this dataset, a trans-
action corresponds to a user, an item corresponds to a
movie.

4.1 Reduction of the Size of Itemsets Using NFCI

Our experiments show that the number of frequent itemsets
which need to be represented in mining can be reduced by
several orders of magnitude in a dense database if they are
represented by NFCI. Table 12 lists the numbers of Frequent
Itemsets(# FI), Frequent Closed Itemsets(# FCI) and Noise-
tolerant Frequent Closed Itemsets(# NFCI), as well as their
ratios, in dataset Connect-4 †.

4.2 Quality Testing with Synthetic Data

In this section, we compare the quality of the output of
NFCIM with another state-of-art noise tolerant algorithm,
AFI [9]. The synthetic data T10.I4.D20K is treated as the
dataset without any noise, denoted as R. The noise is intro-
duced by flipping each element in the dataset with probabil-
ity p. The dataset with noise is denoted as Rn.

Let FIe represent all the exact frequent itemsets in R
discovered by the exact FI mining algorithms; FIn represent
all the “approximate” frequent itemsets in Rn by the noise
tolerant mining algorithms. Then the following two metrics
are used to measure the quality of the result of the noise
tolerant algorithms.

presicion =
‖FIe ∩ FIn‖
‖FIn‖

, reccall =
‖FIe ∩ FIn‖
‖FIe‖

Let p = 0.05%, εc = εr = 0.2 for both NFCIM and
AFI, then table 13 shows the experiments results for these
two algorithms.

As demonstrated in Table 13, NFCIM has better preci-
sion but worse recall than AFI. It’s because NFCIM discov-
ers less noise elements than AFI, as a result, the chance for
NFCIM to generate false positive patterns is slimmer than
AFI, meanwhile the chance for it to generate false negative

Fig. 3 Connect-4.

Fig. 4 T25I20D10K.

patterns is greater than AFI.
Table 13 also shows that the recall of NFCIM is close

to AFI. Hence, this experiment verifies the “side effects”
hypothesis proposed in Sect. 3.

4.3 Runtime Comparison

Figure 3 shows the CPU Runtime of the algorithms on
dataset Connect-4. The slack parameter of ACFIM are
εc = εr = 0.3.

Figure 4 shows the CPU Runtime of the algorithms on
dataset T25I20D10K. The slack parameter of ACFIM are
εc = εr = 0.2.

Figure 5 shows the CPU Runtime of the algorithms on
dataset KDD-CUP 2007. The slack parameter of ACFIM
are εc = εr = 0.2.

The results of the performance evaluation show that
NFCIM is about two orders of magnitude faster than
CHARM and FP-Close on Connect-4 dataset, while NFCIM
is a little bit slower than CHARM and FP-Close on the other
two datasets. Hence, we could conclude that the NFCIM has
much better performance than the state of arts algorithms
such as CHARM and FP-Close on dense datasets, mean-
while it is as efficient as them on sparse datasets.

It could be found that NFCIM is inefficient on
sparse datasets comparing to the performance on the dense

†Let the slack parameters of NFCIM be εr = εc = 0.15.



1532
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.8 AUGUST 2009

Fig. 5 KDD-CUP 2007.

datasets. The reason of it is that the reduction of the number
of generated itemsets (the search space) is not as significant
as on the dense datasets. For example, the search space is re-
duced thousands of times on dense datasets, while the search
space is reduced about 50% on the sparse datasets.

5. Conclusions and Future Work

Frequent itemsets mining is one of the most popular data
mining tools ever invented and extensive efforts have been
carried out in this area. However, it has two main problems.
Firstly, it may often derive an undesirably huge set of fre-
quent itemsets. Secondly, it is vulnerable to noise.

This paper proposes a novel approach, Noise-tolerant
Frequent Closed Itemsets, which could address these two
problems simultaneously. The new approach is noise toler-
ant. The number of generated itemsets is proved to be dra-
matically reduced with almost no information loss except
for the noise and infrequent patterns. The performance ex-
periments demonstrate that the new approach is about two
orders of magnitude faster than the state-of-art FCI mining
algorithms on dense datasets meanwhile it is as efficient as
them on sparse datasets.

References

[1] X. Sun and A.B. Nobel, “Significance and recovery of block struc-
tures in binary matrics with noise,” 2005 Tech. Rep. Department of
Statistics and Operation Research, UNC Chapel Hill.

[2] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering fre-
quent closed itemsets for association rules,” Proc. ICDT’99, Jan.
1999.

[3] M.J. Zaki, C.-J. Hsiao, “CHARM: An efficient algorithm for closed
itemsets mining,” Proc. SIAM ICDM Conf., 2002.

[4] J. Pei, J. Han, and R. Mao, “CLOSET: An efficient algorithm for
mining frequent closed itemsets,” Proc. DMKD Conf., May 2000.

[5] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the best
strategies for mining frequent closed itemsets,” Proc. KDD Conf.,
2003.

[6] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining fre-
quent itemsets,” Proc. FIMI, ICDM Conf., 2003.

[7] C. Yang, U. Fayyad, and P.S. Bradley, “Efficient discovery of error-
tolerant frequent itemsets in high dimensions,” Proc. International
Conference on Very Large Database, 2001.

[8] J. Seppänen and H. Mannila, “Dense itemsets,” Proc. KDD Conf.,

2004.
[9] J. Liu, S. Paulsen, X. Sun, W. Wang, A. Nobel, and J. Prins, “Mining

approximate frequent itemsets in the presence of noise: Algorithm
and analysis,” Proc. SIAM ICDM Conf., 2006.

[10] M. Selim and A.S. Dan, “Clustering and approximate identification
of frequent itemsets,” Proc. AAAI Conf., 2007.

[11] C. Junbo, Z. Bo, D. Yiqun, and C. Lu, “Finding cloesed frequent
itemsets in linear time,” Proc. DMIN Conf., 2008.

[12] C. Lucchese, S. Orlando, and R. Perego, “DCI closed: A fast and
memory efficient algorithm to mine frequent closed itemsets,” Proc.
ICDM Conf., 2004.

[13] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” Int’l Conf. on Very Large Databases, 1994.

[14] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “LCM: An efficient
algorithm for enumerating frequent closed item sets,” Proc. ICDM
Conf., 2003.

[15] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal,
“Computing iceberg concept lattices with TITANIC,” J. Knowledge
and Data Engineering (KDE), vol.2, no.42, pp.189–222, 2002.

Junbo Chen received the B.E. degree in
the department of Computer Science and Engi-
neering from Zhejiang University of Technol-
ogy (China) in 2002. He became a Ph.D. student
in 2003 and since then he’s been a research as-
sistant in Zhejiang University (China). His pri-
mary research interests is machine learning and
data mining.

Bo Zhou received his Ph.D. degree of com-
puter science at Department of Computer Sci-
ence and Engineering, Zhejiang University in
1995. Since 1996, he has been a faculty member
and associate professor of Department of Com-
puter science and Engineering at Zhejiang Uni-
versity. His research interests include database
systems, software engineering,and software ar-
chitecture.

Xinyu Wang received the B.E. degree in
the department of Computer Science and En-
gineering from Zhejiang University (China) in
2002. From 2002 to 2007, he was a research
assistant in the Zhejiang University, where he
got the D.E. degree from the college of Com-
puter Science. Since the June 2007, he has been
the lecturer in the same university. His primary
research interests include Software engineering,
distributed software architecture and distributed
computing. He is a member of IEEE CS.



CHEN et al.: MINING NOISE-TOLERANT FREQUENT CLOSED ITEMSETS IN VERY LARGE DATABASE
1533

Yiqun Ding received the B.E. degree in
the department of Computer Science and En-
gineering from Zhejiang University (China) in
2004. He became a PhD candidate in 2004 and
since then he’s been a research assistant in Zhe-
jiang University. His primary research interests
is high dimensional data analysis and its appli-
cation areas, such as document analysis, collab-
orative filtering and web usage mining.

Lu Chen received the B.E. degree in the
department of Computer Science and Engineer-
ing from Zhejiang University (China) in 2003.
From 2003 to 2006, she was a research assis-
tant in the Zhejiang University, where she got
the Master degree from the college of Computer
Science. Since April 2006, she has been em-
ployee in State Street as an IT Project Manager
for Foreign Exchange.


