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Multi-Party Quantum Communication Complexity with Routed
Messages

Seiichiro TANI†a), Masaki NAKANISHI††b), and Shigeru YAMASHITA††c), Members

SUMMARY This paper describes a general quantum lower bounding
technique for the communication complexity of a function that depends on
the inputs given to two parties connected via paths, which may be shared
with other parties, on a network of any topology. The technique can also
be employed to obtain a lower-bound of the quantum communication com-
plexity of some functions that depend on the inputs distributed over all
parties on the network. As a typical application, we apply our technique
to the distinctness problem of deciding whether there are a pair of parties
with identical inputs, on a k-party ring; almost matching upper bounds are
also given.
key words: quantum communication complexity, network topology, dis-
tributed computing

1. Introduction

Studying communication complexity has been one of the
central issues in computer science since its introduction by
Yao [19]. Not only it is interesting in its own right, but it
also has many applications such as analyzing VLSI circuit
designs, data structures and networks (See the book [13] for
more details).

In the simplest case where there are two parties con-
nected to each other by a communication channel, two par-
ties, say, Alice and Bob, get inputs x ∈ {0, 1}n and y ∈
{0, 1}n, respectively, and compute f (x, y) : {0, 1}n×{0, 1}n →
{0, 1} cooperatively by exchanging messages. For example,
Alice first performs local computation depending on her in-
put and sends a message to Bob. He then does some local
computation depending on his input and the received mes-
sage, and sends a message back to Alice. This message
exchange is repeated until Alice or Bob outputs the value
of f . For any protocol P that computes f , the cost of P
is the number of communication bits on the worst-case in-
put (x, y). The communication complexity of f , D( f ), is
the minimum cost of P, over all deterministic protocols P
that compute f . Protocol P may be randomized, i.e., Alice
and Bob can access random strings rA and rB, respectively,
in addition to the inputs they receive. The communication
complexity of a randomized protocol that computes f is the

Manuscript received March 28, 2008.
Manuscript revised July 8, 2008.
†The author is with NTT Communication Science Laborato-

ries, NTT Corporation, Atsugi-shi, 243–0198 Japan.
††The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.

a) E-mail: tani@theory.brl.ntt.co.jp
b) E-mail: m-naka@is.naist.jp
c) E-mail: ger@is.naist.jp

DOI: 10.1587/transinf.E92.D.191

number of communication bits in the worst-case over all in-
puts and all random strings. The communication complexity
Rε( f ) of f for error probability ε is the minimum communi-
cation complexity over all randomized protocols that com-
pute f with error probability at most ε for every input. If ε
is bounded by a certain constant that is less than 1/2, we call
it bounded error. Without loss of generality, ε is assumed to
be 1/3 in the bounded error setting unless it is explicitly set
to a different value. There is another randomized setting: a
randomized protocol that never outputs an incorrect answer,
but may give up with probability at most ε. We call such a
protocol a Las Vegas protocol or a zero-error protocol. The
communication complexity of f in the zero-error setting is
denoted by R0,ε( f ). Furthermore, there is another way of
giving random strings to Alice and Bob: they are allowed
to access public coins (or a common random string). For-
mally, the output of protocol P depends on the inputs and
common random string r. The public-coin versions of Rε( f )
and R0,ε( f ) are denoted by Rpub

ε ( f ) and Rpub
0,ε ( f ), respectively.

Quantum communication complexity, introduced by
Yao [20], is the quantum counterpart of (classical) commu-
nication complexity. Parties are allowed to perform quan-
tum computation and send/receive quantum bits (or qubits).
The communication complexities, QE( f ), Qε( f ) and Q0,ε( f )
are defined as the quantum counterparts of D( f ), Rε( f ) and
R0,ε( f ), respectively. In particular, the quantum counterpart
of deterministic computation (protocol, algorithm, etc.) is
called exact computation (protocol, algorithm, etc.); it runs
in bounded time and always outputs the correct answer.

It is known that there are functions for which non-
constant gaps exist between quantum and classical commu-
nication complexity. For exact computation, Buhrman et
al. [5] proved that for a certain promise version of the equal-
ity function EQ′n, QE(EQ′n) = O(log n) while D(EQ′n) ∈
Ω(n) [7]. In the bounded-error case, Raz [16] showed a
promise problem that has an exponential gap between quan-
tum and classical settings, i.e., Q1/3( f ) = O(log n) and
R1/3( f ) = Ω(n1/4/ log n). As for total functions, the largest
known gap is quadratic: Q1/3(DISJn) = Θ(

√
n) [1], [17]

and R1/3(DISJn) = Ω(n) [10], where DISJn is the 2n-bit
disjoint function, i.e.,

∧n
i=1(xiyi). Exponential gaps have

been demonstrated for restricted or other models; examples
include the one-way bounded-error model [2], [8] and the
bounded-error simultaneous message-passing model [6].

As mentioned above, there have been a lot of re-
searches on the standard two-party communication model
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for quantum communication complexity. On the other hand,
unlike the classical case, there is almost no research that
considers more general (and more natural when we con-
sider the Internet) model, i.e., distributed quantum comput-
ing over multiple parties on a network whose underlying
graph is not necessarily complete. In this setting, a certain
pair of parties may have to communicate with each other
via some other parties; it seems difficult to directly apply
known techniques for the standard two-party communica-
tion model.

Our contribution. We first show that the quantum
communication complexity Q1/3( f ) of f (x, y) in the stan-
dard two party case implies a non-trivial lower bound for
the total quantum communication complexity over all links
in a network G (consisting of many parties) for comput-
ing f (x, y) (denoted by QG

1/3( f ) hereafter) when x and y are
given as n-bit string input to two parties, PA and PB, on G.
For any protocol with which PA and PB compute f (x, y) on
a network G, we divide all parties on G into s disjoint layers
(with some properties which will be described in our proof),
where w is the maximum number of links between two ad-
jacent layers. Then, we show that

QG
1/3( f ) = Ω(s(Q1/3( f ) − log min{n, s})/logw).

Note that s and w may be chosen appropriately depending
on a problem in order to get a good lower bound.

Our main idea to derive the above lower bound is to
extend the classical deterministic lower bound technique in
[18] to the quantum case. To do so, we introduce a new
notion “quantum protocol with classical public coins,” and
then we modify the classical lower bound technique in a
careful combination with the quantum version of the public-
to-private randomness conversion technique. We also prove
similar results in the zero-error setting.

We then apply the lower bound technique to lower-
bound the quantum communication complexity of comput-
ing the distinctness problem on a k-party ring with bounded-
error probability: the problem is deciding whether there are
a pair of parties who get identical inputs in {0, . . . , L − 1} on
a k-party ring, for which we derive lower bound Ω(k(

√
k +

log log L)). We also give two quantum protocols for the
problem. The first algorithm gives almost the matching up-
per bound: O(k(

√
k log k + log log L)). The second algo-

rithm has better upper bound than the first if L < k(log k)2:
O(k
√

L), which is optimal in the case of L = O(k). As far
as we know, this is the first non-trivial result of almost tight
bounds of multi-party quantum communication complexity
on a network whose underlying graph is not complete.

2. Basic Tools

2.1 Converting Public Coins into Private Coins

In what follows, we assume that communication is quantum,
but parties share no prior-entanglement. If a quantum proto-
col allows parties to access an arbitrary number of classical
public coins, it is called a quantum protocol with classical

public coins. Qpub
ε ( f ) is defined as the minimum communi-

cation complexity over all quantum protocols with classical
public coins that compute f with error probability at most ε.

As in the classical case [15], we would like to be able to
replace many public coins with a small number of commu-
nication bits in the case of quantum protocols with classical
public coins. Although it looks very similar to the classical
case (also mentioned in [11]), the proof needs to be modi-
fied to handle quantum errors. The next proposition is used
in the proof.

Proposition 1 (Hoeffding inequality (e.g., [13])): Suppose
that X1, . . . , Xt are t independent random variables with
identical probability distribution over the real interval [a, b]
that have expected value p. Then

Pr

[∣∣∣∣∣∣
∑t

i=1 Xi

t
− p

∣∣∣∣∣∣ ≥ δ
]
≤ 2e−

2tδ2

b−a .

Lemma 1: Let f : {0, 1}n × {0, 1}n → {0, 1} be a function.
For every positive real δ and ε (δ + ε < 1/2) , any ε-error
quantum protocol with classical public coins can be trans-
formed into an (ε + δ)-error quantum protocol without clas-
sical public coins by using additional 	log n + 2 log 1/δ
-bit
communication.

Proof Suppose that we have any ε-error quantum protocol
with classical public coins, P, that computes f , and assume
that P chooses a random string according to probability dis-
tribution Π over all possible random strings. Let P(x, y, r)
be the event that P is given input (x, y) and chooses partic-
ular string r as the random string. The error probability of
P under event P(x, y, r), i.e., the probability that the output
of P under P(x, y, r) is not equal to f (x, y), is denoted by
Er[P(x, y, r)].

We will show that there exist t strings r1, . . . , rt

such that, for every input (x, y), the expected value of
Er[P(x, y, r)] for random r chosen uniformly from the t
strings is at most ε+δ. Therefore, if Alice randomly chooses
one of the t strings and sends the 	log t
 bits specifying the
chosen string to Bob, then they can compute f with error
probability at most ε + δ. The lemma follows.

Choose t = 	n/δ2
 strings r1, . . . , rt according to the
probability distribution Π of common random strings. Since
0 ≤ Er[P(x, y, ri)] ≤ 1, we can show by the Hoeffding in-
equality for fixed input (x, y) that

Prr1,...,rt

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝1t

t∑
i=1

Er[P(x, y, ri)] − ε
⎞⎟⎟⎟⎟⎟⎠ > δ

⎤⎥⎥⎥⎥⎥⎦ ≤ 2e−2δ2t.

If we set t to 	n/δ2
, 2e−2δ2t is smaller than 2−2n.
Therefore, the probability that, for some input (x, y),
1
t

∑t
i=1 Er[P(x, y, ri)] > ε + δ is smaller than 2−2n ·

22n = 1 when r1, . . . , rt is randomly chosen. This implies
that there exist r1, . . . , rt such that for every input (x, y),
1
t

∑t
i=1 Er[P(x, y, ri)] ≤ ε + δ. �

This lemma can be easily generalized to the case of k
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parties, in which every party i gets xi ∈ {0, 1}n as input and
they have to compute function f depending on xi’s.

Lemma 2: Let f : {0, 1}nk → {0, 1} be a function. For
every positive real δ and ε (δ + ε < 1/2) , any ε-error quan-
tum protocol with classical public coins that computes f on
k parties can be transformed into an (ε + δ)-error quantum
protocol without classical public coins, by using additional
communication to broadcast a 	log(kn)+2 log 1/δ
-bit mes-
sage.

Proof Follow the same argument with t = 	kn/(2δ2)
. �

In the case of a ring, the additional communication is just
k	log(kn)+2 log 1/δ
-bits, since broadcasting involves pass-
ing the message around the ring.

For zero-error quantum protocols, we can obtain a sim-
ilar result.

Lemma 3: Let f : {0, 1}n × {0, 1}n → {0, 1} be a function.
For every positive real δ and ε (δ + ε < 1), any zero-error
quantum protocol with classical public coins for computing
f that may give up with probability at most ε can be trans-
formed into a zero-error quantum protocol without public
coins that may give up with probability at most (ε + δ), by
using additional 	log n + 2 log 1/δ
-bit communication.

The proof is realized by considering the deviation of the av-
erage give-up probability over t random strings from the av-
erage give-up probability over all random strings.

2.2 Quantum Amplitude Amplification

We quote the quantum amplitude amplification theorem,
which we will use in our proofs.

Theorem 4 ([4]): Let A be any quantum algorithm that
uses no measurements, and let χ : Z → {0, 1} be any
Boolean function. Given the initial success probability a >
0 of A, Qm(A, χ)A|0〉 gives a good solution with probabil-
ity sin2((2m+1)Arcsin

√
a), where Q(A, χ) = −AF0A−1Fχ.

Operator Fχ transforms x into −|x〉 if χ(x) = 1, and leaves
x unchanged otherwise; F0 transforms |x〉 into −|x〉 if x =
0 . . . 0, and leaves |x〉 unchanged otherwise.

3. General Lower Bound

Now we describe our key theorem which lower-bounds the
total quantum communication complexity over all links of
a network of any topology by using the ordinary quantum
communication complexity of the two party case.

Theorem 5: Suppose that n-bit strings x and y are given to
two parties PA and PB, respectively, on network G of any
topology. Then suppose any partitioning of the network G
into (s + 1) layers as in Fig. 1 such that the following condi-
tions are satisfied:

1. every layer is a disjoint subset of the set of all parties
in G,

Fig. 1 Network G that is partitioned into (s + 1)-layers.

2. the finrst layer has a unique member PA,
3. the (s + 1)st layer has a unique member PB,
4. no edge jumps over a layer, i.e., there is no link be-

tween a party in the i-th layer and a party in the
(i+ j)−th layer for any 1 ≤ i < s and i+1 < i+ j ≤ s+1,

5. w is the maximum number of links between two adja-
cent layers.

Let QG
ε ( f ) be the total quantum communication com-

plexity over all links in G of computing a Boolean function
f (x, y) with error probability at most ε (0 ≤ ε < 1/2). Then,
for any s and w that satisfy the above conditions of the par-
titioning of G, QG

ε ( f ) is at least s
	logw
 times

max{δ1(Qε+δ1/2+δ2 ( f )−	log(n/δ22)
), δ3(Qε+δ3/2( f )−	log s
)},
where 0 < δ1, δ2, δ3 < 1 such that ε + δ1/2 + δ2 and ε +
δ3/2 are smaller than 1/2, and Qε( f ) denotes the quantum
communication complexity of f (x, y) for error probability at
most ε in the ordinary two party case (where the two parties
are directly connected by a quantum communication link).

Proof The proof is similar to that given for the classical
deterministic setting in [18], but we need to make a slight
modification to it in order to handle bounded error setting.

Suppose that P be the best quantum protocol between
PA and PB that computes f (x, y) on network G with error
probability at most ε. We then construct a quantum proto-
col with classical public coins between two parties, P′A and
P′B, that are directly connected to each other by simulating
protocol P as follows: if the value of the public coins is
i ∈ {1, . . . , s}, the two parties, P′A and P′B, simulate the left
and the right parts, respectively, of the i-th and the (i + 1)-st
layers.

Let qi be the number of communicated qubits between
the i-th and the (i + 1)-st layers during the execution of pro-
tocol P, and let wi be the number of links between the i-th
and the (i + 1)-st layers. It follows that the necessary com-
munication bits for P′A and P′B in the above simulation is at
most qi	logwi
, since at most 	logwi
 bits are needed, when
simulating each message exchanged between the i-th and
the (i+ 1)-st layers, to specify on which link among wi links
the message is sent. The obtained protocol between P′A and
P′B computes f with error probability at most ε and with
expected communication complexity (1/s

∑
i qi	logwi
).

To guarantee the worst case communication complex-
ity, we modify this protocol so that if the amount of commu-
nication exceeds 1/δ1 times (1/s

∑
i qi	logwi
) for 0 < δ1 <

1, it stops and randomly outputs 0 or 1. The probability of
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this event is at most δ1 by Markov’s inequality. On the con-
dition that this event occurs, the probability of outputting
the wrong value is exactly 1/2. Thus, the modified protocol
has error probability at most ε + δ1/2. Hence, we have ob-
tained an (ε + δ1/2)-error quantum protocol with classical
public coins, whose complexity is 1/(sδ1)

∑
i qi 	logwi
 ≤

	logw
/(sδ1) ·∑i qi. The last equality is due to wi ≤ w. This
implies that Qpub

ε+δ1/2
( f ) ≤ 	logw
/(sδ1) ·∑i qi. Amount

∑
i qi

is the total number of qubits communicated by protocol P,
QG
ε ( f ), which is lower-bounded by sδ1Qpub

ε+δ1/2
( f )/	logw
.

By applying Lemma 1 to Qpub
ε+δ1/2

( f ), we have

QG
ε ( f )≥ sδ1(Qε+δ1/2+δ2 ( f )−	log n+2 log 1/δ2
)/	logw
.

There is a simpler way of deciding the boundary be-
tween P′A’s part and P′B’s part: P′A randomly chooses one
layer-boundary out of the s layer-boundaries and informs P′B
of the chosen layer-boundary by sending a 	log s
-bit mes-
sage. By an argument similar to the one stated above,

Qε+δ3/2( f ) ≤ 1/(sδ3)
∑

i

qi 	logwi
 + 	log s


≤ 	logw
/(sδ3) ·
∑

i

qi + 	log s
.

This implies that QG
ε ( f ) is lower-bounded by sδ3(Qε+δ3/2( f )−

	log s
)/	logw
. �

Remark: To derive a good lower bound, we should be care-
ful to partition a given network into layers so that the values
of w and s become appropriately small and large, respec-
tively. However, for some graphs, w may become exponen-
tially large to s by any choice of layers. In such cases, our
lower bound is trivial, i.e., essentially the same as the ordi-
nary two party case. Since our lower bound can be applied
to any network, this may be inevitable; to find a good ap-
plication (i.e., network structure) and find a good choice of
layers (i.e., w and s) are very important to utilize our lower
bound. Indeed, we can derive a nice lower bound in the fol-
lowing section.

If we set ε, δ1, δ2, δ3 to constants such that ε + δ1/2+ δ2
and ε + δ3 are at most some constant less than 1/2, then
Qε( f ), Qε+δ1/2+δ2 ( f ) and Qε+δ3/2( f ) differ by at most con-
stant multiplicative factors.

Corollary 6: Suppose that f , G, s and w are defined as
above. Then, for constant 0 < ε < 1/2,

QG
ε ( f ) = Ω(s(Qε( f ) − log min{n, s})/logw).

If function f is derived from some symmetric function
g, we can obtain a more concrete lower bound.

Corollary 7: Suppose that G, s and w are defined as above,
f (x, y) (x, y ∈ {0, 1}n) is of the form f (x, y) = g(|x ∧ y|)
for any predicate g : {0, . . . , n} → {0, 1}. If l0(g) ∈
{0, 1, . . . , n/2�} and l1(g) ∈ {0, 1, . . . , n/2�} are the small-
est integers such that g(h) is constant for any integer h ∈

{l0(g), l0(g)+1, . . . , n− l1(g)}. Then, the total quantum com-
munication complexity over all links of computing f (x, y)
in the bounded error setting is

Ω(s(
√

nl0(g) + l1(g) − log min{n, s})/ logw).

Proof By Razborov’s lower bound Ω(
√

nl0(g) + l1(g)) for
such a predicate as shown in [17]. �

For zero-error quantum protocols, we have a similar
but slightly different result: δ1/2 and δ3/2 are replaced by
δ1 and δ3, since the protocol must give up if the amount of
communication exceeds 1/δ1 (1/δ3) times 1/s

∑
i qi	logwi


in order to preserve the zero-error property.

Theorem 8: Define f , G, s and w as above. Let QG
0,ε( f ) be

the total quantum communication complexity over all links
in G of computing Boolean function f (x, y) with error prob-
ability 0 and give-up probability at most ε (0 ≤ ε < 1).
Then, QG

0,ε( f ) is at least s
	logw
 times

max{δ1(Qε+δ1+δ2 ( f )−	log(n/δ22)
), δ3(Qε+δ3 ( f )−	log s
)},
where 0 < δ1, δ2, δ3 < 1 such that ε + δ1 + δ2 and ε + δ3
are smaller than 1, and Q0,ε( f ) denotes the quantum com-
munication complexity of f (x, y) for error probability 0 but
give-up probability at most ε in the ordinary two party case.

The proof is given in Appendix B.

4. Application: Almost Tight Bound of Distinctness on
a Ring

This section applies the lower bound theorem of the previ-
ous section to a distributed computing problem, the distinct-
ness problem, which emerges when checking whether the
priorities of processors are totally ordered. The distinctness
problem DISTINCTG

k,L was first introduced by Tiwari [18]
and is defined as follows.

Definition 1 (DISTINCTG
k,L): Let k parties be placed on a

network G. Let each party Pi (0 ≤ i ≤ k− 1) have an integer
xi ∈ {0, . . . , L − 1} (k ≤ L). The goal is to decide whether xi

is not equal to x j for i � j. At termination, each party knows
a one-bit result.

The main theorem of this section gives almost tight bounds
of the bounded-error quantum communication complexity
for the distinctness problem on a ring-shaped network.

Theorem 9: The quantum communication complexity of
DISTINCTring

k,L for L = k + Ω(k) in the bounded error setting
is summarized as follows:

• if L ≤ k(log k)2, O(k
√

L) and Ω(k
√

k)⊆Ω(k
√

L
log k ).

• if L > k(log k)2, O(k(
√

k log k + log log L)) and
Ω(k(

√
k + log log L))

The theorem implies that our bounds are tight up to a log
factor. In particular, they are optimal Θ(k

√
k) up to a con-

stant factor for L ∈ O(k). The theorem is directly obtained
from the lemmas in the next subsections. Hereafter, we deal
with only bounded-error computation.
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4.1 Lower Bound

To get a lower bound, we will prove a lower bound of
the quantum communication complexity for a certain dis-
tributed computing problem by applying Corollary 6, and
then reduce the problem to DISTINCTring

k,L .

Lemma 10: The quantum communication complexity of
DISTINCTring

k,L is Ω(k(
√

k + log log L)), for L = k + Ω(k).

Proof We will reduce the following problem
DISJring

k−2	ck
+2,	ck
 to DISTINCTring
k,L : when party PA is diamet-

rically opposite PC on a (k − 2(	ck
 − 1))-party ring for any
positive constant c (≤ 1/4) (we assume here 2|(k−2	ck
) for
simplicity, but this assumption is not essential), and 	ck
-
bit strings x and y are given to PA and PC , respectively, the
goal is to compute function DISJ	ck
(x, y) =

∧	ck

i=1 xiyi (see

Fig. 2). Problem DISJring
k−2	ck
+2,	ck
 has the total communica-

tion complexity over all links ofΩ(k
√

k) by Corollary 7 with
n = 	ck
, w = 2, s = (k − 2(	ck
 − 1))/2 = O(k), l0(g) = 1,
and l1(g) = 0.

We now reduce DISJring
k−2	ck
+2,	ck
 to DISTINCTring

k,L for
any L ≥ k + 	ck
. We first partition the k-party ring of
DISTINCTring

k,L into four connected segments A, B, C and
D of size 	ck
, (k − 2	ck
)/2, 	ck
 and (k − 2	ck
)/2, re-
spectively, where segment A is diametrically opposite C.
Let I1 = {0, 1, . . . , 	ck
 − 1}, I2 = {	ck
, . . . , 3	ck
 − 1} and
I3 = {3	ck
, . . . , L − 1}. Next we construct an instance of
DISTINCTring

k,L from any instance of DISJring
k−2	ck
+2,	ck
 as fol-

lows: (1) the ith party of A (C) has (i − 1) ∈ I1 as input if
the ith bit of input to PA (resp. PC) of DISJring

k−2	ck
+2,	ck
 is
1 for i = 1, . . . , 	ck
, otherwise every party in A and C is
given any distinct value in I2, (2) every party in B and D
is given any distinct value in I3. It is not hard to see that
DISTINCTring

k,L is true if and only if there is no i such that
the ith party of A has the same input as the ith party of C.
Thus, DISJring

k−2	ck
+2,ck can be solved if PA and PC simulate
segments A and C, respectively, for the above instance of
DISTINCTring

k,L . By setting c to an arbitrary small positive
constant, the lemma holds for all L = k + Ω(k).

Fig. 2 Problem DISJring.

In the case where L = 2kω(1)
, we will reduce the follow-

ing problem NEQring
k,	log L
−1 to DISTINCTring

k,L : when party PA

is diametrically opposite PC on a k-party ring (we assume
again 2|k for simplicity, but this assumption is not essen-
tial), and (	log L
−1)-bit strings x and y are given to PA and
PC , respectively, the goal is to decide whether x does not
equal y, i.e., to compute NEQ	log L
−1 =

∨	log L
−1
i=1 (xi ⊕ yi).

We apply Corollary 6 to NEQring
k,	log L
−1 with n = 	log L
 − 1,

w = 2, s = O(k) and Q1/3(NEQ	log L
−1) = Ω(log log L).
(This is because NEQ has the same complexity as EQ in
the bounded error case, and Q1/3(EQn) = Ω(log n) can be
derived by the combination of the following two facts: (1)
D(EQn) = Ω(n) by the rank lower bound technique [13], and
(2) for any f , Q1/3( f ) > Ω(log(D( f )) [12].) NEQring

k,	log L
−1
has the total communication complexity over all links of
Ω(k(log log L − log min{O(k),O(log L)})) = Ω(k log log L)
when L = 2kω(1)

. Thus, DISTINCTring
k,L has quantum commu-

nication complexity Ω(k log log L).
For the reduction, we construct an instance of

DISTINCTring
k,L from any instance of NEQring

k,	log L
−1 as follows.

We first partition the k-party ring of DISTINCTring
k,L into four

connected segments A, B, C and D of size 1, (k−2)/2, 1 and
(k−2)/2, respectively, where segment A is diametrically op-
posite C. We then set the most significant bit (MSB) of the
input of DISTINCTring

k,L given to each party in segments A
and C to 1, while we set the MSBs of the inputs to the other
parties to 0. The remaining (	log L
 − 1) bits of the input to
the party in segment A (segment C) are set to the input val-
ues of NEQring

k,	log L
−1 given to PA (resp. PC). The remaining
(	log L
 − 1) bits of the input to the other parties are set to
distinct values. �

4.2 Upper Bounds

To show the optimality of our lower bound, we show almost
matching upper bounds.

Lemma 11: The quantum communication complexity of
DISTINCTring

k,L is O(k(
√

k log k + log log L)).

Proof
We consider the following search problem: is there any

party Pi such that, for some j (� i), party Pj has the same
input as party Pi? Given an oracle that, for input i, answers
1 if there is a party Pj(� Pi) that has the same input as party
Pi and otherwise answers 0, we can solve the search prob-
lem with O(

√
k) queries to the oracle by Grover’s quantum

search algorithm in [9]. Let party P0 be distinguished, and
she executes the search algorithm on behalf of all the par-
ties. The oracle is simulated in a distributed way by the k
parties as follows.

The simulation for input i consists of two phases. The
purpose of the first phase is for P0 to get the information of
xi. If i � 0, party P0 first prepares a (	log k
 + 	log L
)-
qubit message |i〉|0	log L
〉; otherwise P0 prepares message
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|i〉|x0〉. Party P0 then sends it to adjacent party P1. Ev-
ery party Pj ( j > 0) except Pi simply passes the received
message to adjacent party Pj+1 (mod k); party Pi changes
message |i〉|0	log L
〉 to |i〉|xi〉 before sending it to adjacent
party Pi+1 (mod k). The purpose of the second phase is to
check whether string xi is identical to one of the k − 1
strings {x0, x2, . . . , xk−1} \ {xi}. If i � 0, party P0 prepares
(	log L
 + 	log k
)-qubit message |xi〉|0	log k
〉; otherwise it
prepares message |xi〉|0	log k
−11〉. Notice that the second reg-
ister is used to count the number of parties that have values
identical to xi. Party P0 then sends it to adjacent party P1.
For j > 0, Pj just passes the received message to adjacent
party Pj+1 (mod k) if x j � xi; otherwise party Pj increments
the counter, i.e., the contents of the last 	log k
 qubits, in the
message, and sends it to adjacent party Pj+1 (mod k). When
the message arrives at P0, the counter has value of at least
two if and only if there are at least two parties that have
values identical to xi. Party P0 then sets the content of a
fresh qubit to 1 if the value of the counter is at least two;
otherwise, P0 sets it to 0. The content of the fresh qubit is
the answer of the oracle. Finally, every computation (ex-
cept the last step) and communication performed in the first
and second phases is inverted to disentangle all work qubits
including the message qubits.

The first and the second phases including their inver-
sions have the communication complexity of O(k log(kL)),
implying that one query needs O(k log(kL)).

By combining Grover’s search algorithm with this
distributed oracle, O(k

√
k log(kL))-qubit communication is

sufficient to find any party Pi such that there exists party
Pj ( j � i) that has the same input as party Pi. If such a party
is found, the answer to DISTINCTring

k,L is false; otherwise the
answer is true. (To inform every party of the answer, a one-
bit message needs to be passed around the ring, which does
not change the order of complexity.) This complexity is tight
up to a log multiplicative factor when L is polynomial in k.
For larger L, however, it is not tight. In what follows, we
will show more efficient algorithm for larger L by adding a
preprocess before running the above algorithm.

The idea is to map 	log L
-bit inputs to 3 log k-bit
strings by using universal hashing (see [14] or Appendix A)
and classical public randomness, and then apply the above
algorithm of complexity O(k

√
k log(kL)) with the 3 log k-bit

strings as input.
Suppose that every party shares classical public coins,

By using the public coins, every party selects a com-
mon hash function f : {0, . . . , L − 1} �→ {0, . . . , k3 − 1}
from the family of O(L2) hash functions. Every party
sets its new input to the 3 log k-bit string, and runs the
O(k
√

k log(kL)) algorithm for the new input, yielding com-
plexity O(k

√
k log k). By Lemma 2 with input size k	log L
,

O(k log(k log L))-bit classical communication is sufficient to
realize public coins. Thus, the total communication com-
plexity is O(k log(k log L) + k

√
k log k) = O(k(

√
k log k +

log log L).
The correctness of this algorithm is proved as follows.

When there are a pair of parties that share a common value,
the step of applying Grover’s search obviously finds one of
the parties with bounded error. If there is no such pair, the
probability that a certain pair of parties share a common
value of the hash function is at most 1/k3 × k(k − 1)/2 ≤
1/(2k). Thus, in this case, the algorithm also guarantees
bounded error.

�

In the case of L < k(log k)2, we can obtain a better
bound, which is optimal for L = O(k).

Lemma 12: The quantum communication complexity of
DISTINCTring

k,L is O(k
√

L).

Proof We consider the following search problem:
Let k parties be placed on a ring, and let each party Pi

(0 ≤ i ≤ k − 1) have an integer xi ∈ {0, . . . , L − 1} (k ≤ L).
Is there any element x ∈ {0, . . . , L − 1} such that at least
two parties have x?

We employ the protocol due to Aaronson and Ambainis [1]
for the two-party disjointness function, which has O(

√
L)

communication complexity for 2L-bit input. In their pro-
tocol, Alice and Bob collaborate to recursively execute the
amplitude amplification algorithm in a distributed way. By
using their technique, we can solve the search problem as
follows.

Let party P0, say Alice, be distinguished, and she ex-
ecutes the recursive amplitude amplification algorithm due
to Aaronson and Ambainis on behalf of all parties. Suppose
that there is at most one solution, i.e., there is at most one
element x ∈ {0, . . . , L− 1} such that at least two parties have
x as inputs.

We consider the following algorithm A, which takes
S ⊆ {0, . . . , L − 1} as an input and finds an element x ∈ S
such that at least two parties have x. Alice divides the
search space S into |S |1/5 subspaces. She picks up a sub-
space S i (0 ≤ i ≤ |S |1/5 − 1) uniformly at random, and
announces the index of the chosen subspace to all other par-
ties. She then recursively searches the subspace by calling
A(S i). She applies Theorem 4 to this algorithm m times for
the smallest integer m such that 2m+1 ≥ |S |1/11. At the bot-
tom level of the recursion, where the size of the search space
is a constant, Alice solves the problem classically. As we
will show in the next paragraph, this solves the problem with
probability Ω(|S |−1/11). In other words, A({0, . . . , L − 1})
solves DISTINCTring

k,L with probability Ω(L−1/11). Thus, by
applying Theorem 4 toA({0, . . . , L− 1}) O(L1/22) times, the
success probability is boosted to Ω(1). The pseudo-code is
shown in Fig. 3, which consists of a main algorithm and sev-
eral sub-algorithms.

We now show the reason why the success probability
of A(S ) is Ω(|S |−1/11). Let Pr(t) be the success probability
of this algorithm for search space of size t. Note that the suc-
cess probability before applying quantum amplitude ampli-
fication in the algorithm is t−1/5Pr(t4/5). By the property of
quantum amplitude amplification, Pr(t) = (sin((2m+1)θa))2

for m = Θ(t1/11) and (sin θa)2 = a = t−1/5Pr(t4/5). This



TANI et al.: MULTI-PARTY QUANTUM COMMUNICATION COMPLEXITY WITH ROUTED MESSAGES
197

Fig. 3 Pseudo-code of the algorithm for DISTINCTring
k,L .

yields Pr(t) = Ω(t−1/11) by using (sin((2m + 1)θa))2 >
((2m + 1)

√
a)2(1 − ((2m + 1)

√
a)2/3) (see also [1]).

Our algorithm performs these operations in a superpo-
sition, and maintains the state of the whole system∑

I

αI |I〉⊗k |zI〉|garbage〉,

where I means the index of the chosen subspace, which is
possessed by every party (thus, this part is a k-tensor prod-
uct), and zI is the content of register Z possessed by Alice, in
which the search result for the corresponding space is stored
at the bottom level.

To realize Fχ, no communication is needed, since Al-
ice has register Z and already knows the search result for
each subspace. To realize F0, O(k) bit communication is
sufficient; Alice sends one bit message |0〉, and every party
including Alice, upon receiving the message, computes the
OR of the contents of the received message and all his quan-
tum registers at the current or deeper recursion levels, and
sends the one-bit result to the next party (if he/she is not
Alice). At each level of the recursion, Alice announces the
index of the chosen subspace to all other parties. For this,
O(k ·log |S |1/5)-qubit communication is sufficient by sending
a message of 	log |S |1/5
 bits around the ring. At the bottom
level of the recursion, they communicate with each other to
solve the search problem over a constant-sized search space
{i, i + 1, . . . , i + j} for some constant j; Alice finally sets the

content of register Z to the search result. This can be solved
as follows. For each value in {i, i + 1, . . . , i + j}, a message
consisting of two parts of log j bits and 2 bits, respectively,
is sent around the ring. The first part specifies the value
in {i, i + 1, . . . , i + j} to be checked. The second part is a
counter that is incremented up to two by the parties having
the value specified by the first part (if the counter already
has value of two, it is never incremented). If this computa-
tion is done in a superposition over all constant-sized sub-
spaces, it may leave some garbage at some parties; but this
garbage need not be removed, since amplitude amplification
(−AF0A−1Fχ)mA|0〉 already includes the inverting opera-
tion of A. Hence, this needs the communication of O(k)
qubits. Since amplitude amplification performs A and A−1

(2m + 1) times, and F0 and Fχ m times for each, we obtain
a recurrence with respect to the number of qubits (C(L)) to
be communicated:

C(L) ≤ (2mL+1)
(
C
(
L4/5
)
+ k
⌈
log
(
L1/5
)⌉)
+mL · O(k),

where mL is the smallest integer such that 2mL + 1 ≥ L1/11.
This resolves to C(L) = O(k · L5/11). Since the success prob-
ability is Ω(L−1/11), amplifying O(L1/22) times boosts it to
Ω(1). Thus the total communication complexity is O(k

√
L).

If there can be two or more solutions, we can reduce
this case to the unique solution case as in [1]. The complex-
ity is still O(k

√
L). �
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Appendix A: Universal Hashing

For prime p and positive integer m such that p > m, de-
fine the hash function ha,b that maps U = {0, . . . , p − 1} to
{0, . . . ,m− 1} as follows: For any a ∈ Z∗p := {1, 2, . . . , p− 1}
and any b ∈ Zp := {0, 1, 2, . . . , p − 1},

ha,b(k) := ((ak + b) mod p) mod m.

Then, the class Hp,m := {ha,b : a ∈ Z∗p and b ∈ Zp} of hash
functions ha,b is universal. In other words, for each pair of
distinct keys k, l ∈ U, the number of hash functions ha,b ∈
Hp,m for which ha,b(k) = ha,b(l) is at most |H|/m.

Appendix B: Proof of Theorem 8

Proof We first partition network G into (s + 1) layers as
in the case of Lemma 5. Suppose that P, the best quantum
protocol between PA and PB on network G, computes f (x, y)
with give-up probability at most ε.

We then construct a zero-error quantum protocol with
classical public coins between two parties, P′A and P′B, that
are directly connected to each other by simulating proto-
col P as in the proof of Lemma 5. The obtained proto-
col between P′A and P′B computes f with give-up proba-
bility at most ε and with expected communication com-
plexity (1/s

∑
i qi	logwi
). To guarantee the worst case

communication complexity, we modify this protocol so
that if the amount of communication exceeds 1/δ1 times

(1/s
∑

i qi	logwi
) for 0 < δ1 < 1, it gives up. The
probability of this event is at most δ1 by Markov’s in-
equality. Thus, the modified protocol gives up with prob-
ability at most ε + δ1. Hence, we have obtained a zero-
error quantum protocol with classical public coins, whose
complexity is 1/(sδ1)

∑
i qi 	logwi
 ≤ 	logw
/(sδ1) · ∑i qi.

The last equality is due to wi ≤ w. This implies that
Qpub

0,ε+δ1
( f ) ≤ 	logw
/(sδ1) · ∑i qi. Amount

∑
i qi is the to-

tal number of qubits communicated by protocol P, QG
0,ε( f ),

which is lower-bounded by sδ1Qpub
0,ε+δ1

( f )/	logw
. By ap-

plying Lemma 3 to Qpub
0,ε+δ1

( f ), we have

QG
0,ε( f )≥ sδ1(Q0,ε+δ1+δ2 ( f )−	log n+2 log1/δ2
)/	logw
.

There is a simpler way of deciding the boundary be-
tween P′A’s part and P′B’s part: P′A randomly chooses one
layer-boundary out of the s layer-boundaries and informs
P′B of the chosen layer-boundary by sending a 	log s
-bit
message. By an argument similar to the one stated above,
Q0,ε+δ3 ( f ) ≤ 1/(sδ3)

∑
i qi 	logwi
+ 	log s
 ≤ 	logw
/(sδ3) ·∑

i qi + 	log s
. This implies that QG
0,ε( f ) is lower-bounded

by sδ3(Q0,ε+δ3 ( f ) − 	log s
)/	logw
. �
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