
166
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

PAPER Special Section on Foundations of Computer Science

Path Maximum Query and Path Maximum Sum Query in a Tree∗

Sung Kwon KIM†a), Member, Jung-Sik CHO†, and Soo-Cheol KIM†, Nonmembers

SUMMARY Let T be a node-weighted tree with n nodes, and let π(u, v)
denote the path between two nodes u and v in T . We address two problems:
(i) Path Maximum Query: Preprocess T so that, for a query pair of nodes
u and v, the maximum weight on π(u, v) can be found quickly. (ii) Path
Maximum Sum Query: Preprocess T so that, for a query pair of nodes u
and v, the maximum weight sum subpath of π(u, v) can be found quickly.
For the problems we present solutions with O(1) query time and O(n log n)
preprocessing time.
key words: path maximum query, path maximum sum query, tree

1. Introduction

Let T be a rooted tree with n nodes. The lowest common
ancestor of two nodes u and v in T , denoted by LCAT (u, v),
is the node that is a common ancestor of u and v and is as
far as possible from the root.

LCA (Lowest Common Ancestor) Preprocess T so
that, for a query pair of nodes u and v, LCAT (u, v) can be
found efficiently.

Solutions with O(n) preprocessing time and O(1) query
time are presented in Harel and Tarjan [5], and Schieber and
Vishkin [6].

Let A[1 . . n] be an array with n real numbers.
RMQ (Range Maximum Query) Preprocess A so

that, for a query pair of indices i ≤ j, RMA(i, j) =
maxi≤k≤ j A[k] can be found efficiently.

Bender et al. [1] and Gabow et al. [4] show that LCA
and RMQ are linearly equivalent. So, solutions with O(n)
preprocessing time and O(1) query time are from [5], [6].

Define S (i, j) = A[i] + · · · + A[j] for 1 ≤ i ≤ j ≤ n.
RMSQ (Range Maximum Sum Query) Preprocess

A so that, for a query pair of indices i ≤ j, RMS A(i, j) =
maxi≤k≤l≤ j S (k, l) can be found efficiently.

Chen and Chao [2] proves the linear equivalence be-
tween RMQ and RMSQ, and, as a consequence, gives a so-
lution with O(n) preprocessing time and O(1) query time.

This paper extends RMQ and RMSQ from arrays to
trees and studies PMQ (path maximum query) and PMSQ
(path maximum sum query).

Let T = (V, E) be a size n rooted tree with the node set

Manuscript received March 18, 2008.
Manuscript revised June 23, 2008.
†The authors are with the Department of Computer Science

and Engineering, Chung-Ang University, Seoul, Korea. S.K. Kim
is the correspondence author.

∗This research was supported by the Chung-Ang University
Research Scholarship in 2008.

a) E-mail: skkim@cau.ac.kr
DOI: 10.1587/transinf.E92.D.166

V and the edge set E. Assume that V = {1, 2, . . . , n}. Each
node v ∈ V is weighted with a real value A[v]. For a pair of
nodes u and v, there exists a unique path in T that connects
them. Let π(u, v) denote the path.

PMQ (Path Maximum Query) Preprocess T so
that, for a query pair of nodes u and v, PMT (u, v) =
maxw∈π(u,v) A[w] can be found efficiently.

Define S (u, v) =
∑

w∈π(u,v) A[w].
PMSQ (Path Maximum Sum Query) Preprocess T

so that, for a query pair of nodes u and v, PMS T (u, v) =
maxw,x∈π(u,v) S (w, x) can be found efficiently.

We are interested in solutions with O(1) query time
whose preprocessing time is as small as possible.

In Sect. 2 we describe our solution to the path maxi-
mum query, and in Sect. 3 we present our solution to the
path maximum sum query. We give concluding remarks in
Sect. 4.

Notation: (u, v) denotes an (undirected) edge, and
〈u, v〉 denotes a directed edge where v is the parent of u.
par(v) denotes the parent of v.

2. Path Maximum Query

We want to preprocess T = (V, E) so that path maximum
queries can be answered quickly. For that, we first consider
a restricted version of PMQ. A path π(u, v) is lineal if u is
an ancestor of v or vice versa.

LPMQ (Lineal Path Maximum Query) Preprocess
T so that, for a query pair of nodes u and v with v being an
ancestor of u, LPMT (u, v) = maxw∈π(u,v) A[w] can be found
efficiently.

To solve this problem, we first introduce an artificial
node r∗ = 0 with A[r∗] = ∞. Let T ∗ = (V∗, E∗) with V∗ =
V ∪ {r∗} and E∗ = E ∪ {〈r, r∗〉)}. r is the root of T , and
r∗ is the root of T ∗ and the parent of r. Define B[v] to be
the bounding ancestor of v, which is the node x such that
x ∈ π(r∗, par(v)), A[x] ≥ A[v], and the level of x is as large
as possible. The level of x is the number of edges in π(r∗, x).

Figure 1 shows our algorithm for computing the ar-
ray B[1 . . n]. Q is a queue that stores nodes, insert(x,Q)
appends node x to the rear end of Q, and delete(Q) re-
moves the node at the front end of Q and returns it. The
algorithm traverses T ∗ in level-order. Let v be the cur-
rently visited node. At this point, we may assume that
B[w] has been computed for each w ∈ π(r∗, v). Sup-
pose it has Δv children u1, . . . , uΔv . We are to compute
B[u1], . . . , B[uΔv]. Relabel so that A[u1] ≤ . . . ≤ A[uΔv].

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

KIM et al.: PATH MAXIMUM QUERY AND PATH MAXIMUM SUM QUERY IN A TREE
167

Fig. 1 Computing B[1 . . n].

Consider the sequence v, B[v], B[B[v]], . . . , B[· · · B[v] · · ·] =
r∗. Notice that A[v] ≤ A[B[v]] ≤ · · · ≤ A[r∗]. We
merge the sorted list A[u1], . . . , A[uΔv] with another sorted
list A[v], A[B[v]], . . . , A[r∗]. From the merged list we can
easily compute B[u1], . . . , B[uΔv]. The algorithm does not
explicitly merge the lists, but this is done implicitly.

B[1 . . n], computed by the algorithm in Fig. 1, may
have duplicate integers. Let b1 < · · · < bk be the dis-
tinct integers appearing in B. Obviously, b1 = 0. Let
Bi = { j | B[j] = bi} = { ji,1, . . . , ji,|Bi |} for 1 ≤ i ≤ k. Rear-
range the integers in each Bi so that A[ji,1] ≤ · · · ≤ A[ji,|Bi |].
In the sorted list ji,1, · · · , ji,|Bi |, let each element point to the
element to its right by assigning L[ji,1]← ji,2, L[ji,2]← ji,3,
. . ., and L[ji,|Bi |−1] ← ji,|Bi |. Finally, let the last element of
the list point to bi by assigning L[ji,|Bi |]← bi.

Let TL be the tree defined by L. Its node set is V∗ and
an edge 〈 j, j′〉 exists if L[j] = j′. An edge 〈 j, j′〉 is vertical
if j and j′ belong to the same Bi (i.e., if j, j′ ∈ Bi for some
i), and nonvertical, otherwise. Note that TL is a binary tree.
If a node in TL has two children, one of them is connected
through a vertical edge and the other through a nonvertical
edge.

Figure 2 shows how our algorithm computes TL when
T is a tree consisting of a single path of length n; note that
this actually corresponds to the case of RMQ. Fig. 3 depicts
a geometric description of how B[1 . . n] is computed for the
case of a single-path tree.

Preprocess TL for the LCA queries. Then, we
claim that for a query lineal path π(u, v), LPMT (u, v) =
LCATL (u, v). Figure 4 summarizes our algorithm for LPMQ
preprocessing.

The following lemma shows that when T consists of a
single path only, TL can be used to answer PMQs correctly.

Lemma 1: Let T be a tree consisting of a single path
only. Then, for a query pair of nodes u, v, LPMT (u, v) =
LCATL (u, v).

Proof: Since T is a path, we let T = (1, 2, . . . , n), where
r = 1 and j is the child of j−1 for 2 ≤ j ≤ n. Construct TL on
the array A[1 . . n]. In TL, the root r∗ has a single child, which
is j1,|B1 |. In Fig. 2, j1,|B1 | = 3. First of all, it is easy to see that

Fig. 2 Computing L and TL when T is a single path.

Fig. 3 Geometric description of computing B[1 . . n] in Fig. 2. The
heights of segments correspond to A[1 . . n].

Fig. 4 Preprocessing T with node values A for answering LPM queries.

A[j1,|B1 |] = max A[1 . . n]. See Fig. 3. Assume that j1,|B1 |
has two children, p and q, and the edge 〈p, j1,|B1 |〉 is vertical
and the edge 〈q, j1,|B1 |〉 is nonvertical. Then, p = j1,|B1 |−1,
and q = jl,|Bl | where l is the integer such that bl = j1,|B1 |.
In Fig. 2, p = 1 and q = 7, 〈1, 3〉 is vertical and 〈7, 3〉 is
nonvertical. Again, by the definition of B it is easy to see that

168
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Fig. 5 Example tree.

Fig. 6 Computing L for the tree in Fig. 5.

A[p] = max A[1 . . j1,|B1 |−1] and A[q] = max A[j1,|B1 |+1 . . n].
In Fig. 3, A[1] = max A[1 . . 2] and A[7] = max A[4 . . 8].

This corresponds to the definition of a Cartesian
tree [7]. The Cartesian tree on A is defined as follows:
find A[j] = max A[1 . . n] and make A[j] the root; find
A[p] = max A[1 . . j − 1] and A[q] = max A[j + 1 . . n], and
make A[p] and A[q] the children of A[j]; and recursively re-
peat this procedure until all elements of A are contained in
the tree.

TL is a Cartesian tree on A. Hence, by the definition
of a Cartesian tree, for a query pair of nodes u, v, we have
LPMT (u, v) = LCATL (u, v). �

Figure 5 shows a tree T . Applying the algorithm in
Fig. 4 to T computes B and L in Fig. 6, and TL in Fig. 7 (a).

Consider a leaf node y of T . Let T ′ = π(r, y) be the
root-to-leaf path between r and y. Apply to T ′ our algorithm
in Fig. 4 to get T ′L. Let b′1, . . . , b

′
k′ and B′1, . . . , B

′
k′ be the bi’s

and Bi’s.
Figure 7 (b) depicts T ′L for y = 8 and Fig. 7 (c) for y = 7.

Lemma 2: For any pair of nodes u, v ∈ T ′, LCAT ′L (u, v) =
LCATL (u, v).

Proof: It is sufficient to show that, for any pair of nodes
w, x ∈ T ′, there is a directed edge 〈w, x〉 ∈ T ′L if and only if
there is a directed path 〈w, . . . , x〉 in TL such that the nodes
on the path except w and x are all in T − T ′.

For example, in Fig. 7 the vertical edge 〈2, 3〉 in (b) cor-
responds to the path 〈2, 4, 3〉 in (a), and the nonvertical edge

Fig. 7 (a) TL for the tree in Fig. 5 and L in Fig. 6. (b) T ′L for y = 8. (c)
T ′L for y = 7.

〈4, 1〉 in (c) corresponds to the path 〈4, 3, 1〉 in (a).
⇒) i) 〈w, x〉 is a vertical edge:

Since 〈w, x〉 is a vertical edge in T ′L, there is an integer l′ such
that w, x ∈ B′l′ . In the sorted list B′l′ , w appears immediately
before x and no other integer lies between them. By the
definition of B, it is easy to show that w, x ∈ Bl for l such
that bl = b′l′ . In BL, w appears before x. By the definition
of L there is a directed path from w to x in TL, consisting of
vertical edges only. As w and x are adjacent in B′l′ , no node
in T ′ except w and x can appear on the path.

ii) 〈w, x〉 is a nonvertical edge:
By the definition of a nonvertical edge, w ∈ B′l′ for l′ such
that x = bl′ , and w is the last integer in the sorted list B′l′ .
Let l be the integer such that x = bl. Then, w ∈ Bl. In TL,
there is a directed path 〈w, . . . , jl,|Bl |, x〉. The nodes on the
path except w and x are not in T ′ as w is the last one in B′l′ .⇐) i) w, x ∈ Bl for some l:
In this case, w, x ∈ B′l′ for l′ such that b′l′ = bl. Moreover,
w and x appear adjacently because on the path 〈w, . . . , x〉 all
nodes except w and x are in T − T ′. So, the vertical edge
〈w, x〉 is in T ′L.

ii) w ∈ Bl and x ∈ Bm for some l � m:
Since w ∈ Bl, we have B[w] = bl. By the definition of
B, bl is an ancestor of w in T . So, bl ∈ T ′. Consider the
directed path from w to x in TL, π = 〈w, . . . , jl,|Bl |, bl, . . . , x〉.
If x � bl, then bl ∈ T ′ appears on π. This contradicts to the
assumption that no node in T ′ except w and x appears on π.
So, x = bl. In T ′L, w ∈ B′l′ for l′ such that b′l′ = x, and w is
the last element in B′l′ . Hence, 〈w, x〉 is a nonvertical edge in
T ′L. �

From Lemmas 1 and 2 we have the following theorem.

Theorem 1: For any pair of nodes u, v with v being an an-

KIM et al.: PATH MAXIMUM QUERY AND PATH MAXIMUM SUM QUERY IN A TREE
169

cestor of u, LPMT (u, v) = LCATL (u, v).

For a query pair of nodes u, v, PMT (u, v) can be found
as follows:

• Find the node w such that w = LCAT (u, v).
• Compute a = LPMT (u,w).
• Compute b = LPMT (v,w).
• Return max{a, b}.

Since each step takes O(1) time, the query time is O(1).
Let us analyze the time complexity of our preprocess-

ing algorithm in Fig. 4. In Step (1), the sorting requires
O(Δv logΔv) time for each node v and the other requires
O(Δv) time. Let Δ = maxv∈V Δv. Since

∑
v∈V Δv logΔv ≤

n logΔ, Step (1) can be done in O(n logΔ) time. Step (3)
calls a sorting for each Bi, and thus needs O(|Bi| log |Bi|)
time for each sorting, and O(n logΔ′) time in total, where
Δ′ = max1≤i≤k |Bi|. The other steps require O(n) time. Thus,
the preprocessing time is O(n log(max{Δ,Δ′})), and since
Δ ≤ n and Δ′ ≤ n, it is O(n log n).

Theorem 2: There is a solution for the path maximum
query with O(1) query time and O(n log n) preprocessing
time.

LPMIQ (Lineal Path Minimum Query) Preprocess
T so that, for a query pair of nodes u and v with v being an
ancestor of u, LPMIT (u, v) = minw∈π(u,v) A[w] can be found
efficiently.

Finding the lineal path minimum can also be solved
in a similar way as finding the lineal path maximum. We
introduce LPMIQ here to use in the next section.

3. Path Maximum Sum Query

In this section we preprocess T so that path maximum sum
queries can be answered efficiently. Again, we are first in-
terested in a restricted version.

LPMSQ (Lineal Path Maximum Sum Query) Pre-
process T so that, for a query pair of nodes u and v with v
being an ancestor of u, LPMS T (u, v) = maxw,x∈π(u,v) S (w, x)
can be found efficiently.

To solve this restricted version efficiently, we first let
C[v] = S (r, v) for each v ∈ V . C[v] is the cumulative sum
of the path from the root to v. Then, for any two nodes u, v
with v being an ancestor of u, S (u, v) = C[u] −C[par(v)].

Let u and v be two nodes with v being an ancestor
of u. Let x0 = par(v). To find LPMS T (u, v), we first
locate x1 ∈ π(u, v) such that C[x1] = maxw∈π(u,v) C[w],
and then locate y1 ∈ π(par(x1), x0) such that C[y1] =
minw∈π(par(x1),x0) C[w]. For i = 2, . . ., locate xi ∈ π(u, x′i−1)
such that C[xi] = maxw∈π(u,x′i−1) C[w] where x′i−1 ∈ π(u, v)
and par(x′i−1) = xi−1, and then locate yi ∈ π(par(xi), xi−1)
such that C[yi] = minw∈π(par(xi),xi−1) C[w]. Refer to Fig. 8.
Let x0, x1, . . . , xl and y1, . . . , yl be the sequences of nodes
thus obtained. Obviously xl = u.

Lemma 3: LPMS T (u, v) = max1≤i≤l{C[xi] −C[yi]}.

Fig. 8 xi corresponds to the tallest one to the right of xi−1, and yi

corresponds to the shortest one between xi−1 and par(xi).

Proof: Let x and y be the nodes such that x, y ∈ π(u, v)
and S (x, y) = LPMS T (u, v). Assume that y is an ancestor
of x. Then, S (x, y) = C[x] − C[par(y)]. We shall show that
x = xi and par(y) = yi for some i. Note that π(par(xl), x0) is
partitioned into l paths, π(par(xl), xl−1), . . . , π(par(x1), x0).
Assume that par(y) ∈ π(par(xi), xi−1) for some i. Since
C[par(y)] should be as small as possible, we have par(y) =
yi as C[yi] is the minimum of C[par(xi)], . . . ,C[xi−1]. Since
C[x] should be as large as possible, we have x = xi as C[xi]
is the maximum of C[u], . . . ,C[x′i−1]. �

In Sect. 2, B[v] is defined with respect to A. Here, we
redefine B[v] with respect to C; B[v] is the node x such that
x ∈ π(r∗, par(v)), C[x] ≥ C[v], and the level of x is as large
as possible.

In the sequence x1, . . . , xl, B[xi] = xi−1 for 2 ≤ i ≤ l as
C[xi−1] > C[xi] and C[xi] is the maximum among those to
the right of xi−1. The definition of yi for 2 ≤ i ≤ l can be
rephrased as C[yi] = minw∈π(par(xi),B[xi]) C[w].

Define M[v] to be the matching ancestor of v, which
is the node x such that x ∈ π(par(v), B[v]), C[x] =
minw∈π(par(v),B[v]) C[w], and the level of x is as large as
possible. Note that M[xi] = yi for 2 ≤ i ≤ l.
Lemma 3 can be rewritten as LPMS T (u, v) = max{C[x1] −
C[y1],max2≤i≤l{C[xi] −C[M[xi]]}}.

For brevity, let D[v] = C[v] − C[M[v]] for v ∈ V − {r},
and D[r] = A[r]. Then, D[xi] ≥ D[w] for any node w ∈
π(xi, x′i−1). Hence, maxw∈π(u,x′1) D[w] = max2≤i≤l D[xi].

Lemma 4: LPMS T (u, v) = max{C[x1] −C[y1],
maxw∈π(u,x′1) D[w]}.

The algorithm in Fig. 9 computes the arrays C[1 . . n],
B[1 . . n], M[1 . . n] and D[1 . . n]. It works in a similar way as
the one in Fig. 1 does. Let v be the current node. We assume
that B[w] and M[w] have been computed for w ∈ π(r∗, v).
Suppose it has Δv children, u1, . . . , uΔv . Compute C[ui] =
C[v]+A[ui] for 1 ≤ i ≤ Δv, and sort them in ascending order.
Consider the sequence v, B[v], B[B[v]], . . . , B[· · · B[v] · · ·] =
r∗. Let v1 = v, v2 = B[v], . . . , vm = r∗. To compute B[ui],
we assume that B[ui−1] has already been computed. Let
B[ui−1] = vp. We scan the list vp, vp+1, . . . , vm until we find
vq such that C[vq] ≥ C[ui].

To compute M[ui], we also may assume that M[ui−1]
has already been computed. Let B[ui−1] = vp and
B[ui] = vq for p < q. M[ui], by definition, is the
node in π(v, vq) such that C[M[ui]] = minw∈π(v,vq) C[w].
This is equivalent to C[M[ui]] = min1≤ j≤q−1 C[M[v j]].

170
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Fig. 9 Computing C, B,M and D.

Fig. 10 Preprocessing for PMSQs and LPMSQs.

Since C[M[ui−1]] = min1≤ j≤p−1 C[M[v j]], we have
C[M[ui]] = min{C[M[ui−1]],minp≤ j≤q−1 C[M[v j]]}. Start-
ing with M[ui] = M[ui−1], the algorithm scans
M[vp], . . . ,M[vq−1] to find the minimum of their C values.

Figure 10 shows our algorithm for preprocessing
T for PMS queries and LPMS queries. LPMT,D(u, v),
LPMT,C(u, v), and LPMIT,C(u, v) denote maxw∈π(u,v) D[w],
maxw∈π(u,v) C[w], and minw∈π(u,v) A[w], respectively.

Given a query pair of nodes u and v with v being an
ancestor of u, we can find LPMS T (u, v) using the following
query-answering algorithm, which is based on Lemma 4.

• Find x1 ∈ π(u, v) such that C[x1] = LPMT,C(u, v).
• Find y1 ∈ π(par(x1), par(v)) such that C[y1] =

LPMIT,C(par(x), par(v)).
• Find z ∈ π(u, x′1) such that D[z] = LPMT,D(u, x′1).
• Return max{C[x1] −C[y1],D[z]}.

Since each step takes O(1) time, the query time for
LPMS T (u, v) is O(1).

We are now ready to answer path maximum sum
queries. Given a query pair of nodes u and v, PMS T (u, v)
can be computed as follows:

• Find w such that w = LCAT (u, v).
• If u = w, return LPMS T (v,w).
• If v = w, return LPMS T (u,w).

• Compute a = LPMS T (u,w).
• Compute b = LPMS T (v,w).
• Find x ∈ π(u,w) such that C[x] = LPMT,C(u,w).
• Find y ∈ π(v,w) such that C[y] = LPMT,C(v,w).
• Compute c = C[x] −C[par(w)] +C[y] −C[w].
• Return max{a, b, c}.

Given u and v, we first locate w = LCAT (u, v). If
u = w or v = w, then π(u, v) is a lineal path and its max-
imum sum can be found by calling either LPMS T (v,w) or
LPMS T (u,w). Otherwise, we compute a, b and c, and re-
turn their maximum. a (resp., b) is the sum of a maximum
sum path, both of whose end nodes are on π(u,w) (resp.,
π(v,w)). c is the sum of a maximum sum path, one of whose
end nodes, x, is on π(u,w) and the other, y, is on π(v,w).

It is easy to see that the query time is O(1) as each step
takes only O(1) time. The time complexity of the prepro-
cessing in Fig. 10 is as follows: Step (1) takes O(n logΔ)
time. Step (2) takes linear time. Steps (3), (4) and (5) use
the same algorithm in Fig. 4 to the same tree T with different
node values (C or D) or different objective functions (max-
imum or minimum). Step (3) takes O(n log(max{Δ,Δ′3})),
where Δ′3 = Δ

′ and Δ′ is defined in the previous section.
Similarly, Steps (4) and (5) take O(n log(max{Δ,Δ′4})) and
O(n log(max{Δ,Δ′5})), respectively. The preprocessing re-
quires O(n log(max{Δ,Δ′3,Δ′4,Δ′5})) = O(n log n) time as
Δ,Δ′3,Δ

′
4,Δ

′
5 ≤ n.

Theorem 3: There is a solution for the path maximum sum
query with O(1) query time and O(n log n) preprocessing
time.

4. Concluding Remarks

We have presented solutions with O(1) query time for both
the path maximum query and the path maximum sum query.
One immediate future work is to reduce the preprocessing
time.

References

[1] M.A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P.
Sumazin, “Lowest common ancestors in tree and directed acyclic
graphs,” J. Algorithms, vol.57, pp.79–94, 2005.

[2] K.Y. Chen and K.M. Chao, “On the range maximum-sum seg-
ment query problem,” Discrete Appl. Math., vol.155, pp.2043–2052,
2007.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, Second ed., MIT Press and McGraw-Hill, 2001.

[4] H. Gabow, J. Bentley, and R.E. Tarjan, “Scaling and related tech-
niques for geometry problems,” STOC, pp.135–143, 1984.

[5] D. Harel and R.E. Tarjan, “Fast algorithms for finding nearest com-
mon ancestors,” SIAM J. Comput., vol.13, no.2, pp.338–355, 1984.

[6] B. Schieber and U. Vishkin, “On finding lowest common ances-
tors: Simplification and parallelization,” SIAM J. Comput., vol.17,
pp.1253–1262, 1988.

[7] J. Vuillemin, “A unifying look at data structures,” Commun. ACM,
vol.23, pp.229–239, 1980.

KIM et al.: PATH MAXIMUM QUERY AND PATH MAXIMUM SUM QUERY IN A TREE
171

Sung Kwon Kim received his B.S. de-
gree from Seoul National University, Korea, his
M.S. degree from KAIST, Korea, and his Ph.D.
degree from University of Washington, Seat-
tle, U.S.A. He is currently with Department
of Computer Science and Engineering, Chung-
Ang University, Seoul, Korea.

Jung-Sik Cho received his B.E. degree from
Kang-nam University, Korea in 2003 and his
M.E. degree from Chung-Ang University, Ko-
rea in 2005, respectively, all in computer science
and engineering. He is currently a Ph.D. course
student at Chung-Ang University. His areas of
research interest are security of RFID system,
security of sensor network, cryptography, and
information security.

Soo-Cheol Kim received his B.E. and M.E.
degrees from Chung-Ang university, Korea, in
2004 and 2007, respectively, all in computer sci-
ences and engineering. He is currently a Ph.D.
course student at Chung-Ang University. His ar-
eas of research interest are security of RFID sys-
tem, security of sensor network, cryptography,
and information security.

