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A New Approach to Weighted Graph Matching∗

Kai-Jie ZHENG†a), Student Member, Ji-Gen PENG††b), and Shi-Hui YING†††c), Nonmembers

SUMMARY Weighted graph matching is computationally challenging
due to the combinatorial nature of the set of permutations. In this paper, a
new relaxation approach to weighted graph matching is proposed, by which
a new matching algorithm, named alternate iteration algorithm, is designed.
It is proved that the algorithm proposed is locally convergent. Experiments
are presented to show the effectiveness of the proposed algorithm.
key words: weighted graph matching, permutation matrix, alternate itera-
tion algorithm

1. Introduction

Given two graphs with weights on edges, the aim of
weighted graph matching is to find an optimal permutation
of nodes of one graph such that the permuted graph is closest
to the other graph.

Graph matching arises in various fields, for example,
computer vision, distributed control, and facility allocation
problems [2]. In computer vision, matching the structure
one object to another can be formulated as graph match-
ing [1]. In distributed control, a graph is considered as a nat-
ural mathematical description for capturing interconnection
topology [3], [4]. Mathematically, facility allocation prob-
lem is a typical Quadratic Assignment Problem [5], which
is similar to graph matching.

However, it has been proved that the weighted graph
matching is NP-hard [5]. Indeed, the quadratic assignment
problems with more 30 nodes are practically intractable [5].
There has been no polynomial time algorithm that can di-
rectly solve it with 0–1 integer solutions. The existing
matching methods can be divided into two categories. The
first category consists of the methods based on some forms
of tree search with backtracking [6], and while the second
consists of those methods based on relaxation [7]–[9]. In
this paper we will consider methods in the latter category.
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After some preliminaries are introduced in Sect. 2, we pro-
pose a new relaxation approach to weighted graph match-
ing and then derive a new matching algorithm, named alter-
nate iteration algorithm, in Sect. 3. The experimental results
given in Sect. 4 show the effectiveness of the proposed algo-
rithm. The paper is concluded in Sect. 5.

2. Preliminaries

A weighted graph G is an ordered pair (V,W), where V is a
set of n vertices in the graph, and W is a weighting function,
which gives a real nonnegative value W(vi, v j) to each pair
of vertices (vi, v j). An undirected graph is a graph in which
the weights W(vi, v j) = W(v j, vi), for i, j = 1, 2, · · · , n. For
a weighted directed graph, W(vi, v j) � W(v j, vi), for some
i, j = 1, 2, · · · , n. The adjacency matrix of a weighted graph
G = (V,W) is given by A = (ai j)nn, where ai j = W(vi, v j).

The problem of matching two weighted graphs Ḡ =
(V̄ , W̄) and G̃ = (Ṽ , W̃) consists of finding a permutation
π from {1, 2, · · · , n̄} to {1, 2, · · · , ñ} (generally, n̄ ≤ ñ), that
makes Ḡ and G̃ as close as possible with respect to a certain
norm.

Generally, the weighted graph matching problem is for-
mulated as [10]

π∗ = arg min
π∈S n̄,ñ

{ n̄∑
i=1

n̄∑
j=1

(āi j − ãπ(i)π( j))
2
}
, (1)

where S n̄,ñ is the set of permutations from {1, 2, · · · , n̄} to
{1, 2, · · · , ñ}.
Definition 1 (Permutation Matrix): A n × n matrix P =
(pi j)nn is said to be a permutation matrix if pi j ∈ {0, 1} and

1.
n∑

j=1
pi j = 1, for all i = 1, 2, · · · , n;

2.
n∑

i=1
pi j = 1, for all j = 1, 2, · · · , n.

Definition 2 (Corresponding Matrix): An n̄× ñ(n̄ ≤ ñ) ma-
trix P = (pi j) is said to be a corresponding matrix if there
exists J = { j1, j2, · · · , jn̄} such that the matrix P(:,J) =
(pi jk )n̄×n̄ is a permutation matrix.

LetP(n) be the set of permutation matrices, andP(n̄, ñ)
be the set of corresponding matrices. Then, the weighted
graph matching problem can be equivalently formulated in
matrix form as follows

P∗ = argmin{‖Ā − PÃPT ‖2|P ∈ P(n̄, ñ)}, (2)
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where ‖.‖ denotes Frobenius norm ‖X‖ = tr(XXT )0.5. The
relation between π∗ in (1) and P∗ in (2) is

P∗(1, 2, · · · , ñ) = (π∗1, π
∗
2, · · · , π∗n̄).

In the case when n̄ = ñ, the problem (2) is equivalent
to the following one:

P∗ = argmin{‖ĀP − PÃ‖2|P ∈ P(n̄, ñ)}, (3)

which is popularly considered in weighted graph matching.
In this paper, we only consider the case when n̄ = ñ.

3. Alternate Iteration Algorithm

In solving the graph matching problem (3) or (2), the com-
binatorial nature of the set of permutations is the biggest
challenge. Generally, methods based on tree search are
very time-consuming. Compared with tree search methods,
methods based on relaxation are very fast. Noticing the fact
that a nonnegative orthogonal matrix is a permutation ma-
trix [2], in the problem (3) (equivalently, (2)). We relax the
admissible set of permutation matrices and meanwhile in-
corporate a barrier function into the objective functions. The
problem resulted is a non-combinatorial problem.

Firstly, we formulate and then solve the following op-
timization problem:

(X∗,Y∗) = argmin{Fα(X,Y)|X ∈ M+(n),Y ∈ O(n)}. (4)

where Fα(X,Y) = ‖ĀX − XÃ‖2 + α‖X − Y‖2, α > 0 is a bar-
rier parameter, andO(n) andM+(n) are the set of orthogonal
matrices and the set of non-negative matrices of order n, re-
spectively.

Secondly, we address the following optimization prob-
lem

P∗ = argmin{‖P − X∗‖2|P ∈ P(n)} (5)

in order to obtain a permutation matrix closest to X∗.
Obviously, the problem (5) is equivalent to the follow-

ing linear assignment problem:

P∗ = argmin{tr(−X∗T P)|P ∈ P(n)} (6)

It should be noted that in most of linear assignment algo-
rithms the weight matrix is always assumed to be nonneg-
ative. However, such assumption is not restrictive. In fact,
for the weight matrix −X∗ we can make it nonnegative by
plus a sufficient large constant matrix, not affecting the so-
lution. A typical linear assignment algorithm, such as the
Kuhn-Munkres algorithm, has a complexity O(n3) [11].

Theorem 1 [2]: P(n) = O(n)
⋂M+(n).

Theorem 2: Let

F(α) = min{‖ĀX − XÃ‖2
+ α‖X − Y‖2|X ∈ M+(n),Y ∈ O(n)}.

Then, for all α > 0,
(1) F(α) ≤ min{‖ĀP − PÃ‖2|P ∈ P(n)} and
(2) F(α) is non-decreasing on α and lim

α+→∞ F(α) =

min{‖ĀP − PÃ‖2|P ∈ P(n)}

Proof. The proof is immediate. �
It is clear to see that solving (4) is dominative in our

method. In the following, we design the algorithm for prob-
lem (4).

Alternate Iteration Algorithm:
Step 0. Let k = 0. Given a tolerance ε > 0, a barrier param-
eter α > 0 and a initial point X0 ∈ M+(n).
Step 1.Solve the following subproblem:

Yk ∈ argmin{‖Xk − Y‖2|Y ∈ O(n)}. (7)

If k > 1 and Fα(Xk,Yk) − Fα(Xk−1,Yk−1) > ε, then stop.
Otherwise, let k = k + 1 and go to Step 2.
Step 2.Solve the following subproblem:

Xk ∈ argmin{‖ĀX−XÃ‖2+‖X−Yk−1‖2|X ∈ M+(n)}. (8)

Goto Step 1. �
Below is the convergence theorem for the alternate it-

eration algorithm.

Theorem 3: The algorithm always converges monotoni-
cally to a local minimum. That is,

Fα(X
k,Yk) ≥ Fα(X

k+1,Yk+1)

where {Xk,Yk}+∞k=1 are the iterative sequences.

Proof. According to Yk ∈ argmin{‖Xk − Y‖2|Y ∈ O(n)}
and Xk+1 ∈ argmin{‖ĀX − XÃ‖2 + ‖X − Yk‖2|X ∈ M+(n)},
we have

0 ≤ Fα(Xk+1,Yk+1) ≤ Fα(Xk+1,Yk) ≤ Fα(Xk,Yk). So,
the sequence {F(Xk,Yk)} is non-increasing and bounded be-
low. It means that alternate iteration algorithm converge
monotonically to a local minimum. �

It, however, should be pointed out that the alterative
iteration algorithm is local. Experimentally, it decreases fast
during the early few iterations and then slows down as it
approaches the local minimum. This is demonstrated by the
experiments done in the next section.

The process of alternate iteration algorithm consists of
the following three subproblems:

(1) The choice of initial point. Since the algorithm
is local, the choice of the initial point is very important.
By Birkhoff theorem [12], any doubly stochastic matrix is
a convex combination of finitely many permutation matri-
ces. Accordingly, we here suggest choosing the solution of
the quadratic convex programming:

X1 = argmin ‖ĀX − XÃ‖2 + β(n − 1T
n P1n)

s.t. X1n ≤ 1n, 1T
n X ≤ 1T

n , X ≥ 0

as the initial point, where β > 0 is a barrier coefficient, 1n is
a vector of length n with entry 1. Experiments presented in
the next section show that this choice strategy works well.

(2) Quadratic convex programming (8). Such a stan-
dard quadratic convex programming is easy to be solved
([13], [14]).

(3) Optimization with orthogonal constraints (7). It is
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easy to show that the optimization is equivalent to

Yk ∈ argmax{tr(YXkT )|Y ∈ O(n)} (9)

In the following we prove that the optimization (9) has
close-form solution.

Lemma 1: If A is a semipositive matrix, then max{tr(YA)|
Y ∈ O(n))} = tr(A).

Proof. Let CCT be Cholesky decomposition of A (that
is, A = CCT ). Then, for any orthogonal matrix Y ,

we have tr(YA) = tr(YCCT ) = tr(CT YC) =
n∑

i=1
cT

i Yci.

And, by Cauchy-Schwartz inequality we have that cT
i Yci ≤

[(cT
i ci)(cT

i YT Yci)]0.5 = cT
i ci. Therefore, there holds that

tr(YA) ≤ tr(A) for any orthogonal matrix Y . �

Theorem 4: Let A = UΛVT be the SVD decomposition of
A. Then, Y = VUT solves max{tr(YA)|Y ∈ O(n)}.

Proof. Since A = UΛVT is the SVD decomposition,
we have that VUT A = VUT UΛVT = VΛVT . From Lemma
1, we know that tr(VUT A) ≥ tr(QVUT A) for any orthogonal
matrix Q. Hence, it follows that VUT ∈ argmax{tr(YA)|Y ∈
O(n)}. �

4. Experimental Results

The performance of alternate iteration algorithm (AIGM)
is compared with the performances of the Linear Program-
ming Graph Matching algorithm (LPGM) [9] and the Im-
proved Eigen-Decomposition Graph Matching algorithm
(IEGM) [7], [8]. The LPGM, IEGM algorithms are chosen,
since they are considered the most cited algorithms for graph
matching.

Weighted graphs set is randomly generated, where each
graph has weights ranging from 0 to 1. Matching graph H is
generated from each graph G in the set by adding uniformly
distributed noise in the range of 0 to 1.4 to each weight in
G. Then, the above three graph matching algorithms are
applied to graph matching for every pair H and G. The es-
timated probability of a correct vertex-vertex assignment is
calculated for a given noise level ε, after 20 trials for each
algorithm. From a point of view of probability, this reflects
how well an algorithm performs for a given noise level. All
programs are written in Matlab7.0 and run by PC with Pen-
tium (R) Dual-Core CPU E5200 and 2 G RAM.

In Fig. 1, The results of LPGM, IEGM and AIGM for
the case n = 8 and ε = [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4,
0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4] are displayed. It
is seen that all the three algorithms perform well when the
noise level is small, while AIGM is most robust than IEGM
and AIGM with the increasing noise. The matching per-
formance with different graph size are showed in Fig. 2 and
Fig. 3 for the case ε = 0.2 and ε = 0.8, respectively. It
shows that AIGM is increasingly better than both LPGM
and IEGM with the increasing the size of graphs in match-
ing performance.

Fig. 1 Estimated probability of correct vertex-vertex matching versus
noise level ε[n = 8, α = 11, β = 10].

Fig. 2 Estimated probability of correct vertex-vertex matching versus

size of graph [ε = 0.2 α = β = ‖Ā‖+‖Ã‖2n ].

Fig. 3 Estimated probability of correct vertex-vertex matching versus

size of graph [ε = 0.8 α = β = ‖Ā‖+‖Ã‖2n ].

5. Conclusions

In this paper, a new relaxation approach to weighted graph
matching has been proposed, by which a new matching al-



LETTER
1583

gorithm, named alternate iteration algorithm, is designed. It
was proved that the algorithm proposed is locally conver-
gent. Moreover, it has been shown that the alternative iter-
ation algorithm works better than the Linear Programming
Graph Matching algorithm as well as the Improved Eigen-
Decomposition Graph Matching algorithm in the compari-
son experiments done in this paper. However, different from
those two algorithms, the AIGM is local, and as a result, the
choice of the initial point of AIGM is very important. Par-
ticularly, when the difference between two matching graphs
becomes larger, the performance of AIGM remains to be
improved. In our future work, we will address to the perfor-
mance improvement of AIGM.
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