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Study on Entropy and Similarity Measure for Fuzzy Set

Sang-Hyuk LEE†, Member, Keun Ho RYU††, Nonmember, and Gyoyong SOHN††a), Member

SUMMARY In this study, we investigated the relationship between
similarity measures and entropy for fuzzy sets. First, we developed fuzzy
entropy by using the distance measure for fuzzy sets. We pointed out that
the distance between the fuzzy set and the corresponding crisp set equals
fuzzy entropy. We also found that the sum of the similarity measure and
the entropy between the fuzzy set and the corresponding crisp set consti-
tutes the total information in the fuzzy set. Finally, we derived a similarity
measure from entropy and showed by a simple example that the maximum
similarity measure can be obtained using a minimum entropy formulation.
key words: similarity measure, distance measure, fuzzy entropy

1. Introduction

Average values and standard deviation analyze statistical in-
formation from different points of view when a heuristic ap-
proach is adopted, and hence, they are sometimes inconsis-
tent with each other. To analyze ambiguous data, we have to
consider a data set as a fuzzy set with a degree of member-
ship. Entropy and similarity analyses are essential for study-
ing the total data information of fuzzy sets. The characteri-
zation and quantification of fuzziness are important and af-
fect the management of uncertainty in the modeling and de-
sign of many systems. The fact that the entropy of a fuzzy
set is a measure of its fuzziness has been established by pre-
vious researchers [1]–[6]. Zadeh was the first to propose
fuzzy entropy as a measure of fuzziness; Pal and Pal an-
alyzed classical Shannon information entropy; Kosko con-
sidered the relationship between distance measure and fuzzy
entropy; Liu proposed axiomatic definitions of entropy, dis-
tance measures, and similarity measures and discussed the
relationships among these three concepts. Bhandari and Pal
presented a measure of fuzzy information for distinguishing
between fuzzy sets. Further, Ghosh used fuzzy entropy in
neural networks.

The degree of similarity between two or more data
sets has a central role in decision making, pattern classifi-
cation, etc., [7]–[10]. Thus far, numerous researchers have
carried out research on deriving similarity measures [11]–
[14]. Methods based on fuzzy numbers enable the simple
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derivation of similarity measures. However, derived similar-
ity measures are restricted to triangular or trapezoidal mem-
bership functions [11], [12]. In contrast, similarity measures
based on the distance measure are applicable to general
fuzzy membership functions, including nonconvex fuzzy
membership functions [13], [14].

The correlation between entropy and similarity for
fuzzy sets has been presented from various viewpoints [15].
Liu also proposed a relation between distance and similar-
ity measures; in his paper, the sum of distance and similar-
ity constitutes the total information [4]. In this paper, we
analyze the relationship between the entropy and similarity
measures for fuzzy sets and the corresponding numeric data
sets. We derive fuzzy entropy and similarity measures by
using the distance measure. We verify the total information
property, which combines the similarity and entropy mea-
sures. The fuzzy entropy between two comparative data sets
enables us to also obtain the similarity measure by using the
total information property.

In the following section, we discuss the relationship
between entropy and similarity for a fuzzy set. We obtain
the corresponding crisp set for a fuzzy set satisfying mini-
mum fuzzy entropy. We also discuss the previously obtained
fuzzy entropy and similarity measure. In Sect. 3, we derive
the procedure for obtaining the similarity measure from the
fuzzy entropy. Furthermore, the maximum similarity for a
fuzzy set is obtained in a simple example. The conclusions
are stated in Sect. 4.

2. Relation between Entropy and Similarity Measure

Data uncertainties are inherent to fuzzy sets with member-
ship functions. We have proposed that fuzzy entropy be used
to measure the uncertainties [13]. We require two compara-
tive sets to develop fuzzy entropy. One is a fuzzy set and the
other is the corresponding crisp set. On the basis of the def-
inition of fuzzy entropy, numerous fuzzy entropies are pre-
sented. The fuzzy membership function pair is illustrated in
Fig. 1. An analysis of the entropy for fuzzy set shows that
it is essential to consider the corresponding crisp set. Anear

represents the crisp set “near” fuzzy set A. The value of A0.5

is one when µA(x) ≥ 0.5 and is zero otherwise. Af ar is the
complement of Anear, i.e., AC

near = Af ar.
We proposed the fuzzy entropy of fuzzy set A with re-

spect to Anear as follows [13].

e(A, Anear)=d(A∩Anear[1]X)+d(A∪Anear[0]X)−1 (1)
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Fig. 1 Fuzzy membership function pairs of A and Anear = A0.5.

where d(A∩Anear[1]X) = 1
n

∑n
i=1 |µA∩Anear (xi)−1| is satisfied.

[0]X and [1]X are the fuzzy sets in which the value of the
membership functions are zero and one, respectively, for the
universe of discourse; d also satisfies the Hamming distance
measure.

Equation (1) does not give the normal fuzzy entropy.
The normal fuzzy entropy can be obtained by multiplying
the right-hand side of Eq. (1) by two, which satisfies maxi-
mal fuzzy entropy is one. The fuzzy entropy in Eq. (1) sat-
isfies for all value of crisp set Anear. Hence, A0.1 and A0.5

or some other A0.X can be satisfied. Now, it is interesting to
search for the value of A0.X that is a maximum or minimum.

Equation (1) is rewritten as follows:

e(A, Anear) = 2
∫ x

0
µA(x)dx + 2

∫ xmax

x
1 − µA(x)dx. (2)

Let d
dx MA(x) = µA(x); e(A, Anear) has been shown to be

e(A, Anear) = 2MA(x)|x0 + 2(xmax− x) − 2MA(x)|xmax
x .

The maxima or minima are obtained by differentiation:

d
dx

e(A, Anear) = 2µA(x) − 2 + 2µA(x).

Hence, it is clear that the point x satisfying d
dx e(A, Anear) = 0

is the critical point for the crisp set. This point is given by
µA(x) = 1/2, i.e., Anear = A0.5.

The fuzzy entropy between A and A0.5 has a minimum
value because e(A) attains maxima when the corresponding
crisp sets are A0.0 and Axmax . Hence, for a nonconvex and
symmetric fuzzy set, the minimum entropy of the fuzzy set
is equal to that of the crisp set A0.5. This indicates that the
corresponding crisp set that has the least uncertainty or the
greatest similarity with the fuzzy set is A0.5.

All the studies on similarity measures deal with deriva-
tions of similarity measures and applications in the distance-
measure-based computation of the degree of similarity. Liu
has also proposed an axiomatic definition of the similar-
ity measure [4]. The similarity measure ∀A, B ∈ F(X) and
∀D ∈ P(X) has the following four properties:

(S1)s(A, B) = s(B, A), ∀A, B ∈ F(X)

(S2)s(D,Dc) = 0, ∀D ∈ P(X)

(S3)s(C,C) = maxA,B∈F s(A, B), ∀C ∈ F(X)

(S4)∀A, B,C ∈ F(X), if A ⊂ B ⊂ C, then

s(A, B) ≥ s(A,C) and s(B,C) ≥ s(A,C)

where F(X) denotes a fuzzy set, and P(X) is a crisp set.
The proposed similarity measure between A and Anear

is presented in Theorem 2.1. We verify the usefulness of
this measure through a proof of this theorem.

Theorem 2.1 ∀A ∈ F(X) and the crisp set Anear in Fig. 1,

s(A, Anear) = d(A ∩ Anear, [0]X) + d(A ∪ Anear, [1]X) (3)

is a similarity measure.

Proof. (S1) follows from Eq. (3), and for crisp set D, it
is clear that s(D,DC) = 0. Hence, (S2) is satisfied. (S3)
indicates that the similarity measure of two identical fuzzy
sets s(C,C) attains the maximum value among various sim-
ilarity measures with different fuzzy sets A and B since
d(C∩C, [0]X)+d(C∪C, [1]X) represents the entire region in
Fig. 1. Finally, from d(A∩A1near, [0]X) ≥ d(A∩A2near, [0]X)
and d(A ∪ A1near, [1]X) ≥ d(A ∪ A2near, [1]X), A ⊂ A1near ⊂
A2near; it follows that

s(A, A1near)=d(A∩A1near, [0]X)+d(A∪A1near, [1]X)

≥d(A∩A2near, [0]X)+d(A∪A2near, [1]X)= s(A, A2near).

Similarly, s(A1near, A2near) ≥ s(A, A2near) is satisfied by
the inclusion properties d(A1near ∩ A2near, [0]X) ≥ d(A ∩
A2near, [0]X) and d(A1near∪A2near, [1]X) ≥ d(A∪A2near, [1]X).

�
The similarity in Eq. (3) represents the areas shared by two
membership functions. In our previous studies, we have pro-
posed other similarity measures between two arbitrary fuzzy
sets as follows [13], [14]:

For any two sets A, B ∈ F(X),

s(A, B) = 1 − d(A ∩ BC , [0]X) − d(A ∪ BC , [1]X) (4)

and

s(A, B) = 2 − d(A ∩ B, [1]X) − d(A ∪ B, [0]X) (5)

are similarity measures between set A and set B.
In Eqs. (4) and (5), fuzzy set B can be replaced by Anear.

In addition to those in Eqs. (4) and (5), numerous similarity
measures that satisfy the definition of a similarity measure
can be derived. From Fig. 1, the relationship between data
similarity and entropy for fuzzy set A with respect to Anear

can be determined on the basis of the total area. The total
area is one (universe of discourse × maximum membership
value = 1×1 = 1); it represents the total amount of informa-
tion. Hence, the total information comprises the similarity
measure and entropy measure, as shown in the following
equation:

s(A, Anear) + e(A, Anear) = 1 (6)

With the similarity measure in Eq. (5) and the total informa-
tion expression in Eq. (6), we obtain the following proposi-
tion:

Proposition 2.1 In Eq. (6), e(A, Anear) follows from the sim-
ilarity measure in Eq. (5):
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e(A, Anear) = 1 − s(A, Anear)

= d(A∩Anear, [1]X) + d(A∪Anear, [0]X) −1

The above fuzzy entropy is identical to that in Eq. (1). The
property given by Eq. (6) is also formulated as follows:

Theorem 2.2 The total information about fuzzy set A and
the corresponding crisp set Anear,

s(A, Anear) + e(A, Anear)

= d(A ∩ Anear, [0]X) + d(A ∪ Anear, [1]X)

+d(A ∩ Anear, [1]X) + d(A ∪ Anear, [0]X) − 1, (7)

equals one.

Proof. Eq. (7) implies that the sum of the similarity mea-
sure and fuzzy entropy equals one, which is the total area in
Fig. 1. In Eq. (7),

d(A ∩ Anear, [0]X) + d(A ∩ Anear, [1]X) = 1 and

d(A ∪ Anear, [1]X) + d(A ∪ Anear, [0]X) = 1.

Hence, s(A, Anear)+e(A, Anear)=1+1−1=1 is satisfied. �
Now, it is clear that the total information about fuzzy set A
comprises similarity and entropy measures with respect to
the corresponding crisp set.

3. Similarity Measure Design through Entropy

We obtain a similarity measure using fuzzy entropy different
from that in Eq. (1). The proposed fuzzy entropy is devel-
oped by using the Hamming distances between a fuzzy set
and the corresponding crisp set. The following result clearly
follows from Fig. 1:

e(A, Anear) = d(A, A ∩ Anear) + d(Anear, A ∩ Anear) (8)

Eq. (8) represents the difference between A and the corre-
sponding crisp set Anear. From Theorem 2.2, the following
similarity measure that satisfies Eq. (6) follows:

s(A, Anear)=1−d(A, A∩Anear)−d(Anear, A∩Anear) (9)

Here, it is interesting to determine whether Eq. (9) satisfies
the conditions for a similarity measure.

Proof. (S1) follows from Eq. (9). Furthermore, s(D,DC) =
1− d(D,D∩DC)− d(DC ,D∩DC) is zero because d(D,D∩
DC) + d(DC ,D ∩ DC) satisfies d(D, [0]X) + d(DC , [0]X) = 1.
Hence, (S2) is satisfied. (S3) is also satisfied since d(C,C ∩
C) + d(C,C ∩ C) = 0; hence, it follows that s(C,C) is a
maximum. Finally,

1 − d(A, A ∩ B) − d(B, A ∩ B) ≥
1 − d(A, A ∩C) − d(C, A ∩C)

because d(A, A∩B) = d(A, A∩C) and d(B, A∩B) ≤ d(C, A∩
C) are satisfied for A ⊂ B ⊂ C. The inequality s(B,C) ≥
s(A,C) is also satisfied in a similar manner. �
Now, by using Eq. (9), we obtain the maximum similarity
measure for the fuzzy set. In our previous result, the mini-
mum fuzzy entropy could be obtained when we considered

Table 1 Similarity measure between fuzzy set and corresponding crisp
set.

the entropy between the fuzzy sets A and A0.5. Hence, it is
obvious that the obtained similarity

s(A, A0.5) = 1 − d(A, A ∩ A0.5) − d(A0.5, A ∩ A0.5) (10)

represents the maximum similarity measure.
Let us consider the next fuzzy set with membership

function A = {x, µA(x)}:
{(0, 0), (0.1, 0.2), (0.2, 0.4), (0.3, 0.7), (0.4, 0.9), (0.5, 1),

(0.6, 0.9), (0.7, 0.7), (0.8, 0.4), (0.9, 0.2), (1, 0)}.
The fuzzy entropy and similarity measures calculated using
Eqs. (8) and (9) are given in Table 1.

The similarity measure for s(A, A0.5) is calculated by
using the following equation:

s(A, A0.5) = 1 − 1/10(0.2 + 0.4 + 0.4 + 0.2)

−1/10(0.3 + 0.1 + 0.1 + 0.3) = 0.8.

The remaining similarity measures are calculated in a simi-
lar manner.

4. Conclusions

Analysis methods for entropy and similarity in fuzzy sets
were studied. Fuzzy entropies for fuzzy sets were devel-
oped by considering the crisp set “near” the fuzzy set. The
minimum entropy can be obtained when the crisp set satis-
fies Anear = A0.5. The similarity measure between the fuzzy
set and the corresponding crisp set was also derived using
the distance measure. Furthermore, we have verified the
property that sum of fuzzy entropy and similarity measure
between fuzzy set and corresponding crisp set is equal to
a constant value. We have also derived the similarity mea-
sure using fuzzy entropy and illustrated the calculation of
the maximum similarity between the fuzzy set and the cor-
responding crisp set by presenting a simple example.

Acknowledgments

The authors of this paper were partly supported by the Sec-
ond Stage of Brain Korea21 Projects and by the Korea Sci-
ence and Engineering Foundation (KOSEF) grant funded by
the Korea government (MEST) (No.R11-2008-014-02002-
0).



1786
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

References

[1] L.A. Zadeh, “Fuzzy sets and systems,” in System Theory, ed. Fox J,
pp.29–39, Polytechnic Press, Brooklyn, NY, 1965.

[2] N.R. Pal and S.K. Pal, “Object-background segmentation using new
definitions of entropy,” Proc. IEEE, vol.136, no.4, pp.284–295,
1989.

[3] B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall, En-
glewood Cliffs, NJ, 1992.

[4] L. Xuecheng, “Entropy, distance measure and similarity measure of
fuzzy sets and their relations,” Fuzzy Sets Syst., vol.52, pp.305–318,
1992.

[5] D. Bhandari and N.R. Pal, “Some new information measure of fuzzy
sets,” Inf. Sci., vol.67, no.3, pp.209–228, 1993.

[6] A. Ghosh, “Use of fuzziness measure in layered networks for object
extraction: A generalization,” Fuzzy Sets Syst., vol.72, pp.331–348,
1995.

[7] Y. Rébillé, “Decision making over necessity measures through
the Choquet integral criterion,” Fuzzy Sets Syst., vol.157, no.23,
pp.3025–3039, 2006.

[8] V. Sugumaran, G.R. Sabareesh, and K.I. Ramachandran, “Fault
diagnostics of roller bearing using kernel based neighborhood score

multi-class support vector machine,” Expert Systems with Applica-
tions, vol.34, no.4, pp.3090–3098, 2008.

[9] W.S. Kang and J.Y. Choi, “Domain density description for multi-
class pattern classification with reduced computational load,” Pat-
tern Recognit., vol.41, no.6, pp.1997–2009, 2008.

[10] F.Y. Shih and K. Zhang, “A distance-based separator representa-
tion for pattern classification,” Image Vis. Comput., vol.26, no.5,
pp.667–672, 2008.

[11] C.H. Hsieh and S.H. Chen, “Similarity of generalized fuzzy numbers
with graded mean integration representation,” Proc. 8th Int. Fuzzy
Systems Association World Congr., vol.2, pp.551–555, 1999.

[12] S.J. Chen and S.M. Chen, “Fuzzy risk analysis based on similarity
measures of generalized fuzzy numbers,” IEEE Trans. Fuzzy Syst.,
vol.11, no.1, pp.45–56, 2003.

[13] S.H. Lee, Y.T. Kim, S.P. Cheon, and S.S. Kim, “Reliable data selec-
tion with fuzzy entropy,” LNAI, vol.3613, pp.203–212, 2005.

[14] S.H. Lee, J.M. Kim, and Y.K. Choi, “Similarity measure construc-
tion using fuzzy entropy and distance measure,” LNAI, vol.4114,
pp.952–958, 2006.

[15] S.K. Lin, “Gibbs paradox and the concepts of information, symme-
try, similarity and their relationship,” Entropy, vol.10, pp.1–5, 2008.


