
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009
1609

PAPER

Approximate Nearest Neighbor Search for a Dataset of Normalized
Vectors

Kengo TERASAWA†a), Member and Yuzuru TANAKA††, Nonmember

SUMMARY This paper describes a novel algorithm for approximate
nearest neighbor searching. For solving this problem especially in high di-
mensional spaces, one of the best-known algorithm is Locality-Sensitive
Hashing (LSH). This paper presents a variant of the LSH algorithm that
outperforms previously proposed methods when the dataset consists of vec-
tors normalized to unit length, which is often the case in pattern recogni-
tion. The LSH scheme is based on a family of hash functions that pre-
serves the locality of points. This paper points out that for our special case
problem we can design efficient hash functions that map a point on the hy-
persphere into the closest vertex of the randomly rotated regular polytope.
The computational analysis confirmed that the proposed method could im-
prove the exponent ρ, the main indicator of the performance of the LSH
algorithm. The practical experiments also supported the efficiency of our
algorithm both in time and in space.
key words: nearest neighbor, randomized algorithm, locality-sensitive
hashing (LSH)

1. Introduction

This paper describes a novel algorithm for approximate
nearest neighbor searching. The proposed algorithm is a
variant of the LSH (Locality-Sensitive Hashing) algorithm
and it works more efficiently than other known algorithms
for the case when the dataset consists of vectors normalized
to unit length.

Given a set of points in a metric space and a query
point, the nearest neighbor search is the problem of finding a
point in the dataset that is closest to the query point. It is one
of the most fundamental problems in computer science, with
many applications in information retrieval, pattern recogni-
tion, clustering, machine learning, data mining, and so forth.
In pattern recognition, for example, the most common way
of similarity search is to represent the feature of the objects
as the multi-dimensional vector and find the nearest neigh-
bor in the vector space. Such applications include content-
based image retrieval, document retrieval, face recognition,
fingerprint recognition, etc.

An infallible way to find the nearest neighbor is to com-
pute the distance from the query point to every other point in
the dataset. This exhaustive search, also called brute-force
search, can solve the problem in O(dn) time, where n is the

Manuscript received October 31, 2008.
Manuscript revised April 22, 2009.
†The author is with Future University-Hakodate, Hakodate-

shi, 041–8655 Japan, and PRESTO, Japan Science and Technology
Agency, Kawaguchi-shi, 332–0012 Japan.
††The author is with Meme Media Laboratory, Hokkaido Uni-

versity, Sapporo-shi, 060–8628 Japan.
a) E-mail: kterasaw@fun.ac.jp

DOI: 10.1587/transinf.E92.D.1609

population of the given dataset and d is the dimensionality
of the data. Nowadays, since the size of the data we should
treat tends to become larger and larger, the linearity of the
complexity to the size has posed a problem. Therefore, it
is important to devise an algorithm that solves the nearest
neighbor problem faster than the brute-force method. As
a result of intensive research efforts, some data structures
such as kd-tree [1] gave us a good solution to this problem,
particularly for low dimensional spaces.

However, no algorithm has provided a good solution to
this problem yet when the dimensionality goes higher. For
all known algorithm, it happens that either the time com-
plexity asymptotically tends to be O(dn), which means no
improvement over the brute-force method, or the required
memory space is exponential to d, which is of course in-
feasible when d is large. Such a difficulty, known as “the
curse of dimensionality,” poses a problem especially in pat-
tern recognition applications where the dimensionality tends
to be tens to hundreds or more.

To overcome the curse of dimensionality, the approxi-
mated methods have gotten a lot of attention recently. The
c-approximate nearest neighbor problem is the relaxed prob-
lem that allows an output point to be at most c times distant
than the exact nearest neighbor is. This c > 1 is called the
approximation factor. A randomized (or probabilistic) al-
gorithm is also often employed to overcome the curse of
dimensionality. With a fixed parameter δ, the randomized
algorithm should return requested point with a probability
of no less than 1− δ. Using these approximations, many
algorithms have been proposed. Among them, one of the
best-known algorithms is Locality-Sensitive Hashing.

Locality-Sensitive Hashing (LSH) [2]–[5] is a random-
ized algorithm for the approximate nearest neighbor prob-
lem. It is proved that LSH can solve the approximate near-
est neighbor problem in less than O(dn) time, i.e., sublinear
time. The key idea of LSH is to map each point in the dataset
into a certain bucket using a hash function randomly cho-
sen from the function family called LSH family. In finding
the nearest neighbor, LSH examines only the points that are
mapped to the same bucket as the query point is mapped
to. As a result, the query time of LSH is dominated by
O(nρ) distance computations and O(nρ log1/p2

n) evaluations
of hash functions (the detailed meaning of p2 and ρ will be
described later).

The performance of LSH has been improved several
times during this decade. One such improvement was the
expansion of the applicability to various metric spaces.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

1610
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

While the originally proposed LSH [2] was basically ap-
plicable only to metric space under l1 norm, the later ver-
sion [3] was applicable to metric space under ls norm for
any s ∈ (0, 2]. Another important improvement was the re-
duction of the exponent ρ. While the value of ρ was just 1/c
in the original method, the Leech Lattice-based method pro-
posed in [4] has reduced the value of ρ to 0.5563 for c=1.5,
and to 0.3641 for c=2.0.

The aforementioned efforts to improve LSH had been
devoted to rather general situation. In many cases of a pat-
tern recognition applications, however, the nearest neighbor
problem we face is sometimes more specific. The most com-
monly used metric is l2 norm, i.e., Euclidean distance. Be-
sides, the points in the dataset are often limited to lie on the
surface of the unit hypersphere rather than distributed in the
entire Rd space. This is because the direction of the feature
vector is more important to discriminate the objects than the
magnitudes of the vector. For example, the SIFT (Scale In-
variant Feature Transform) descriptor [6], [7], which is one
of the most famous descriptors in computer vision, uses a
128-dimensional feature vector with its length normalized
to unity: it means that SIFT descriptors are distributed over
a unit hypersphere embedded in R128 space. For another ex-
ample, regarding the term frequency used in text processing,
where the dimensionality of the feature tends to be hundreds
to thousands or more, the most widely used distance metric
is the cosine similarity [8]. Note that the nearest neighbor
search with a cosine similarity measure is equivalent to the
nearest neighbor search with a Euclidean distance measure
after normalizing all the vectors to unit length. In addition
to those mentioned here, we have many examples of pattern
recognition applications that use vectors normalized to unit
length.

Focusing on this fact, this paper proposes a novel vari-
ant of the LSH specifically designed for the case when all
points in the dataset are limited to lie on the surface of
the unit hypersphere. The proposed algorithm, named the
Spherical LSH (SLSH), uses hash functions that map a point
on the hypersphere into the closest vertex of the randomly
rotated regular polytope so that the performance of the hash-
ing could be improved.

The rest of the paper is organized as follows: In Sect. 2
we provide the overview of LSH algorithm. Section 3 de-
scribes the framework of Spherical LSH (SLSH). Section 4
and Sect. 5 presents the asymptotic and practical evaluation
of SLSH respectively. Finally Sect. 6 concludes the paper.

2. Locality-Sensitive Hashing (LSH)

Since our proposal is a variant of the LSH algorithm, we
must describe LSH. The following is a brief introduction
to the LSH algorithm. A more detailed description will be
found in [2]–[5].

LSH is a randomized algorithm for solving the (R, c)-
NN problem. The (R, c)-NN problem is a decision version of
the approximate nearest neighbor problem. It is known that
the c-approximate nearest neighbor problem can be reduced

to (R, c)-NN problem with complexity O(log(n/ε)). In the
following, c represents an approximation factor (let c = 1 +
ε), and dist(u, v) represents the distance between two vectors
u and v.

Definition 1: The c-approximate nearest neighbor prob-
lem is defined as follows: Given a set P of points in a d-
dimensional space Rd, devise a data structure which for any
query point q ∈ Rd finds a point p ∈ P that satisfies for all
p′ ∈P, dist(p, q) ≤ c · dist(p′, q).

Definition 2: The (R, c)-NN problem is defined as fol-
lows: Given a set P of points in a d-dimensional space Rd,
and a parameter R > 0, devise a data structure which for any
query point q∈Rd does the following:

• if there exists a point p ∈ P s.t. dist(p, q) ≤ R then
return YES and a point p′ ∈P s.t. dist(p′, q) ≤ cR,
• if dist(p, q) > cR for all p∈P then return NO.

In [9], Har-Peled showed the following theorem.

Theorem 1: The c-approximate nearest neighbor problem
can be reduced to a (R, c)-NN problem with complexity
O(log(n/ε)).

LSH can solve the (R, c)-NN problem significantly
faster than other existing methods, especially in high di-
mensional spaces. LSH uses a family of hash functions,
called locality-sensitive hash functions, where the probabil-
ity of collision is much higher when two points are close to
each other. To construct a suitable data structure, LSH then
hashes every point in the dataset into hash tables using hash
functions randomly chosen from the locality-sensitive hash
function family. Finding the nearest neighbor of a query
point involves applying the hash functions to the query point
and enumerating the points in the dataset that appear in the
corresponding buckets.

The locality-sensitive hash function family is an impor-
tant constituent of the LSH algorithm. For a domain S of the
point set, an LSH family is defined as follows:

Definition 3: A family H = {h : S → U} is called
(r1, r2, p1, p2)-sensitive if for any u, v∈S ,

• if dist(u, v) ≤ r1 then PrH [h(u) = h(v)] ≥ p1,
• if dist(u, v) > r2 then PrH [h(u) = h(v)] ≤ p2,

where PrH [] indicates the probability that the equation be-
tween the brackets holds true when h is randomly chosen
from H . In order for an LSH family to be useful, it has to
satisfy the inequalities p1 > p2 and r1 < r2.

For solving the (R, c)-NN problem, LSH sets r1 = R
and r2 = cR, and then amplifies the difference of collision
probabilities by taking direct product of hash functions, i.e.,

g(p) = { h1(p), h2(p), . . . , hk(p) }, (1)

where hi is a (r1, r2, p1, p2)-sensitive hash function ran-
domly chosen from the familyH . For a query point q, LSH
scans only the points that stay in the same bucket as g(q).
Since the process is probabilistic, it could occur that the

TERASAWA and TANAKA: APPROXIMATE NEAREST NEIGHBOR SEARCH FOR A DATASET OF NORMALIZED VECTORS
1611

query point and the nearest point stay away from each other.
In order to reduce such false negatives, the LSH algorithm
makes L hash tables, and scans the points in the union of the
buckets corresponding to each of g1(p), g2(p), . . . , gL(p).

From the settings above, we can obtain the following
theorem:

Theorem 2: LSH can solve the (R, c)-NN problem with
O(dn + n1+ρ) space and Õ(nρ) time, where ρ = log 1/p1

log 1/p2

Now, the remaining problem is to design the locality-
sensitive hash functions. The firstly proposed LSH [2],
which worked for the Hamming metric space, used a ran-
dom bit extraction from unary expressions. It showed the
performance to be ρ = 1/c. The later improvement of
LSH [3] extended the target metric space to arbitrary ls-
norm space with s ∈ (0, 2], and it also improved the index
ρ by using a random projection based on s-stable distribu-
tions. The most recent improvement of LSH [4] employed
“ball partitioning” instead of the former “grid partitioning”
to partition the space and bounded the complexity by

ρ =
1
c2
+ O

(
log log n

log1/3 n

)
. (2)

For the practical variant, the paper [4] also proposed to use
the Leech Lattice-based partitioning, which is likely to per-
form better than the aforementioned “ball partitioning” due
to much lower “big-Oh” constants. It uses a lattice called
Leech Lattice [10], which is a very symmetric lattice em-
bedded in a 24-dimensional space. When the dimensionality
is larger than 24, dimensionality reduction is needed before
using Leech Lattice.

These improvements are all concerned with the prob-
lem of: “How to partition the space well?” Leech Lattice-
based partitioning, which is round and symmetric, is quite a
nice partitioning method except that it can be applied only
to a 24-dimensional space.

Now recall that the purpose of this paper is to solve
the nearest neighbor problem on a unit hypersphere. While
the examples presented above are all considering the general
problem to partition the entireRd space, we have to solve the
special problem of partitioning the unit hypersphere embed-
ded in Rd. Is there any partitioning that works nicely espe-
cially for the hypersphere? Our solution will be described
in the next section.

3. Spherical LSH (SLSH)

Here we propose a novel locality-sensitive hash function
that performs better than the previously proposed ones.
While earlier LSH families are considering arbitrary points
in Rd space as in [2]–[4], we are considering arbitrary points
on the unit (d−1)-sphere embedded in Rd space with center
at the origin. In other words, all we have to do is to partition
the surface of the unit hypersphere in Rd, in contrast to the
fact that the previously proposed LSH algorithm [2]–[4] had
to partition the entire Rd space. This section describes the

Fig. 1 The illustration of the SLSH partitioning.

locality-sensitive hash functions for partitioning the surface
of the unit hypersphere in high dimensions. We named this
process as SLSH (Spherical LSH).

3.1 Problem Description

The problem of interest in this paper is defined as follows.

Definition 4: The (R, c)-NN problem on the Unit Hyper-
sphere: Given a set P of points in a d-dimensional space
R

d, and all points p ∈ P satisfies that ||p|| = 1. Given a pa-
rameter R > 0, devise a data structure which for any query
point q∈Rd satisfying ||q|| = 1 does the following:

• if there exists a point p ∈ P s.t. dist(p, q) ≤ R then
return YES and a point p′ s.t. dist(p′, q) ≤ cR,
• if dist(p, q) > cR for all p∈P then return NO.

This is a special case of the (R, c)-NN problem de-
scribed in Def. 2, having wide application area as described
in Sect. 1.

3.2 Locality-Sensitive Hash Functions Using a Regular
Polytope

SLSH uses a randomly rotated regular polytope for parti-
tioning the surface of the unit hypersphere. After rotating
the polytope at random, the hash function h(p) is then de-
fined as the number assigned to the vertex which is nearest
to p. In other words, our hash function partitions the surface
of the unit hypersphere like a Voronoi diagram. Figure 1 il-
lustrates the concept of SLSH partitioning in 3-dimensional
space.

First let us go through some notations.

Hypersphere: A hypersphere is the generalization of the
sphere to higher dimensions. Often the symbol Sn is used to
represent the n-sphere that has an n surface dimension and
is embedded in an (n+1)-dimensional space.
A unit hypersphere is a hypersphere with a radius of unit
length. From now on we will consider the unit (d−1)-sphere,
whose center is located at the origin. Note that the (d−1)-
sphere is embedded in Rd.

1612
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Regular polytope: A regular polytope is the generalization
of the regular polygon (in two-dimensional space) and the
regular polyhedron (in three-dimensional space) to higher
dimensions. It has a high degree of symmetry such as the
following:

• All edges have an equal length, which means that the
distance between the adjacent vertices are always the
same.
• All faces are congruent.

It is known that there exist only three kinds of regular poly-
topes in higher (d≥5) dimensions, namely:

Simplex, having d+1 vertices, is analogous to the tetrahe-
dron.

Orthoplex (Cross polytope), having 2d vertices, is analo-
gous to the octahedron.

Hypercube (Measure polytope), having 2d vertices, is
analogous to the cube.

Suppose that we randomly rotate the regular polytope
inscribed in a unit (d−1)-sphere. We can partition the (d−1)-
sphere so that all points belong to the nearest vertex of the
rotated regular polytope.

Definition 5: (The key idea of our algorithm): Let
{ṽ1, ṽ2, . . . , ṽN} (||ṽi||2 = 1) be a set of vertices that forms a
regular polytope in Rd where N represents the number of
vertices of the employed polytope, and let A be a rotation
matrix. For an arbitrary unit vector p, a hash function hA(p)
is defined as the following:

hA(p) = argmini dist(Aṽi, p). (3)

Note that for a given p, we can obtain hA(p) in O(d2)
time for every type of regular polytope (it will be discussed
later).

By considering A as an arbitrary rotation matrix in Rd

space, H = {hA} satisfies the definition of the locality-
sensitive hash function family. SLSH uses this LSH family
for hashing.

3.3 The Algorithm

Here we will describe the details of the algorithm. The com-
plete algorithm is also presented in Fig. 2 and Fig. 3.

The coordinates of the vertices of the regular polytope
in d-dimensional space are given by the following:

Simplex:

[ṽi] j = δi j − d + 1 − √d + 1
d(d + 1)

(i = 1, 2, . . . ,N)

(4)

[ṽN+1] j =
1 − √d + 1

d
− d + 1 − √d + 1

d(d + 1)
(5)

where [ṽi] j represents the j-th coordinate of the i-th
vertex ṽi, and δi j is 1 for i = j and 0 otherwise.

Fig. 2 The implementation of hA(p) for each type of regular polytope.

Fig. 3 Algorithm for making a random rotation matrix.

Orthoplex: All permutations of (±1, 0, 0, · · · , 0) give the
coordinates of the vertices. It follows that orthoplex
has 2d vertices.

Hypercube: 1√
d
× (±1,±1, · · · ,±1) give the coordinates

of the vertices. It follows that the hypercube has 2d

vertices.

Let us consider how to obtain the nearest vertex effi-
ciently. Instead of directly solving Eq. (3), it is computa-

TERASAWA and TANAKA: APPROXIMATE NEAREST NEIGHBOR SEARCH FOR A DATASET OF NORMALIZED VECTORS
1613

tionally easier to solve

hA(p) = argmaxi(Aṽi · p). (6)

If we calculate {vi = Aṽi | i = 1, · · · ,N} in advance, a d + 1
dot-product calculation would suffice to return hA(p) for the
simplex. For the orthoplex, doing a 2d dot-product calcu-
lation is also possible; however, a more efficient way ex-
ists. If v is a vertex of the orthoplex, then −v is also a
vertex of the orthoplex. The dot-product of −v and p is
just −(v · p). Therefore, we do not have to calculate the
dot-product 2d times — a calculation of only d times will
suffice. For hypercube, naively solving Eq. (6) needs a 2d

times dot-product calculation that is of course infeasible.
However, a way exists to avoid such prohibitive calcula-
tions. The same partitioning can be obtained by a d times
bisection using orthonormal basis vectors {e1, · · · , ed}. We
can bisect the hypersphere using each one of the basis vec-
tors, i.e., Bisecei (p) = 1 if (ei · p) ≥ 0 and Bisecei (p) = 0
otherwise. Then we could construct the map p ∈ Sd−1 	→
{0, 1}d 	→ {0, 1, · · · , 2d−1}. This partitioning is equivalent
to a partitioning based on the nearest vertices of a hyper-
cube. Thus, we can conclude the following: for every type
of regular polytope, hA(p) can be calculated in O(d2) time.

Let us discuss the preprocessing cost. Preprocessing of
SLSH costs O(d3 + d2n) time for one hash function. The
former d3 is the cost to make random rotation matrix. The
latter d2n is to hash all points in the dataset. The memory
space overhead is O(d2L) to store the rotated vertices, and
O(nL) to store the hash index of all points in the datasets.
Note that the number of the hash tables L can be bounded
by nρ.

4. Computational Analysis of the Exponent ρ

As mentioned before, the performance of LSH is evaluated
by the index ρ = log 1/p1

log 1/p2
. In this section we describe the

evaluation of the ρ.
Again, p1 is the probability of collision of two points

with a distance of R, and p2 is the probability of collision
of two points with a distance of cR. In the original LSH
they can change the scale of the coordinate; thus, they can
assume R = 1 without loss of generality. On the other hand,
we cannot scale the coordinate because SLSH works only to
S

d−1. Therefore the performance index ρ of SLSH must be
evaluated for several Rs.

For ease of comparison, we evaluated several types of
locality-sensitive hash functions. The candidates were as
follows:

SLSH (Our proposal): Partitioning based on the rotated
regular polytope.

Leech Lattice: Proposed in [4], with the dimensionality
reduction of d to 24.

Spherical Bisection: Partitioning also referred to as ran-
dom hyperplane-based hash functions [11]. In con-
trast to our “hypercube-partitioning,” which bisects the
hypersphere with an orthonormal set of vectors, the

Spherical Bisection method bisects the hypersphere
with a random set of vectors.

Let p(r) represent the collision probability of a single
hash function with respect to the distance r, i.e., p(r) =
PrH [h(u) = h(v)] for the two points u and v that satisfy
dist(u, v) = r.

In Table 1, the values of p(r) are displayed. The values
for the Leech Lattice were cited from [4]. The values for the
Spherical Bisection were analytically obtained by the equa-
tion p(r) = 1 − θ/π, where θ represents the angle between
two vectors measured in radians. The cosine of θ and the Eu-
clidean distance r has the relationship as r2 = 2(1 − cos θ).
The values p(r) of the SLSH were computed by the Monte-
Carlo simulation for 106 trials. Note that the value p(r) does
not depend on input sets, distributions, or anything like that:
it relies on the probability of two points being hashed to
the same value, which can be computed using Monte-Carlo
methods fairly accurately.

Figures 4 and 5 plot the value of ρ vs. R = r1. As
mentioned before, the performance of the Leech Lattice
method does not depend on R because the coordinate scale
is changeable in the Leech Lattice method. Therefore, only
the best ρ over R is plotted for the Leech Lattice. For the
SLSH and the Spherical Bisection, the value of ρ = log 1/p1

log 1/p2

was calculated from p(r) displayed in Table 1. In the cal-
culation we did not use the value p(r) less than 0.00001
because such values are less reliable and inappropriate for
SLSH implementation.

From these figures, we can observe the following: For
almost all dimensionalities and polytopes, SLSH performs
better than the Spherical Bisection method. Comparing ρ
on the same polytopes, larger dimensionality implies better
ρ. It means that our method could avoid the curse of di-
mensionality. Comparing ρ on various types of polytopes,
simplex and orthoplex tend to show a similar result except
that the orthoplex shows slightly better result when R be-
comes larger. The hypercube shows quite different behavior
from the others. The collision probability p(r) of the hyper-
cube rapidly drops to near zero, especially in high dimen-
sional spaces. Although the index ρ is lower than the others
are, its use for a practical application is difficult because too
small p(r) prevent the proper adjustment of k and L, that
are restricted to positive integer (this fact will be discussed
again in the next section). Comparing SLSH with the Leech
Lattice-based method, in the case of c = 1.5, for almost
all dimensionalities, SLSH performs better than the Leech
Lattice-based method when R is larger than 0.60–0.64. In
the case of c = 2.0, for almost all dimensionalities, SLSH
performs better than the Leech Lattice-based method when
R is larger than 0.48–0.52. We displayed some of the repre-
sentative values in Table 2.

This result implies that in implementing the c-
approximate nearest neighbor problem solver, where we
have to employ the (R, c)-NN solver hierarchically as R =
C0cλ for λ = 1, 2, · · · ,Λ, SLSH can replace the Leech
Lattice-based LSH at least some hierarchies.

1614
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Table 1 Probabilities of collision for two points with the distance of r. The values for the Leech
Lattice are cited from [4]. The values for the spherical bisection are obtained analytically. The other
values displayed below are obtained through our Monte-Carlo simulation for 106 trials.

Distance LeechLattice Spherical 16-dim 16-dim 16-dim 64-dim 64-dim 64-dim
r (d > 24) bisection simplex orthoplex hypercube simplex orthoplex hypercube

0.10 0.96815 0.90133 0.88612 0.59084 0.87169 0.85846 0.12152
0.20 0.93623 0.80746 0.77939 0.33587 0.75356 0.73061 0.01271
0.30 0.90414 0.71800 0.67894 0.18092 0.64590 0.61412 0.00116
0.40 0.87181 0.63309 0.58535 0.09186 0.54531 0.50879 0.00008
0.50 0.83913 0.55276 0.49754 0.04315 0.45407 0.41365 0.00000
0.60 0.80602 0.47649 0.41595 0.01836 0.37078 0.32937 0.00000
0.70 0.08535 0.77236 0.40459 0.34066 0.00676 0.29652 0.25503 0.00000
0.80 0.05259 0.73802 0.33750 0.27211 0.00212 0.23071 0.19144 0.00000
0.90 0.03117 0.70284 0.27473 0.21051 0.00050 0.17326 0.13748 0.00000
1.00 0.01779 0.66666 0.21676 0.15533 0.00006 0.12449 0.09314 0.00000
1.10 0.00975 0.62925 0.16419 0.10797 0.00000 0.08456 0.05854 0.00000
1.20 0.00515 0.59033 0.11785 0.06906 0.00000 0.05260 0.03326 0.00000
1.30 0.00266 0.54953 0.07826 0.03872 0.00000 0.02921 0.01656 0.00000
1.40 0.00133 0.50636 0.04622 0.01789 0.00000 0.01378 0.00644 0.00000
1.50 0.00067 0.46010 0.02253 0.00587 0.00000 0.00504 0.00181 0.00000
1.60 0.00033 0.40966 0.00775 0.00108 0.00000 0.00117 0.00028 0.00000
1.70 0.00016 0.35320 0.00124 0.00006 0.00000 0.00010 0.00001 0.00000
1.80 0.00008 0.28713 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000
1.90 0.00004 0.20216 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2.00 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Fig. 4 The values of ρ = log p1
log p2

for c = 1.5.

4.1 Discussion

Why could SLSH outperform the original LSH? One of the
reasons is that SLSH handles the points directly in the orig-
inal dimension, i.e., it does not need the dimensionality re-
duction. In dimensionality reduction, one cannot avoid the
chance of far away points colliding to the near point; that is
the disadvantage of dimensionality reduction. We can avoid
such disadvantages by not using the dimensionality reduc-
tion. We have devised a good partitioning method that can
be applied to any dimensional hypersphere. In our partition-
ing, the point p1 and p2 = −p1 + ε, where ε is an arbitrary
small vector, will never collide for any type of polytope,

Fig. 5 The values of ρ = log p1
log p2

for c = 2.0.

Table 2 The values of ρ.

R c Leech Lattice (d > 24) SLSH for 64-dim orthoplex
0.64 1.5 0.5563 0.5471
0.72 1.5 0.5563 0.5189
0.80 1.5 0.5563 0.4858
0.56 2.0 0.3641 0.3456
0.64 2.0 0.3641 0.3063

say, simplex, orthoplex, or hypercube. If we try to guaran-
tee that p1 and p2 will never collide by the Spherical Bi-
section method, we need at least d times partitioning (It is
similar to our hypercube method). However, like our hy-
percube method, it tends to partition the space too thin. It
may be understood by the fact that it partitions the space into

TERASAWA and TANAKA: APPROXIMATE NEAREST NEIGHBOR SEARCH FOR A DATASET OF NORMALIZED VECTORS
1615

2d fragments. On the other hand, our simplex method and
orthoplex method partition the space into d + 1 or 2d frag-
ments. It is a milder partitioning than that of the partitioning
into 2d fragments, but points far away will collide with very
little probability.

5. Performance Evaluation in the Practical Experi-
ment

In the previous section we have made the computational
analysis to evaluate the exponent ρ of the complexity O(nρ).
It was the asymptotic evaluation as the population n tends
to infinity. On the other hand, this section will produce the
practical evaluation of the computational cost with the mod-
erate population n.

5.1 The Problem to Be Solved

In the following experiment, the algorithms were assigned to
retrieve all points in the dataset whose distance to the query
point is less than R = 0.8. This problem, called reporting
problem, is a bit different from the problem stated in Def. 4.
In the reporting problem we cannot bind the running time
because the output could be large if a large fraction of the
data point are located close to the query point. However,
in usual situations this reporting problem behaves similarly
to the (R, c)-NN problem and regarded to be appropriate to
evaluate the (R, c)-NN algorithm [5].

5.2 Candidate Algorithms

Here we compare SLSH with E2LSH and Brute-Force algo-
rithm. E2LSH package [12] is a latest published implemen-
tation of LSH released by the original author. E2LSH de-
pends basically on the algorithm described in [3], with some
practical improvements applied. One of such improvements
is, for instance, E2LSH can reduce the number of hash func-
tion computation from kL into km (where m ∼ O(

√
L)) by

using pseudo-independent functions instead of using truely
independent functions.

5.3 Evaluation Criteria

The computational cost of LSH is mainly consists of two
parts: hash function computation and distance computation.
We evaluated these costs by counting the number of basic
operations.

The cost of hash function computation is obtained by
multiplying a cost for computing a hash function by the
number of hash functions. In E2LSH, the operation to com-
pute a hash function is an inner product computation of the
query point and randomly generated point. We assumed this
cost to be 2d basic operations. Since E2LSH has to compute
the inner product km times per query, the total cost for hash-
ing is 2dkm basic operations per query. In SLSH, we have
to compute d inner products (or d + 1 inner products for the
case of SLSH-simplex) for computing each hash function.

Since we have to compute kL hash functions per query, the
resulting total cost is 2d2kL basic operations (or 2d(d+1)kL
basic operations for SLSH-simplex) per query.

The cost of distance computation is obtained by mul-
tiplying a cost of distance computation for a pair of points
by the number of points found in the buckets. The cost for
computing a distance is assumed to be 3d. The numbers of
points found in the buckets were obtained in the experiment.

5.4 Datasets and Settings

In our experiment, the algorithms were assigned to retrieve
all points that have distance less than R = 0.8 from the query
point.

Both query points and dataset points are generated syn-
thetically. The query points were 100 randomly generated
points. The generation of the dataset points was a bit more
complicated. The distribution of the distance between two
randomly generated points on the hypersphere is sharply
peaked at

√
2 when the dimensionality is high. In such

cases, the random method rarely generate the point within
distance 0.8 from the query points: in fact, the probability
that two randomly generated points are staying within dis-
tance 0.8 is about 10−3 in R16 space, and about 10−5 in R32

space. If we made all the points completely at random, the
ground truth, the points to be retrieved, was likely to be an
empty set, that would make the experiment meaningless. To
avoid such problem, we planted a point for each query point
instead of generating all the points completely at random.
That is, we intentionally made a point that had distance al-
most equal but slightly less than 0.8 from the query point.
In this way each query point was guaranteed to have at least
one point within distance 0.8 from them. Except a planted
point, all other points in the dataset were generated at ran-
dom. The size of the dataset was varied from 5 × 102 to
5 × 105. The dimensionalities we have tested were 8, 16,
32, 64 and 100. Throughout all experiments, we set the ex-
pected probability for each point successfully retrieved to be
0.9, i.e., δ = 0.1.

To use LSH, we need to specify the parameters k and
L. The parameter L was set to minimum integer that satis-
fies L ≥ log δ/ log(1− pk

1), where p1 is the probability of two
points with distance R = 0.8 hashed to the same buckets, its
value can be found in the Table 1 in the previous section.
To determine the parameter k, we had two choices. One
choice was to set k as log1/p2

n, which guarantees the mini-
mum computational cost when n → ∞. However, such a k
does not necessarily give the minimum computational cost
for the real dataset where n < ∞. Therefore, we took an-
other choice; that is, we experimentally estimated the com-
putational cost for several ks by sampling method and chose
the k that gives the minimum computational cost. E2LSH al-
ready has the function to do this process automatically. We
used the same process for SLSH, too. Note that there ex-
ists another necessary condition on k and L. Since the LSH
data structure requires O(nL) memory space, there exists up-
per bound for L depending on the available physical mem-

1616
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Fig. 6 The computational cost of SLSH-orthoplex, E2LSH and Brute-
Force search with dimensionality d = 16.

Fig. 7 The computational cost of SLSH-orthoplex, E2LSH and Brute-
Force search with dimensionality d = 64.

ory. In choosing the parameters, we took this condition into
consideration. A more detailed inspection of the amount of
memory requirement will be carried out in Sect. 5.6.

5.5 Results

In our experiments, recall ratio, the ratio of the number of
actually retrieved points to the number of ground truth, were
always in the range of 85–100%; that means all of the nom-
inated algorithms have worked correctly.

The computational cost of SLSH with each type of
polytopes will be described severally in the following.

5.5.1 SLSH with Orthoplex

The computational cost of SLSH with orthoplex is plotted
in Figs. 6 and 7, together with the cost of E2LSH and Brute-
Force method. In these figures we dare to plot the multiple
curves for SLSH with several ks instead of single curve for
optimal k, in order to make the effect of k observable. Here

Table 3 The values of k and L. (L is determined by k).

16 dim. 64 dim.
k L k L

E2LSH 20 595 20 595
E2LSH 24 1485 24 1485
E2LSH 28 3741 28 3741

SLSH Simplex 1 6 1 9
SLSH Simplex 2 20 2 42
SLSH Simplex 3 59 3 186
SLSH Simplex 4 177 4 811

SLSH Orthoplex 1 8 1 11
SLSH Orthoplex 2 30 2 62
SLSH Orthoplex 3 114 3 322
SLSH Orthoplex 4 419 4 1677
SLSH Hypercube 1 1085 - -
SLSH Hypercube 2 512805 - -

we displayed only d = 16 case and d = 64 case. For other
dimensionalities, the results for d = 8 and d = 32 were
similar to Fig. 6, and the result for d = 100 was similar to
Fig. 7.

In Fig. 6, we can observe that the optimal k for SLSH
increases as the number of data points increases. Note that
the optimal k for E2LSH also increases as the number of
data points increases (even though that is not displayed in
the figure), and that the increase of k leads to the increase of
L (Table 3).

We can also observe that SLSH showed highest per-
formance at any n while parameter k was properly set up.
Note that the improvement over Brute-Force method has in-
creased as the number of the points increases.

It is worth pointing out that the performance of E2LSH
have gotten worse when n ≥ 5 × 104. That was because the
available memory restriction prevented E2LSH to use the
best parameters k and L (Recall that the amount of available
memory determines the upper bound for L). For example,
for the settings d = 16 and n = 1 × 105, the maximum L
allowed was around 1600 when we used a computer with
2.00 GB memory. Even though E2LSH had estimated the
optimal parameters as (k, L) = (28, 3741), E2LSH had to
use the alternative parameters within the memory restriction
as a compromise, that caused the degradation of the compu-
tational cost. On the other hand, our algorithm did not suffer
from the memory restriction as far as n ≤ 5 × 105. The ad-
vantage of our algorithm comes from the fact that the opti-
mal parameters k and L of the SLSH is smaller than E2LSH.
For example, the estimated optimal parameters for SLSH in
the same settings described above were (k, L) = (2, 30). The
further discussion of memory restriction will be resumed in
Sect. 5.6.

In higher dimensional case, shown in Fig. 7, the ad-
vantage of SLSH decreased especially with low populations.
That is because the hashing cost of SLSH is O(d2) while that
of E2LSH is only O(d). However, since SLSH could reduce
the number of distance calculation more efficiently, SLSH
could display its advantage as n increases. Again the perfor-
mance of E2LSH have gotten worse when n ≥ 5 × 104 be-
cause of the lack of memory. On the other hand, our method

TERASAWA and TANAKA: APPROXIMATE NEAREST NEIGHBOR SEARCH FOR A DATASET OF NORMALIZED VECTORS
1617

Fig. 8 The computational cost of SLSH-simplex and SLSH-orthoplex
with the dimensionality d = 16. In the figure, the circle represents the pa-
rameter k = 1, the triangle represents the parameter k = 2, and the square
represents the parameter k = 3.

Fig. 9 The computational cost of SLSH-simplex and SLSH-orthoplex
with the dimensionality d = 64. In the figure, the circle represents the
parameter k = 1 and the triangle represents the parameter k = 2.

worked well as far as n ≤ 5 × 105.

5.5.2 SLSH with Simplex

SLSH with simplex showed similar result as SLSH with or-
thoplex, with the latter slightly better (Figs. 8 and 9). This
result is understood by the fact that the SLSH-orthoplex has
slight advantage both in index ρ and the number of inner
product calculation per query.

5.5.3 SLSH with Hypercube

Even though the SLSH with Hypercube could produce the
lowest ρ in the asymptotic computational cost O(nρ), the
virtue seemed to be diminished until n increases signifi-
cantly (Fig. 10). As seen in Table 3 with d = 16 case, the
very low p(r) of hypercube (see Table 1) causes quite large
L even we choose the minimum k setting: k = 1. Further-

Fig. 10 The computational cost of SLSH-hypercube and SLSH-
orthoplex with the dimensionality d = 16. In the figure, the circle rep-
resents the parameter k = 1, the triangle represents the parameter k = 2,
and the square represents the parameter k = 3.

more, with d = 64 case we cannot even calculate optimal L
because p(r) was too small to be estimated by the Monte-
Carlo method. We can guess that the optimal L would be
so large that the implementation will be prohibited by the
restriction of memory. By these reason, SLSH-hypercube
would be useful only when the dimensionality is moderate
and the size of the dataset is quite large.

5.6 Memory Requirment

Here we resume the discussion of the memory requirement,
mainly with respect to the dimensionality of the data. The
amount of memory requirement for LSH (both E2LSH and
SLSH) is the total of three main components, namely, the
space to store the data itself, the space to store the hash
functions and the space to store the hash tables (referred
to as LSH structure). We have calculated the memory re-
quirement for various data dimensionalities, where the pop-
ulation n is fixed to 1 × 105. The results are summarized
in Figs. 11 and 12. Note that in this calculation we cal-
culated the optimal parameters k and L without consider-
ing the memory restriction, as opposed to the experiment in
Sect. 5.5.

As shown in Fig. 11, the memory requirement for
E2LSH is always over 2.00 GB. It is consistent with the fact
described in Sect. 5.5, i.e., the performance of E2LSH have
gotten worse at n ≥ 5 × 104 because of the lack of memory.
The most part of this memory requirement comes from the
LSH structure. In LSH, we have to maintain L hash tables
and each of the tables stores n points. The estimated optimal
L is large as 3741 for all dimensionalities, that results in this
huge memory requirement for LSH structure.

On the other hand, Fig. 12 indicates that SLSH needs
less memory for LSH structure (The reason why LSH struc-
ture for 128 dimension requires less memory than 64 dimen-
sion is that the optimal k changes from two to one between
these two settings, and it brings the smaller optimal L for

1618
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Fig. 11 The memory requirement for E2LSH (n = 1 × 105).

Fig. 12 The memory requirement for SLSH-orthoplex (n = 1 × 105).

128-dimension setting). Considering the fact that this mem-
ory requirement is sensitive to the size of the dataset — it
is proportional to nL = O(n1+ρ) — we may say that SLSH
is memory-efficient as far as regarding with the size of the
dataset.

Meanwhile, we have to mention the drawback of
SLSH. In SLSH we need O(d2kL) memory to store the
hash functions, while E2LSH requires only O(dk

√
L). Even

though the k and L for the SLSH are smaller than E2LSH,
the significance of the term d2 increases as the dimension-
ality increases, as seen in Fig. 12. From the figure, we may
presume that SLSH is not applicable when the dimension-
ality increases to tens of thousands. Nevertheless, we may
still say that SLSH is memory-efficient regarding with the
size of the dataset because the increase of this part of mem-
ory requirement is less sensitive to the size of the dataset:
it is proportional to L=O(nρ). Considering these facts, our
future work should include a reduction of the memory space
to store the hash functions. The fact that E2LSH reduces it
from O(dkL) into O(dk

√
L) by using non-independent hash

functions might be a good precedent for our future work.

6. Conclusion

In this paper we have proposed an algorithm to solve the
approximate nearest neighbor problem when all points are
constrained to lie on the surface of the unit hypersphere.

Our algorithm, named SLSH, is based on the LSH scheme,
and outperforms state-of-the-art LSH variants. The compu-
tational analysis of the exponent ρ described in Sect. 4 has
shown the asymptotic improvement of SLSH, that guaran-
tees SLSH outperforms the previously proposed LSH when
n→∞. The practical experiment described in Sect. 5 com-
pared the three types of SLSH and E2LSH. Since SLSH-
orthoplex has displayed its advantage in both computational
cost and memory requirement compared with E2LSH, it
is the best solution for the approximate nearest neighbor
search for a dataset of normalized vectors, unless the dimen-
sionality is as large as tens of thousands. SLSH-hypercube
might be another good solution when the size of the dataset
is considerably large and the dimensionality of the space is
not so large.

Acknowledgements

We would like to thank Mr. Alexandr Andoni and Prof. Pi-
otr Indyk for providing the E2LSH package. This work
was supported in part by Hokkaido University Global COE
Program “Center for Next-Generation Information Technol-
ogy based on Knowledge Discovery and Knowledge Fed-
eration” of MEXT (Ministry of Education, Culture, Sports,
Science and Technology), Grant-in-Aid for Young Scientists
(B) No. 19700079 of MEXT, and PRESTO of JST (Japan
Science and Technology Agency).

References

[1] J.L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol.18, no.9, pp.509–517, 1975.

[2] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high di-
mensions via hashing,” Proc. 25th International Conference on Very
Large Data Bases, VLDB1999, pp.518–529, 1999.

[3] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” Proc.
Symposium on Computational Geometry 2004, pp.253–262, 2004.

[4] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions,” Proc. 47th Annual
IEEE Symposium on Foundations of Computer Science, FOCS’06,
pp.459–468, 2006.

[5] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions,” Commun. ACM,
vol.51, no.1, pp.117–122, 2008.

[6] D.G. Lowe, “Object recognition from local scale-invariant features,”
Proc. 7th International Conference on Computer Vision, ICCV’99,
vol.2, pp.1150–1157, 1999.

[7] D.G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol.60, no.2, pp.91–110, 2004.

[8] G. Salton and M.J. McGill, Introduction to modern information re-
trieval, McGraw Hill, 1983.

[9] S. Har-Peled, “A replacement for voronoi diagrams of near linear
size,” Proc. 42nd Annual Symposium on Foundations of Computer
Science, FOCS’01, pp.94–103, 2001.

[10] J. Leech, “Notes on sphere packings,” Canadian Journal of Mathe-
matics, vol.19, pp.251–267, 1967.

[11] M.S. Charikar, “Similarity estimation techniques from rounding al-
gorithms,” Proc. 34th Annual ACM Symposium on Theory of Com-
puting, STOC’02, pp.380–388, 2002.

[12] A. Andoni and P. Indyk, “E2LSH: Exact Euclidean locality-sensitive
hashing,” http://web.mit.edu/andoni/www/LSH/

TERASAWA and TANAKA: APPROXIMATE NEAREST NEIGHBOR SEARCH FOR A DATASET OF NORMALIZED VECTORS
1619

Kengo Terasawa received B.E. and M.E.
degrees in civil engineering from the Univer-
sity of Tokyo in 1998 and 2000 respectively.
He received Ph.D. in systems information sci-
ence from Future University-Hakodate in March
2006. He was a postdoctral researcher at Ven-
ture Business Laboratory, Hokkaido University
during 2006–2007; and a Global COE postdoc-
tral researcher at Hokkaido University during
2007–2008. He is now a research associate at
Future University-Hakodate. Since 2008, he has

also been a researcher of PRESTO, Japan Science and Technology Agency
(JST). His current research interest includes image processing, information
retrieval and matching algorithm.

Yuzuru Tanaka received his B.E. and M.E.
degrees in information engineering from Kyoto
University in 1972 and 1974 respectively. He re-
ceived Dr. Eng. degree in information engineer-
ing from the University of Tokyo in July 1985.
He was a research associate at Hokkaido Univer-
sity during 1974–1977, a lecturer during 1977–
1985, and an associate professor during 1985–
1990. Since 1990, he has been a professor at
Hokkaido University. He has also been a Di-
rector of Meme Media Laboratory at Hokkaido

University since 1996, and a visiting professor at National Institute of In-
formatics since 2004. His research area involves database and media archi-
tectures and knowledge federation architectures. He recieved Nikkei Busi-
ness Publications Grand Prize of Technological Achievement in 1994 for
the R&D on 2D meme media architecture IntelligentPad. He is a member
of IPSJ, JSSST, JSAI and IEEE.

