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Code Compression with Split Echo Instructions
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SUMMARY Code density is often a critical issue in embedded comput-
ers, since the memory size of embedded systems is strictly limited. Echo
instructions have been proposed as a method for reducing code size. This
paper presents a new type of echo instruction, split echo, and evaluates
an implementation of both split echo and traditional echo instructions on
a MIPS R3000 based processor. Evaluation results show that memory re-
quirement is reduced by 12% on average with small additional hardware
cost.
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1. Introduction

Program size can be an important constraint for embed-
ded systems. While modern desktop and server computers
have megabytes or gigabytes of memory, many embedded
computers have memory sizes measured in kilobytes. This
clearly limits the possible programs that can be run on such
systems. For this reason, a variety of techniques to limit the
size of embedded program code have been proposed. One
interesting feature of many embedded systems is that they
only run the software they are loaded with at production
time, so binary compatibility, which is a huge concern for
desktop computers, is not a significant issue. This makes
introducing new processors with specialized features sup-
porting code compression much easier.

One such approach is Echo instructions [1], [2]. An
echo instruction is basically an instruction that references
a small block of code at a different location in the pro-
gram. By replacing all but one instance of duplicate code se-
quences by echo instructions, program size can be reduced.
However, the code compression ratio of Echo instruction is
limited because of its simple indication mechanism.

This paper introduces a new type of echo instruction
called Split Echo, which references instructions in different
locations in a program. This allows for further compression
compared to existing Echo instructions which reference in-
structions at only one point. Further contributions of this
paper are to present and evaluate an implementation of Echo
instructions on a MIPS R3000 based processor, and to evalu-
ate the compression effect of both traditional and Split Echo
instructions on MIPS program code.
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2. Background

Fraser [1] introduced the Echo instruction as a way to di-
rectly execute compressed byte code programs. This com-
pression works by replacing repeated occurrences of a se-
quence of instructions with references - Echo instructions -
to the first instance of the sequence. Echo instructions con-
sist of a pair (length, offset) where offset is the distance from
the echo instruction to the referenced sequence and length
is the number of elements to repeat. This is similar to how
LZ77 [3] data compression works. When an echo instruc-
tion is encountered in the program code, execution jumps
to the point referenced by offset, and length instructions are
executed before execution returns to the position following
the echo instruction (Fig. 1). Fraser achieved about a 30%
reduction in code size with this method.

Lau et al. [2] proposed the use of echo instructions for
embedded applications, and introduced the bitmask echo in-
struction. Bitmask echo replaces the length field with a fixed
length bitmask, to allow the conditional exclusion of some
instructions in the referenced sequence. This increases the
potential for code size reduction, since the referenced se-
quence does not need to be identical to the sequence re-
placed, merely similar. Lau et al. applied the bitmask echo
instructions to Alpha ISA binary code, a RISC based archi-
tecture similar to typical embedded processors, and made
substantial use of binary rewriting to increase the number of
matches. A version of the SimpleScalar [5] simulator, mod-
ified to support echo instructions, was used to verify trans-
formed programs and evaluate their performance. Lau et al.
achieved a 15% code size reduction with negligible impact
on performance. They attributed the smaller size reduction

Fig. 1 Echo instruction example.
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than Fraser’s work to the difficulty of compressing register
based binary code as opposed to byte code.

Wu et al. [6] applied echo instructions to the Intel x86
ISA, and achieved 12–20% code size reduction. They found
that a CISC architecture with variable length instructions
such as x86 is a particularly suitable subject for echo in-
structions.

3. Related Work

Several other hardware supported approaches exist for re-
ducing code size. Most fall into two categories, special in-
struction sets and dictionary compression.

Short instruction sets, like the Thumb [7] set for ARM
processors and the MIPS-16 [8] allow the processor to
switch between running 32 bit and 16 bit code. The bene-
fit is obvious in that a 16 bit instruction only takes up half
as much space as a 32 bit one. However, in many cases it
will take multiple 16 bit instructions to do the same as a sin-
gle 32 bit instruction, and there is also some overhead when
switching processor mode, so there will inevitably be a per-
formance penalty commensurate with the size gain. Thumb
code, for example, takes up 30% less space than ARM code,
but reduces the performance to 85%.

Dictionary compression involves replacement of re-
peating parts in a program with references to a separate “dic-
tionary” that contains a subset of the most commonly exe-
cuted instruction sequences in the program. This usually
involves separate hardware that stores the dictionary file for
a program, but can also be implemented purely in software
as procedural abstraction [10]. A recent variant of dictio-
nary compression is instruction packing [9], where the most
frequently executed individual instructions are stored in the
dictionary file, and a number of short references to these in-
struction are “packed” into a single special instruction.

Echo instructions can be considered a variant of dictio-
nary compression, but with the dictionary file being the pro-
gram itself, which means there is no need to expend hard-
ware on a separate dictionary storage, or to limit the dictio-
nary to the most frequently executed instructions.

An example of a completely different approach is
IBM’s CodePack [11] for the PowerPC processor. Code-
Pack uses Huffman encoding to compress a program, and
then uses a special hardware decompressor to deflate the
code when it is loaded from memory, before it is visible
to the processor. This system gives very good compression,
but has a significant hardware cost.

4. Split Echo

As the number of instructions in a sequence grows, the prob-
ability of finding a matching sequence at a different position
in the program decreases. One observation we have made is
that the majority of all sequential echo instructions in a com-
pressed program were of length 2. Even though each such
instruction results in a program size reduction of only a sin-
gle instruction, they still represent a sizable part of the total

Fig. 2 Echo region lengths.

Fig. 3 Split Echo instruction example.

size reduction. Figure 2 shows the distribution of sequential
echo region sizes in benchmark programs taken from the
MiBench [12] suite, targeting the MIPS R3000 ISA. (See
Sect. 7 for details about the benchmark programs.)

However, even the number of matching 2 instruction
sequences in a program is quite limited. To increase the
possible code size reduction, we propose the Split Echo in-
struction. Rather than having a length and offset field, the
split echo has two offset fields, each of which references
one instruction in separate parts of the program code. Fig-
ure 3 shows the execution of a sample split echo instruction
Since we no longer need to find a matching target sequence,
only two otherwise independent instructions, the potential
for finding instructions to be replaced by echo instructions
significantly increases.

The downside to having two offset fields is that the
range of addressable instructions is reduced. A standard,
sequential, echo instruction may have a 10 bit length field
and a 16 bit offset (and a 6 bit operation code, making for a
total of 32 bits). This gives an addressable range of 65536
(216) instructions. If we eliminate the length field and split
the 26 bits remaining in an instruction apart from the opera-
tion code, we are left with a much smaller addressable range
of 8192. However, since we are attempting to match indi-
vidual instructions rather than a sequence, the probability of
finding matching instructions in the range given is still quite
good.
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We also introduce a three-way split echo that refer-
ences 3 separate instructions. In this case, we have to divide
the 26 data bits in an instruction by 3, giving us just 9, 9, and
8 bits for the 3 offset fields, an addressable range 512 and
256 instructions respectively. While this limits the possible
number of matching instructions we can find, it’s still pos-
sible to gain further compression by using three-way split
echo instructions.

Four- and five-way split echo instructions are also pos-
sible, but if we squeeze 4 or 5 offsets into a single instruc-
tion, then the addressable range of each offset becomes so
short that the probability of finding matching instructions
becomes very low, especially since we need to match a
larger number of instructions. A four-way split echo will
have two offsets of 7 bits, and two offsets of 6 bits, corre-
sponding to addressable ranges of 128 and 64 instructions,
respectively. An analysis of our benchmark programs found
that the number of potential matches for four-way split echo
was very low, typically in the single digits. It does not seem
that the hardware cost of adding split echo instructions with
more than 3 offsets can be justified by the marginal com-
pression benefit.

5. Echo Compression

5.1 Identifying Sequence for Sequential Echo

To take full advantage of the compression potential of echo
instructions, we need to identify as many matching code re-
gions as possible. Choosing sequences for replacement by
sequential echo instructions is somewhat complicated. We
observe that regions being replaced by sequential echo in-
structions do not need to be completely identical, they only
need to result in the same program state when executed. By
analyzing the data flow and instruction dependency of a se-
quence, we can identify sequences that have different in-
struction order but are still semantically identical i.e. the in-
structions in one of the sequences can be reordered to make
them fully identical without changing the end result of exe-
cuting the sequence.

To identify potentially matching sequences we use an
algorithm based on fingerprinting [4]. A fingerprint is basi-
cally a hash value calculated from the instructions in a se-
quence. While matching fingerprints do not mean that two
sequences match, they can be used to quickly narrow down
which sequences should be compared more thoroughly to
determine if they are identical.

One specific concern of our implementation is that the
MIPS architecture uses delayed branches, meaning that the
instruction immediately following a branch instruction will
always be executed before the branch actually takes place.
Echo instructions are implemented similar to branch instruc-
tions, so the delay slot needs to be filled (in the examples
presented in the previous sections, we have ignored branch
delay in the interest of clarity). Since echo instructions are
never dependent on any other instructions, most of the time
the immediately preceding instruction can simply be placed

in the delay slot. However, the fact that we cannot place any
kind of branch instruction in a branch delay slot, does limit
the number of sequences which can potentially be replaced
by echo instructions. As with a standard branch instruction,
the instruction in the delay slot is executed before execution
shifts to the instructions referenced by the echo instruction.

5.2 Identifying Sequence for Split Echo

Identifying sequences for replacement by split echo instruc-
tions is much more straightforward than for sequential echo,
since we only need to do a linear search the addressable
range for separate target instructions matching the 2 or 3
in the source sequence.

The algorithm used is as follows:

1. Examine each sequence of three instructions in the pro-
gram being compressed.

2. Eliminate all sequences which contain branches or
jumps, control flow instructions that are unsuitable for
being replaced by split echo instructions.

3. Search the addressable range for instructions which
match each of the instructions in the original sequence.

4. If matches for all three instructions are found, replace
the sequence with a split echo instruction.

5. If three instructions matching the sequence are not
found, repeat the algorithm, searching for only first two
instructions in the sequence.

It is possible that compression could be improved by
taking echo instructions into account at a higher level of the
compilation process, to generate code with as many iden-
tical sequences as possible. However, this would conflict
with other optimization priorites, and would likely come
at a performance cost. Furthermore, split echo instructions
are much more flexible than sequential echo instructions, so
they should give full benefit even when no particular con-
cerns are taken to generate redundant code. Development
of a high level compiler explicitly generating code for echo
instructions is left as future work.

When using echo instructions for compression there is
a performance penalty we have to consider. For every echo
instruction we insert into the program code, we reduce the
code size, but the number of instructions the processor has
to execute is increased by one. This penalty becomes espe-
cially significant when an echo instruction is present inside a
deep loop. Since the program segment will run many times,
the one instruction penalty quickly adds up to a considerable
amount. Naturally, the harder compressed programs seem to
suffer more from this penalty.

6. Hardware Implementation

We implemented our approaches into a simple MIPS R3000
32 bit instruction set architecture, which is an in order issue
scalar processor. We chose MIPS because it is a very com-
mon architecture used in embedded systems. Our proces-
sor implements standard five-stage integer pipeline which
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consists of IF (instruction fetch), ID (instruction decode),
EX (execute), MEM (memory access) and WB (write back)
stages.

In the instruction fetch stage the instructions are
fetched from memory and the program counter is updated.
The instruction decode stage is where instructions are de-
coded and register file is accessed. Branch instructions are
handled in the decode stage, that is, if a branch is to be
taken, the target address is sent to the instruction fetch stage.
At this point we already have an instruction in the instruc-
tion fetch stage, which should be dealt with. Since flushing
this instruction means 1 cycle execution penalty each time
a branch is taken, this instruction is allowed to execute be-
fore branch target. This is called ‘delay slot execution’ and
is a property of the MIPS architecture. Execution stage is
where the arithmetic and logic operations take place. Mem-
ory access stage is where memory is accessed, and write
back stage is where results from execution or memory ac-
cess stages are written back to the register file.

Our implementation scheme for the echo instruction re-
quires modifications to instruction fetch and instruction de-
code stages. Basically, our implementation works like an
unconditional branch instruction with an implicit return in-
struction. Unlike the branch instruction, there are a few
points to be taken into account when processing echo in-
structions, first is to implement a counter like mechanism to
keep track of instruction executed in the echo region, sec-
ond, is a mechanism to save the program counter before the
echo branch and restore it when we finish executing echo
instructions.

In our implementation we chose to place these func-
tions into instruction fetch stage (Fig. 4). In this way, we
keep instruction decode stage more or less untouched, the
only modifications are made to the decoder to recognize the
echo opcode and a special path from the instruction decode
stage to the instruction fetch stage to send the length param-
eter for echo instruction. Length parameter will be used as
counter during echo execution. We calculate and send the
echo target address in the same way as branch instructions.

In the instruction fetch stage a load save mechanism
is implemented for the program counter. When the echo
counter value is received from the instruction decode stage,
the program counter is saved to a special purpose register.
After we finish the execution of echo region instructions, it
is restored from this register as the program counter. How-
ever, since this value actually points to the delay slot instruc-
tion (which is already executed) we increment it to point to
the next instruction before restoring it.

Implementation of the split echo instruction is different
from normal echo instruction. For split echo, we do not have
to deal with echo counter mechanism. On the other hand,
we have to calculate two different target addresses. Since
this will execute like two sequential unconditional branches,
we decided to implement the split echo in the instruction
decode stage and leave instruction fetch stage untouched.
The load save mechanism for program counter is moved to
instruction decode stage and counter mechanism is removed

Fig. 4 Sequential echo execution sequence.

completely.
When we decode a split echo instruction in the decode

stage, three things occur simultaneously. First, we save the
program counter to a special purpose register. The saved
program counter will be used not only for return value, but
also for the calculation of the 2nd offset. Second, we save
the second offset for calculation of the second echo target.
This calculation will take place in the next clock cycle. And
finally we calculate the first target address and forward this
value to the instruction fetch stage as in a normal branch
instruction (Fig. 5).

Another difference between normal echo and split echo
implementations is the way they determine when to end
the echo execution. While normal echo depends on the
counter for this, the split echo depends on a special pur-
pose register which acts as a state machine. There are three
states possible for the split echo processor, echo off state
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(normal execution), echo 2nd state (where the processor
should Calculate and branch to 2nd target) and the echo re-
turn state (where the processor should restore original pro-
gram counter). Upon decoding of the split echo, the state
is changed to echo 2nd state so that we can branch to the
second target in the next clock cycle. echo 2nd state com-
mences to echo return state which in turn commences to
echo off state.

In this way the split echo execution acts as a sequence
of three unconditional branches (last one restoring the orig-
inal program counter). At this point in implementation, we
simply ignore any interrupt calls, and the processor behavior
is undefined in the case of internal interrupts, such as divide
by zero and overflow. As long as no echo instructions are
used in the interrupt handling code, it is possible to store
echo specific registers to stack and restore them upon return
from interrupt routine, but this is not implemented.

We used Verilog HDL and Synopsys Design Compiler

Fig. 5 Split echo execution sequence.

with ASPLA 90 nm process for synthesization. 9 ns is used
as a clock timing restriction. The sequential echo imple-
mentation added 21 µm2 to the cell area size of our proces-
sor. Echo implementation with cache added 1228 µm2 to the
cell area size of our processor, which implies about a 1% in-
crease in cell area, and the implementation does not stretch
the critical path.

7. Evaluation

To evaluate the effectiveness of our implementation, we
have compressed a number of benchmarks from the
MiBench [12] benchmark suite, considered to be represen-
tative of typical embedded applications. We achieved size
reductions ranging from 2% to 15% on these benchmarks,
with typical results between 8% and 13%. Detailed results
of compression combining both sequential and split echo
instructions are shown in Table 1, while Fig. 6 shows the
compression results using sequential echo instructions, split
echos and both combined.

We see that while programs compressed with only
sequential echo instructions are generally smaller than
those compressed with only split echo instructions, pro-
grams compressed with both types of echo instructions are
smaller still. While there is significant overlap between the
two types of echo instructions, the granularity is different
enough for combining them to be worthwhile. Table 2 and
Fig. 7 show the effect of echo instructions on execution time.

Table 1 Echo compression results.

Number of
instructions

Instructions
removed

Compression

Blowfish 544 72 13.2%
Dijkstra 536 12 2.6%
Quicksort 784 61 7.8%
Jpeg 3020 348 11.5%
Mpeg 22015 1970 8.9%
Adpcm 10131 793 7.8%
Gsm 30236 4644 15.3%

Fig. 6 Compression results.
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Table 2 Additional cycles with echo instructions.

Benchmark Normal Seq+Split Echo Penalty (%)
Quicksort 51264000 54951500 7.19%
Dijkstra 316154200 325341800 2.9%
Blowfish 122634500 125598100 2.42%
Jpeg 651955700 696928100 6.9%
Adpcm 16823200 17224100 2.38%
Gsm 53488000 54073000 1.09%
Mpeg 23791900 25830900 8.57%

Fig. 7 Performance penalty.

Fig. 8 Branch delay penalty.

We see there is a performance hit of 8% at the worst.
Our processor only supports sequential and split echo

instructions, but we expect that combining bitmask and split
echo instructions should give similar benefits. In our bench-
marks, about 90% of the split echo instructions reference
target instructions more than 10 instruction spaces apart in
memory, often far more than that. This is outside the bit-
mask range of a typical bitmask echo instruction, showing
that the same difference in granularity exists between bit-
mask and split echo instructions.

While these results are fairly good, the compression
is not quite as good as in some of the previous work. We

attribute this to the delayed branching of the MIPS archi-
tecture, which makes it harder to insert echo instructions
into a program. To estimate this impact we compressed our
benchmarks with the delayed branch constraints disabled.
This resulted in an improvement in the compression ratios of
roughly 5%, showing that delayed branching is a significant
hindrance to the efficient use of echo instructions. Figure 8
compares the compression ratio with and without delayed
branch constraints, the programs are compressed with both
split and sequential echo instructions. Regardless of this, the
actual compression ratios achieved are still good enough to
be useful for many applications.

8. Conclusion

We have proposed a new type of echo enstruction, split
echos, and achieved a typical program size reduction of 8%–
15% at minimal hardware and performance cost, using split
and sequential echo instructions, showing that echo instruc-
tions are a valid code size reduction technique on the MIPS
R3000 processor.
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