LETTER

d-Primitive Words and D(1)-Concatenated Words

Itaru KATAOKA ${ }^{\dagger}$ and Tetsuo MORIYA ${ }^{\dagger \text { a) }}$, Members

Abstract

SUMMARY In this paper, we study d-primitive words and $D(1)$ concatenated words. First we show that neither $D(1)$, the set of all dprimitive words, nor $D(1) D(1)$, the set of all $D(1)$-concatenated words, is regular. Next we show that for $u, v, w \in \Sigma^{+}$with $|u|=|w|, u v w \in D(1)$ if and only if $u v^{+} w \subseteq D(1)$. It is also shown that every d-primitive word, with the length of two or more, is $D(1)$-concatenated. key words: primitive word, d-primitive word, regular component

1. Introduction

The notion of primitive words plays an important role in algebraic theory of codes and formal languages.([7], [8], and [10]) A lot of studied have been done on subsets of the language Q of all primitive words (See [1], [2], and [3], for example). Recently, attention has been paid to the language $D(1)$ of all d-primitive words, which is a proper subset of Q [4]-[6].

In this paper, we study languages $D(1)$ and $D(1) D(1)$, the set of all $D(1)$-concatenated words. We consider the regularity of $D(1)$ and $D(1) D(1)$, a regular component contained in $D(1)$, and the inclusion relation between $D(1)$ and $D(1) D(1)$.

In Sect. 2 some basic definitions and results are presented.

In Sect. 3, the following (1) and (2) are proved.
(1) Neither $D(1)$ nor $D(1) D(1)$ is regular.
(2) For $u, v, w \in \Sigma^{+}$with $|u|=|w|, u v w \in D(1)$ if and only if $u v^{+} w \subseteq D(1)$.

In Sect. 4, we consider the inclusion relation between $D(1)$ and $D(1) D(1)$, over a binary alphabet. It is proved that for a word w in $D(1)$, with the length of two or more, w is in $D(1) D(1)$.

2. Preliminaries

Let Σ be a finite alphabet consisting of at least two letters. Σ^{*} denotes the free moniod generated by Σ, that is, the set of all finite words over Σ, including the empty word ϵ, and $\Sigma^{+}=\Sigma^{*}-\epsilon$. For w in $\Sigma^{*},|w|$ denotes the length of w. Any subset of Σ^{*} is called a language over Σ. For a word $u \in \Sigma^{+}$, by u^{+}we mean the set $\{u\}^{+}$.

For a word $u \in \Sigma^{+}$, if $u=v w$ for some $v, w \in \Sigma^{*}$, then

[^0]$v(w)$ is called a prefix (suffix) of u, denoted by $v \leq_{p} u\left(w \leq_{s}\right.$ u, resp.). If $v \leq_{p} u\left(w \leq_{s} u\right)$ and $u \neq v(w \neq u)$, then $v(w)$ is called a proper prefix (proper suffix) of u, denoted by $v<_{p} u$ ($w<_{s} u$, resp.). For a word w, let $\operatorname{Pref}(w)(S u f f(w))$ be the set of all prefixes (suffixes, resp.) of w.

A nonempty word u is called a primitive word if $u=f^{n}$, for some $f \in \Sigma^{+}$, and some $n \geq 1$ always implies that $n=1$. Let Q be the set of all primitive words over Σ. A nonempty word u is a non-overlapping word if $u=v x=y v$ for some $x, y \in \Sigma^{+}$always implies that $v=\epsilon$. Let $D(1)$ be the set of all non-overlapping words over Σ. A words in $D(1)$ is also called a d-primitive word. For $u \in \Sigma^{+}, u$ is said to be $D(1)$ concatenated if there exist $x, y \in D(1)$ such that $x y=u$, i.e., $u \in D(1) D(1)$. (See [4] and [11]).

For $x, y \in \Sigma^{+}$, if $(\operatorname{Pref}(x)-\{\epsilon\}) \cap(S u f f(y)-\{\epsilon\})=\phi$, then (x, y) is said to be a non-overlapping pair ($\mathrm{n}-\mathrm{o}$. pair).

For $u, v, w \in \Sigma^{*}$, the language of the form $u v^{+} w$ is called a regular component.

We have the following property concerning d-primitive words.

Lemma 1: ([5]) Let $u \in \Sigma^{+}$. Then $u \notin D(1)$ iff there exists a unique word $v \in D(1)$ with $|v| \leq\left(\frac{1}{2}\right)|u|$ such that $u=v w v$ for some $w \in \Sigma^{*}$.

Remark 1: Let $u, v \in \Sigma^{+}$. Obviously $u v \in D(1)$ implies that (u, v) is a n -o. pair. The converse does not hold; for $u=a b b b b a$, and $v=b b,(u, v)$ is a n-o. pair but $u v$ is not in $D(1)$. However, in the next Proposition, we show the above two are equivalent on the condition that u and v are in $D(1)$.

Proposition 2: Let u and v be in $D(1)$. The following are equivalent.
(1)Both $u v$ and $v u$ are in $D(1)$.
(2)Both (u, v) and (v, u) are n-o. pairs.
[Proof] (1) \Rightarrow (2) : Obvious.
(2) \Rightarrow (1) : Suppose that (2) holds but $u v \notin D(1)$ or $v u \notin$ $D(1)$. It suffices to show the result only for the case of $u v \notin$
$D(1)$. We can write $u v=z w z$ for some $z \in \Sigma^{+}, w \in \Sigma^{*}$.
Since (u, v) is n-o.pair, obviously $|u| \neq|z|$.
(Case 1) $z<_{p} u$
(1.1) $z w<_{p} u$. We have that $u=z w y$ and $z=y v$ for some $y \in \Sigma^{+}$. Thus $u=y v w y \notin D(1)$.
(1.2) $u \leq_{p} z w$. We have that $u=z w_{1}$ and $v=w_{2} z$ for some
$w_{1} \in \Sigma^{+}, w_{2} \in \Sigma^{*}$ with $w=w_{1} w_{2}$. Thus (u, v) is not n-o.
pair.
(Case 2) $u<_{p} z$
We have that $v=x w z, z=u x$ for some $x \in \Sigma^{+}$. Thus $v=$ xwих $\notin D(1) . \quad::$

The next lemma is immediate by Lemma 1.
Lemma 3: (1) For a n-o. pair (x, y) and $c \in \Sigma$, with $|x|=|y|$, both $x y$ and $x c y$ are in $D(1)$.
(2) Let $w \in D(1)$. For every $x \in \operatorname{Pref}(w)-\{\epsilon\}$ and $y \in$ $S u f f(w)-\{\epsilon\}$ with $(x, y) \neq(w, w),(x, y)$ is a n-o.pair. :

3. Regularity of $D(1)$ and $D(1) D(1)$

In this section first we prove that neither $\mathrm{D}(1)$ nor $D(1) D(1)$ is regular.

Proposition 4: $D(1)$ is not regular.
[Proof] Suppose that $D(1)$ were a regular set. Then there would be an integer n satisfying the conditions of the pumping lemma. Let x be $a^{n+1} b^{n} a^{n} b^{n}$. Then the word x can be written as $u v w$ for some $u, w \in \Sigma^{*}, v \in \Sigma^{+}$. Since $|u v| \leq n, u v$ is in a^{+}. Moreover, we have that $u w$ is in $D(1)$ by the pumping lemma. It follows that $u w=a^{m} b^{n} a^{n} b^{n}$ for some $m \leq n$. However, $u w$ is not in $D(1)$ since $a^{m} b^{n}$ is in $\operatorname{Pref}(u w) \cap \operatorname{Suff}(u w)$. This is a contradiction.

Proposition 5: $D(1) D(1)$ is not regular.
[Proof] Suppose that $D(1) D(1)$ were a regular set. Let n be the integer in the pumping lemma, and let x be $a^{n+1} b^{n} a^{n} b^{n} a^{n} b^{n}$. Then the word x can be written as $u v w$ for some $u, w \in \Sigma^{*}, v \in \Sigma^{+}$. Since $|u v| \leq n, u v$ is in a^{+}. Moreover, we have that $u w$ is in $D(1) D(1)$ by the pumping lemma. It follows that $u w=a^{m} b^{n} a^{n} b^{n} a^{n} b^{n}$ for some $m \leq n$. However, $u w$ is not in $D(1) D(1)$ since neither $a^{n} b^{n} a^{n} b^{n}$ nor $a^{m} b^{n} a^{n} b^{n}$ is in $D(1)$. This is a contradiction.

Next we study a regular component contained in $\mathrm{D}(1)$.

Proposition 6: Let $|u|=|w|$ for $u, v, w \in \Sigma^{+}$. Then $u v w \in$ $D(1)$ if and only if $u v^{+} w \subseteq D(1)$.
[Proof]
[if] Trivial.
[Only if] Suppose that $u v w$ is in $D(1)$ for $u, w, v \in \Sigma^{+}$, with $|u|=|w|$. We shall show that for every $n \geq 2, u v^{n} w$ is in $D(1)$ by induction.
(Basis) $n=2$. By Lemma 3(2), (uv,vw) is n-o.pair. Then we have that $u v v w$ is in $D(1)$ by Lemma 3(1). ::
(Induction) Assume that $u v^{n} w$ is in $D(1)$, for $n \geq 2$.
(Case 1) n is even
(1.1) $|v|$ is even. By Lemma 3(2), $\left(u v^{\frac{n}{2}} v_{1}, v_{2} v^{\frac{n}{2}} w\right)$ is a n o.pair, for $v_{1}, v_{2} \in \Sigma^{+}$, with $v=v_{1} v_{2}$ and $\left|v_{1}\right|=\left|v_{2}\right|$. Then $u v^{\frac{n}{2}} v_{1} v_{2} v^{\frac{n}{2}} w=u v^{(n+1)} w$ is in $D(1)$ by Lemma 3(1).
(1.2)|v| is odd. $\left(u v^{\frac{n}{2}} v_{1}, v_{2} v^{\frac{n}{2}} w\right)$ is a n-o.pair, for v_{1}, v_{2}, with
$v=v_{1} c v_{2},\left|v_{1}\right|=\left|v_{2}\right|$ and $c \in \Sigma$. Then $u v^{\frac{n}{2}} v_{1} c v_{2} v^{\frac{n}{2}} w=$ $u \nu^{(n+1)} w$ is in $D(1)$ by Lemma 3(1).
(Case 2) n is odd. By Lemma 3(2), $\left(u v^{\left(\frac{n}{2}+1\right)}, v^{\left(\frac{n}{2}+1\right)} w\right)$ is $\mathrm{n}-$ o.pair. Then $u v^{\left(\frac{n}{2}+1\right)} v^{\left(\frac{n}{2}+1\right)} w=u v^{n+1} w$ is in $D(1)$ by Lemma 3(1). Note that $\frac{n}{2}+\frac{n}{2}=n-1$ for n odd. : $:$
Remark 2: Unfortunately, the previous proposition does not hold without the condition $|u|=|w|$. For example, let $u=b a b a a, v=b a$, and $w=a$. Then $u v w=b a b a a b a a \in$ $D(1)$, but $u v^{2} w=(b a b a a)^{2} \notin D(1)$.

4. d-Primitive Words and D(1)-Concatenated Words

In this section we consider an inclusion relation between $D(1)$ and $D(1) D(1)$.

Lemma 7: Let $z x y x$ be in $D(1)$ for $z, x \in \Sigma^{+}, y \in \Sigma^{*}$. If z is in $D(1)$, then $z x$ is also in $D(1)$.
[Proof] Suppose that $z x$ is not in $D(1)$. Let $z x=u v u$ for $u \in$ Σ^{+}and $v \in \Sigma^{*}$.
(Case 1) $|u| \leq|x|$
We can write as $x=x^{\prime} u$ for some $x^{\prime} \in \Sigma^{*}$. Then we have that $z x y x=u v и y x^{\prime} u$. This contradicts the assumption that $z x y x$ is in $D(1)$.
(Case 2) $|u|>|x|$
We can write as $u=u^{\prime} x$ for some $u^{\prime} \in \Sigma^{+}$. Then we have that $z=u^{\prime} z^{\prime} u^{\prime}$ for some $z^{\prime} \in \Sigma^{*}$. This contradicts the assumption that z is in $D(1)$. ::

Proposition 8: Let $|w| \geq 2$ for $w \in \Sigma^{+}$, with $|\Sigma|=2$. † If $w \in D(1)$, then w is a $D(1)$-concatenated word. In other words, for a word w in $D(1)$, with the length of two or more, w is in $D(1) D(1)$.
[Proof] Let $\Sigma=\{a, b\}$. It suffices to show the result for the case $z x y x \in a^{+} \Sigma^{*} b^{+}$. From now on, a word $a^{i_{1}} b^{j_{1}} \ldots a^{i_{k}} b^{j_{k}}$ is denoted by $<i_{1}, j_{1}>\ldots<i_{k}, j_{k}>$.

Let $w=<n_{1}, m_{1}>\ldots<n_{k}, m_{k}>$ for some $k \geq 1$.
If $k=1$, that is, $w=<n_{1}, m_{1}>$, it is obvious that w is in $D(1) D(1)$ since both a and b are in $D(1)$, and $\langle i, j\rangle$ is in $D(1)$ for $i, j \geq 1$.

Let $k \geq 2$. We have that $z=<n_{1}, m_{1}>\in D(1)$. Suppose that $w^{\prime}=<n_{2}, m_{2}>\ldots<n_{k}, m_{k}>\notin D(1)$. Then we can write as $w^{\prime}=x y x$ for some $x \in \Sigma^{+}$, and $y \in \Sigma^{*}$.

There exists an integer $i \geq 2$ such that $w_{1}=<n_{2}, m_{2}>$ $\ldots<n_{i-1}, m_{i-1}><n_{i}, 0><_{p} x \leq_{p}<n_{2}, m_{2}>\ldots<$ $n_{i}, m_{i}>=w_{2}$. Note that $w_{1}=<n_{i}, 0>$ for $i=2$. By the previous lemma, $z x \in D(1)$. If $x<_{p} w_{2}$, then $y x=<$ $0, m_{i}-m_{i}^{\prime}><n_{i+1}, m_{i+1}>\ldots<n_{k}, m_{k}>$ for some $m_{i}^{\prime} \geq 1$. By the lemma again, $<n_{1}, m_{1}>\ldots<n_{i}, m_{i}>\in D(1)$. If $<n_{i+1}, m_{i+1}>\ldots<n_{k}, m_{k}>\notin D(1)$, then $<n_{1}, m_{1}>\ldots<$ $n_{j}, m_{j}>\in D(1)$ for some $i<j<k$, by the lemma. Repeating this process, we have that w is in $D(1) D(1)$ since $<n_{k}, m_{k}>$ is in $D(1)$.::

[^1]Concluding Remark 1: As one of our results, we proved that for $n=1$ and $2,[D(1)]^{n}$ is non-regular. As to Q, it is known from [9] that Q^{n} is regular for $n \geq 2$. The following problem is still unsolved.
"Is $[D(1)]^{n}$ non-regular for $n \geq 3$?"

References

[1] P. Domosi, S. Holvath, M. Ito, "Formal languages and primitive words," Publ. Math. Debreen, vol.42, nos.3-4, pp.315-321, 1993.
[2] P. Domosi, S. Holvath, M. Ito, L. Kaszonyi, and M. Katsura, "Formal languages consisting of primitive words," Proc. FPCTS93, Lecture Notes in Computer Science, vol.710, pp.194-203, Springer, Berlin, 1993.
[3] P. Domosi, S. Holvath, M. Ito, L. Kaszonyi, and M. Katsura, "Some results on primitive words," Proc. Conf. Semigroupes, Automata and Languages, Proto, 1994.
[4] C-M. Fan, H.J. Shyr, and S.S. Yu, "d-words and d-languages," Acta Informatica, vol.35, pp.709-727, 1998.
[5] S.C. Hsu, M. Ito, and H.J. Shyr, "Some properties of overlapping order and related languages," Soochow Journal of Mathematics, vol.15, pp.29-45, 1998.
[6] Z-Z. Li and Y.S. Tsai, "Three-element codes with one d-primitive word," Acta Informatica, vol.41, pp.171-180, 2004.
[7] M. Lothaire, Combinatorics on words, Addison-Wesley, Reading, MA, 1983.
[8] R.C. Lyndon and M.P. Shützenberger, "The equation $a^{M}=b^{N} c^{P}$ in a free group," Michigan Mathematical J., vol.9, pp.289-298, 1962.
[9] C.M. Reis and H.J. Shr, "Some properties or disjunctive languages on a free monoid," Information and Control, vol.37, no.3, pp.334344, June 1978.
[10] H.J. Shyr, "Disjunctive languages and codes," Proc. FCT77, Lecture Notes in Computer Science, vol.56, Springer, Berlin, pp.171-176, 1977.
[11] H.J. Shyr, Free Monoids and Languages, Hon Min Book, 2001.

[^0]: Manuscript received February 2, 2009.
 Manuscript revised March 31, 2009.
 ${ }^{\dagger}$ The authors are with School of Science and Engineering, Kokushikan University, Tokyo, 154-8515 Japan.
 a) E-mail: moriya@kokushikan.ac.jp

 DOI: 10.1587/transinf.E92.D. 1577

[^1]: ${ }^{\dagger}$ The cardinarity of a set X is denoted by $|X|$

