
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009
1953

PAPER Special Section on New Technologies and their Applications of the Internet

Fast and Memory-Efficient Regular Expression Matching Using
Transition Sharing

Shuzhuang ZHANG†a), Nonmember, Hao LUO††, Member, Binxing FANG†, and Xiaochun YUN††, Nonmembers

SUMMARY Scanning packet payload at a high speed has become a
crucial task in modern network management due to its wide variety appli-
cations on network security and application-specific services. Tradition-
ally, Deterministic finite automatons (DFAs) are used to perform this op-
eration in linear time. However, the memory requirements of DFAs are
prohibitively high for patterns used in practical packet scanning, especially
when many patterns are compiled into a single DFA. Existing solutions
for memory blow-up are making a trade-off between memory requirement
and memory access of processing per input character. In this paper we pro-
posed a novel method to drastically reduce the memory requirements of
DFAs while still maintain the high matching speed and provide worst-case
guarantees. We removed the duplicate transitions between states by divid-
ing all the DFA states into a number of groups and making each group of
states share a merged transition table. We also proposed an efficient al-
gorithm for transition sharing between states. The high efficiency in time
and space made our approach adapted to frequently updated DFAs. We
performed several experiments on real world rule sets. Overall, for all rule
sets and approach evaluated, our approach offers the best memory versus
run-time trade-offs.
key words: regular expression, memory reduction, deep packet inspection,
transition sharing

1. Introduction

Deep packet inspection matches the packet content against a
group of given patterns (usually called rule sets) to identify
specific attacks, viruses, protocol definitions, etc. Tradition-
ally, the rule sets and patterns used in matching are explicit
strings. However, regular expressions replace the strings and
become the pattern matching language due to their powerful
expressiveness and flexibility. For example, all the patterns
are the regular expressions in L7 (Linux layer-7 protocol
classifier) system [1]. Snort [2] and Bro [3] intrusion detec-
tion systems also migrate their content inspection rule sets
to regular expressions.

The traditional way to perform regular expres-
sions matching is to use deterministic finite automatons
(DFAs) [4], [5]. However, memory requirements are high in
practical deep packet inspection. For practical networking
applications, since we don’t have any prior knowledge of
whether/where a matching substring may appear, most ap-
plications compile the rules together into a single one-pass

Manuscript received December 26, 2008.
Manuscript revised May 21, 2009.
†The authors are with Research Centre of Computer Network

and Information Security Technology, Harbin Institute of Technol-
ogy, Harbin 150001, China.
††The authors are with Institute of Computing Technology, Chi-

nese Academy of Science, Beijing 100190, China.
a) E-mail: zhangshuzhuang@pact518.hit.edu.cn

DOI: 10.1587/transinf.E92.D.1953

search mode DFA [6] to achieve O (1) processing complex-
ity. This means “.*” is pre-pended to each pattern without
a “ˆ”, thus each state has transitions for all input charac-
ters and these patterns can be matched any where in the
input. Since Network traffic is composed of ASCII alpha-
bet, each state has 256 transitions. Further more, interac-
tions among different rules may make the number of states
increase sharply or even exponentially increased in some
cases. So the real world rule sets may result in “huge”
DFAs. For example, when 40 patterns of L7 were com-
piled into a composite DFA, the total number of states grows
over 136,786. Huge memory requirements make traditional
DFAs infeasible for the real word rule sets.

In order to apply DFAs in practical networking applica-
tions, we must reduce their memory requirements. However
the memory reduction procedure also should be fast. A new
attack or worm may affect the global internet in few hours
or less time, so some practical systems need to update their
rule sets in time to adapt those emergency events. For ex-
ample, snort rule sets has 203 new rules added and 83 rules
modified in 15 days (08/26/2008–09/09/2008). Regular ex-
pressions can not be added into a DFA incrementally, the
memory reduction procedure will be called whenever rule
sets are updated. So the reduction procedure should be fast
to satisfy frequently updated rule sets.

In this paper we proposed a novel method to reduce the
memory requirement of DFAs, especially those constructed
from the real world rule sets. In our scheme, states were se-
lected and formed into a number of groups. For each group,
we merged all the transition tables and made states share the
merged transition table. Because the duplicate transitions
are removed during the merging procedure, the memory re-
quirement of DFA was reduced drastically. In our approach,
the states with same destination transitions share the same
transition table. After sharing the transition tables, each
state had a pointer that pointed to a true transition table.
Compared to D2FA, our method need travel only one state to
get a valid transition destination during the matching. Com-
pared to state merging, it avoids introducing the additional
bits to retrieve an original state from a merged state. Another
advantage of our approach is that it was efficient in time and
space complexity, which made it more suitable and feasible
for the frequently updated DFAs used in practical network
applications.

The remainder of the paper was organized as follows:
in Sect. 2, we discussed the related work. In Sect. 3, we pro-
posed transitions sharing scheme by use of an example, and

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



1954
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

formalized our transitions sharing algorithm. We presented
the experimental results in Sect. 4, and concluded the paper
in Sect. 5.

2. Related Work

Since the memory requirement of a DFA is proportional to
its number of states and transitions between these states, re-
cent research on reducing the memory requirement of DFAs
can be divided into two categories.

The first category aims at avoiding the number of
states blow-up by dividing rule sets into multiple groups in-
stead of compiling them into one group. In [6] Fang Yu
et al. systematically analyze the regular expressions which
are commonly used in networking applications. They an-
alyze individual regular expressions that will lead DFAs
with quadratic size or exponential size, and show that tra-
ditional methods are prohibitively high for patterns used in
packet scanning applications. They also propose a rewrite
technique which can guarantee left-first matching in one-
pass search mode. Further more they develop a scheme
which can strategically compile a set of regular expressions
into several engines to improve the matching speed without
much increasing in memory usage. However, this scheme
requires big memory bandwidth. For a given memory band-
width, if we divide the rule sets into n groups, the processing
time will be n times of that of a single DFA.

The second category leverages the observation that
each state has a total of 256 transitions and most of mem-
ory of a DFA is occupied by transition tables. Since there
are many transitions with same destination in the transi-
tion tables, exceed 90% substantial space can be saved if
this redundancy can be avoid. Using bitmaps is an efficient
method to reduce memory requirements. It has been used
in the packet classification [11] and Aho-corasick state ma-
chines [12]. But the basic bitmap-based data structures do
not take advantage of duplicate entries in the transition ta-
ble. Michela Becchi et al. extend the bitmap structure [10].
A pointer indirection table is introduced between the bitmap
and transition table, thus the transition table contains only
distinct next state entries. However, both of the two above
data structures can only remove the redundancy transitions
in a single state, there are still a lot of duplicate transitions
between states.

In [7], Kumar et al. propose a new representation for
regular expressions, called Delayed Input DFA (D2FA). If
two states S and T make transitions to the same set of states
for some set of input characters ({C}), D2FA eliminate these
transitions from one state, suppose S, and introduces a de-
fault transition from S to T. S now only maintains unique
next states for those transitions not common to T. Upon
traveling S, if the input is in {C}, we follow the default tran-
sition to T and get the real destination state. D2FA requires
two states have same destinations for the same input char-
acters. It compress memory at the expense of latency due to
introducing default transition, which means more than one
state may be traversed for an input character.

Two methods are proposed to improve D2FA’s match-
ing efficiency. In [8] Kumar et al. proposed a method that
use of content labels as state identifiers, called CD2FA.
CD2FA allows one memory access per state traversal (acts as
an uncompressed original DFA). The content label’s fields
consists of a state discriminator, the list of characters for
which a labeled transition is defined and an identifier for
the default transition state. The size of a content label de-
pends on the number of labeled transitions defined for the
corresponding state. This scheme might be effective only
for those states which are highly compressed. Further more,
it is bound to a precise state encoding, not a general and
broadly applicable. The second improvement is proposed in
[9]. They first define the depth of states, and then add the
constraint that the default transitions can be oriented only in
the direction of deceasing depth. It can be proved that this
constraint makes any string of length N require at most 2N
states traversals to be processed. They also describe an al-
phabet reduction scheme for DFA-based structures to reduce
the data structure size.

It is worth noting that D2FA and its improvements all
need new data structure to reduce memory requirements of
DFAs, such as bitmap based structure or linked list of pair
(character, next state). That means traveling each state may
access memory more than one times.

Michela Becchi et al. [10] propose state merging
method that can both reduce the number of states and tran-
sitions. This method merges several even “non-equivalent”
states by introducing labels. Labels identify which portion
of the merged state should be accessed during DFA traver-
sal. This method transfers information from the states to
the transitions of the DFA. With the extended data struc-
ture, the number of new states and transitions is dramatic
reduced. However, it must introduce additional bits to re-
trieve the original state from a merged state.

3. Transitions Sharing in DFAs

3.1 An Example

In order to illustrate our method clearly, we used a simple
example shown in Fig. 1. The data structure used to rep-
resent this DFA is shown in Fig. 2. We also showed the
pointer indirection table and unique transition table of state
3 in Fig. 2. The example and data structure are all same as
that of in [10]. In order to avoid cluster, all our figures ex-
clude the transitions leading to the starting state (state 0) and
the bitmap of each state.

Now let us introduce our method using this example.
Consider two states that have same transitions, if we merge
their transition tables and make the two states share the
merged transition table, the duplicate transitions of the two
states can be removed. We call this operation transition
sharing. In our scheme, we recursively make states of the
original DFA share their transitions with others.

First step of making two states or two group of states
share their transitions is to merge their transition tables. We



ZHANG et al.: FAST AND MEMORY-EFFICIENT REGULAR EXPRESSION MATCHING USING TRANSITION SHARING
1955

Fig. 1 DFA for expression ((a[b− e][g− i]| f [g− h] j)k+). All transitions
not have shown lead to state 0.

Fig. 2 The data structure representing a state of DFA, the higher part
shows the pointer indirection table and transition table of state 3.

removed all the duplicate transitions when merging tables,
so each transition in the merged table was unique. The sec-
ond step is to update the pointer indirection tables of all the
states that share the merged transition table. Because all the
transitions in the merged table come from different tables,
some of them may not have the same index as in the orig-
inal transition table. We must update the pointer direction
tables to make sure the modified DFAs are equal to the orig-
inal ones. To a pointer indirection table, supposed that the
original value of the ith item is m, and this value has been
changed to n after updating procedure, it should meet that
the nth transition of the merged transition table is the same
as the mth item of original transition table. If the pointer in-
direction table’s item width is n bit, it can index 2n transition
items, so if the number of items in a merged table is less than
2n, we can repeat fetch other states to share their table un-
til the merged table is full. This avoids wasting expression
capacity of the indirection table.

Figure 3 shows a group of states prior to and after
the merging of their transition tables and the sharing of the
merged table. In the merged transition table, there are five
unique jump destinations. The first three items come form
state 3 and state 4, while the last two items come from state
1 and state 2. As we can see, the first three items have the
same index as in the original transition table, and the pointer
directions tables of state 3 and state 4 needn’t to be update.
The indexes of last two items are different with their original
value, so the item 2 to item 5 of pointer indirection table of
state 1 should be updated to 3 and the last two items of state
2’s pointer indirection table should be updated to 4.

Fig. 3 prior to and after the merging of four transition tables.

Compare to the memory compression approaches de-
scribed in Sect. 2, this method have three advantages: first, it
can eliminate all the redundancy transitions within a group.
If a group of states share a merged transition table, all the
duplicate transitions can be removed. Second, we needn’t to
introduce additional bits such as label to index the original
state. Third, each state’s transition table pointer points to a
“true” table, so we just need travel one state to get the jump
destination. In additional, sharing the transition tables also
creates more common destinations for other states. For ex-
ample, if states A, B have same destination transitions and
states B, C has same destination transitions too. After A and
B sharing the same transition table, C will be able to share
this table too.

3.2 Transitions Sharing Algorithm

Two or more transition tables can be merged and shared by
a group of states. After transitions sharing, each state’s tran-
sition table pointer points to a merged transition table which
consists of the union of all individual transition tables in the
same group. We use the terms “original tables” and “merged
tables” to refer to the transition tables prior to merging and
after merging respectively. Note that, after merging, some
original tables may remain as in the original DFA.

We now describe our transitions sharing algorithm.
The goal of this algorithm is to divide all the states into
groups and merge each group’s transition tables thereby to
remove the duplicate transitions. For transition table s and t,
metric(s, t) is a measure of memory savings when s and t are
merged. In our implementation, the metric(s, t) is equivalent
to the number of transitions that have the same destination.
Merging operation on two transition tables can cause the
metric to change to other transition tables, especially those
have the same destinations with both of s and t.

The following terminology is useful in understanding



1956
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

the pseudo code of the algorithm. D is the DFA being pro-
cessed, assumed to be a global variable. L is a list which
contains all the transition tables. merge table(s, t) is an op-
eration that merges the two given tables and updates the
pointer indirection tables. Insert(L, t) and remove(L, s) are
the standard operations on a list. deletemax(L) is an opera-
tion that gets and deletes the table which has the most unique
transitions from a list. The pseudo code of this algorithm is
shown in the Fig. 4.

Algorithm VI.1 shows the core procedure of our
method. The first level loop terminates when there is no
table in L. The second level loop terminates when there is
not exist a table which can be merged with the given one.
Algorithm VI.2 first constructs the list which contains all
the tables of the given DFA, then sorts the list according to
number of each table’s item. Algorithm VI.3 is to find a
table from the list which can save most memory if merged
with the given one. Notice that after two transition tables are
merged, the number of unique transitions of merged tran-
sition table is limited to 256, which means 8 bits will be
enough to present an item of pointer indirection table.

3.3 Algorithm Analysis and Discussion

It is difficult to analyze and formulate an optimum algorithm
because the metric between two tables are changing every
step, therefore our algorithm just makes the best choice in
each step. We all know that select a best pair elements from

Fig. 4 Transition sharing algorithm.

a list need O (n2) iterations while find a best one for a given
element need only O (n) iterations. If we just select a proper
transition at the beginning of creating a new group, this can
dramatically decrease the complexity of our algorithm. Usu-
ally, the more items a table has, the bigger probability it has
to save more memory when merged with other tables. In or-
der to take this observation, we sorted the list L according to
the number of unique transitions of each table. We selected
a table from L which has the most unique transitions as the
first one at the beginning of creating a new group, then select
appropriate table to merge with it in each step.

We now present a complexity analysis of our algorithm.
The original DFA is assumed to have n states. First, we ana-
lyze the complexity of algorithm VI.1. Here is one call to the
sorted list initialization function of algorithm V.2. And for
each iteration there are a deletemax operation and several
calls to the getmaxnode function of algorithm VI.3. Since
inserting all the transition tables needs O (n) complexity
and the quick sort operation takes O (n2/2) complexity in
an array, so building the sorted list leads to a total O (n2/2)
complexity. Next, a single deletemax operation on a sorted
list takes O (1) complexity, while a single getmaxnode op-
eration in algorithm VI.3 needs O (n) complexity. However,
after each call to the deletemax or getmaxnode operation,
the total number of elements in the list will reduce by one,
so the operations in each step will decrease sharply. For n
tables, the needed operation will be n, n − 1 . . . 1. The worst
maximum possible iterations occur when all the transition
tables can’t merge with another one, and the total will be
n(n + 1)/2. From the above analyses, we can know that the
overall complexity of the algorithm is O (n2). And all the
assistant space is a list L, which leads an O (n) complexity.

Since the regular expressions can not be added into a
DFA incrementally, updates to rule sets mean constructing
a new DFA form the updated rule sets. In order to apply
DFAs in practical networking application, their memory re-
quirements must be reduced first, thus in the practical deep
packet inspection, constructing a DFA needs two steps: con-
structing a normal DFA and reducing the memory require-
ment of the normal DFA. Since the first step has classic
solutions, we will focus on the second step. Suppose a DFA
has n states, D2FA needs a space reduction graph which is
defined on the same vertex (state) as the original DFA. This
graph has n2 edges at worst case. The reduction procedure
is constructing a maximum weight panning tree with speci-
fied bounded diameter from the graph. State merging needs
a heap which may have n2 elements as well as a weight
graph. When two states are merged, data structures of other
states in the DFA, as well as weights of edges in the weight
graph must be updated. The total space and time complex-
ities of each approach are showed in Table 1. We can ob-

Table 1 Space and time complexity comparisons of various approaches.



ZHANG et al.: FAST AND MEMORY-EFFICIENT REGULAR EXPRESSION MATCHING USING TRANSITION SHARING
1957

Table 2 Summary of characteristics of the regular expressions groups.

Table 3 Space and time requirements comparisons of various approaches.

serve that our approach is more efficient than other two ap-
proaches on both space and time complexity, this makes our
approach more suitable and feasible for practical network
applications.

4. Experimental Results

In this section, we performed experiments on rule sets used
in a wide variety of networking applications to evaluate the
space reductions and the matching performance of our ap-
proach. We present experimental results on security rule-
sets: Bro and Snort as well as the protocol identification pat-
terns of L7 system. We evaluate the benefits of our scheme
over the D2FA and state merging.

4.1 Experimental Setup and Memory Representation

We implemented our approach and state merging approach,
while the D2FA approach was obtained from [13]. The
width of transition tables is set to 32 bits, amenable to a
software implementation. The width of pointer indirection
tables is set to 8 bits. Bitmaps are set to 256 bits. Failure
pointers were set to the mostly frequently occurring transi-
tions. In order to compute memory reduction clearly, we
build an independent label table instead of appending the la-
bels to the pointer indirection table in the state merging im-
plementation. The width of label table is set to 8 bits. Since
the data structure used in D2FA is a naive implementation
(each state has full 256 transitions), we translate the states
of D2FAs into data structure we describe in Sect. 3 before
computing the final memory reduction.

In order to do a fully comparison, for each rule set we
constructed D2FA using the refined version of spanning tree
with the diameter 4, 8 and 16. We also run the state merging
approach with 4, 8 and 16 as the max labels (the maximum
number of sub-states a merged state can consist of) respec-
tively (the parameter of each approach is in the brackets).

4.2 Rule Database

The rule sets we used consist of security rules of Bro, snort,
and protocol identification patterns of L7 system. The rule
sets of bro and snort are obtained form [13], which is pub-
lished with D2FA approach. In the case of L7 patterns, we
selected two groups from the entire 109 patterns [1] ran-
domly. These rule sets include variety type regular expres-
sions, wildcard, counting constraints, etc. The key proper-
ties of our representative rule sets are summarized in Ta-
ble 2.

In order to better illustrate the memory reduction of our
approach and make comparison with other approaches, for
each group regular expressions, we compiled them into a
single DFA instead of using the set splitting techniques pro-
posed in [10]. The space and time requirements of each
approach are showed in the Table 3. We can observe that
transition sharing is more efficient both on time and space
complexity. Compared with other two approaches, it can
finish the compression procedure in shorter time with less
space, which means it is more suitable and feasible for the
frequently updated DFAs used in practical network appli-
cations. For the last group rule sets in the Table 2, State
merging didn’t finish the reduction procedure in our imple-
mentation because of huge space requirements.

4.3 Results on Some Rule Sets

A: Memory Requirement
For the data structure described in Sect. 3, the basic memory
requirement of a state includes bitmap, pointer indirection
table and transition table, apart from this, D2FA needs de-
fault transition pointers and state merging needs labels. So
a big factor reduction in the number of states or transitions
may translate into a smaller reduction in actual memory us-
age because of overheads in the other parts of data structure.



1958
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Fig. 5 Memory reduction of transition sharing, D2FA with diameter 4,
8, 16 and state merging with max label 4, 8, 16.

Since our goal is to reduce memory requirements of DFAs
in practical, we will compute the memory requirements of
both basic and special parts of states in each approach in-
stead of just counting transition tables. We compared the
memory requirement of transitions sharing, D2FA and state
merging in Fig. 5. The data are all normalized to the mem-
ory requirement of the naive data structure.

We can observe that the final memory requirements de-
ceased by a factor 10 or even more for most of the rule sets.
Transitions Sharing and D2FA do better than the state merg-
ing approach on all the rule sets, and D2FA do better than
Transitions Sharing on most of rule sets. The memory re-
duction of D2FA is increasing as the diameter of spanning
tree, while the memory reduction of state merging is increas-
ing as the max labels. However, to each approach, the mem-
ory reduction is different for each rule sets even when two
rule sets come from the same application. That means mem-
ory reduction of each approach is related to the character of
rule sets.

These three approaches all aim at eliminating the du-
plicate transitions between states. However, the D2FA and
state merging found the best pair of states in a DFA at ev-
ery step, while our approach just selected the state that has
the most transitions as the first one of a new group. When
selected the states to share their transitions in our approach,
we use the constraint that the number of items of a com-
bined transition table must not be more than 256, so it can
take full use of each bit of pointer indirection index, while
the max labels of state merging is assigned by user, after the
states were merged, they may waste some representing ca-
pacity of their pointer indirection index. State merging also
reduces the number of states. However, it has to introduce
additional memory: labels as the discriminator to indicate
which portion of the merged state should be accessed dur-
ing DFA traversal.
B: Matching Performance
As mentioned, reducing memory requirements of DFAs is
a trade-off with memory access per input character. To the
data structure we used, traveling a state needs three times
memory access (ignore the bitmap counting): first, get the

Fig. 6 Average memory access times per character of each resulting DFA
constructed by each approach.

transition index from the pointer indirection table, second,
load the transition table, and at last get the next state form
the table using the transition index. For each input charac-
ter, our approach needed to travel one state as a normal DFA.
D2FA may need travel more than one state to process an in-
put character. While in the case of state merging, since our
implementation has an independent label table for the state
merging approach, traveling a merged state needs five times
memory access due to its additional operations to get the
destination state and label from a merged state (note that the
memory access for processing one input character can be de-
creased using other implementation for state merging). We
statistics all the states of result DFAs constructed by each
approach from each rule set. The average of memory access
for one input character of different approaches is shown in
the Fig. 6.

We can observe that the memory access for processing
an input character in our approach is fixed at three times,
and it fixes at five times in the state merging. This indicates
that both of the two approaches processing an input charac-
ter need travel only one state. For the D2FA, the memory
access is increasing as the diameter of spanning tree. How-
ever, growth rates are different and related to the rule sets’
properties.

To evaluate the performance of each approach in prac-
tical environments, we test all the resulted DFAs by two
network traffic. The first traffic data (MIT99) is down-
loaded from MIT Lincoln laboratory [14], and the other one
(RT101) is captured from the gateway of a company LAN.
Figure 7 shows the total processing time of each resulting
DFA. (a) shows the results of processing MIT99 and (b)
shows the results of processing RT101.

We can observe that most of real processing time is
consistent with the statistics of the compressed DFA. For
transitions sharing, all processing times are nearly the same
when processing the same traffic no matter the rule sets. For
State merging, the processing times are also fixed when pro-
cess the same traffic no matter the rule set and parameter.
While to D2FA, most of the processing times are increas-
ing as the diameter of spanning tree. However, to both of



ZHANG et al.: FAST AND MEMORY-EFFICIENT REGULAR EXPRESSION MATCHING USING TRANSITION SHARING
1959

Fig. 7 Processing time of each resulting DFA on real word traffics.

the two traffic data, the processing time of D2FA (16) is
fewer than D2FA (8) when the D2FA were construct from
the rule set snort (45). It means that to the D2FA, the trav-
eling paths are also affected by the character of the input
data. Due to the paper limitation, we do not elaborate on
the details in this paper. It is worth noting that the com-
pressed DFA’s processing times didn’t increase proportional
to their memory access times when compared with origi-
nal DFA. This is because the original DFA’s big memory
requirement would lead to poor cache performance, while
the compressed DFA’s were more cache-efficient because of
their small size.

5. Conclusions

DPI using the regular expressions is becoming a more and
more important task in the modern network management.
However, the memory requirements of DFAs make them
impractical for the real world rule sets. In this paper, we
proposed a novel method to drastically reduce the memory
requirements of DFAs while still maintain the high match-
ing speed and provide worst-case guarantees. We removed
the duplicate transitions between states by dividing all the
states into a number of groups and making each group of
DFA states share a merged transition table. Huge memory
will be saved after transition sharing. Processing an input
character only needs travel one state in our scheme. By re-

ducing the memory requirement of a DFA, the matching en-
gine can be easily integrated into any practical applications.
Another advantage of our approach is that our algorithm is
more efficient on both of the time and space complexity.

We performed experiments on real world rule sets used
by snort, bro and L7 systems. The results show that for those
practical rule sets, the performance of our scheme is better
than that of the state merging in memory compressions, and
it is faster than D2FA in the matching process. Overall, our
approach offers the best memory versus run-time trade-offs.
This means it is more suitable and feasible for practical net-
work applications.

Acknowledgements

We would like to thank the anonymous reviewers for their
valuable comments. This work was supported by the Na-
tional High-Tech Development 863 Program of China (Nos.
2007AA01Z467) and Major State Basic Research Develop-
ment Program (Nos. 2007CB311100).

References

[1] J. Levandoski, E. Sommer, and M. Strait, “Application layer packet
classifier for Linux,” http://l7-filter.sourceforge.net/

[2] “SNORT network intrusion detection system,” http://www.snort.org
[3] “Bro intrusion detection system,” http://bro-ids.org/Overview.html
[4] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Automata Theory, Lan-

guages and Compilation, 3rd ed., Addison Wesley, 2004.
[5] J. Hopcroft, “An nlogn algorithm for minimizing states in a finite

automaton,” in Theory of Machines and Computation, ed. J. Kohavi,
pp.189–196, Academic, New York, 1971.

[6] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, and R.H. Katz, “Fast and
memory-efficient regular expression matching for deep packet in-
spection,” IEEE/ACM ANCS, pp.93–102, Dec. 2006.

[7] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algo-
rithms to accelerate multiple regular expressions matching for deep
packet inspection,” ACM SIGCOMM, pp.339–350, Sept. 2006.

[8] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast
and scalable deep packet inspection,” IEEE/ACM ANCS, pp.81–92,
Dec. 2006.

[9] M. Becchi and S. Cadambi, “An improved algorithm to acceler-
ate regular expression evaluation,” IEEE/ACM ANCS, pp.145–154,
Dec. 2007.

[10] M. Becchi and S. Cadambi, “Memory-efficient regular expression
search using state merging,” IEEE Infocom, pp.1064–1072, 2007.

[11] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Trans. Netw., vol.13, no.1, pp.2–14, Feb. 2005.

[12] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Determinis-
tic memory-efficient string matching algorithms for intrusion detec-
tion,” IEEE Infocom, pp.333–340, March 2004.

[13] http://regex.wustl.edu/files/regex 1.2.tar
[14] MIT DARPA Intrusion Detection Data Sets, http://www.ll.mit.edu/

mission/communications/ist/corpora/ideval/data/1999/testing/
week4/thursday/outside.tcpdump.gz l, 1999.



1960
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Shuzhuang Zhang received the B.S. and
M.S. degrees in Computer Science & Technol-
ogy from YanShan University. During 2004–
2006, he stayed in Computer Architecture Re-
search Laboratory. He now is a Ph.D Candidates
of Research Centre of Computer Network and
Information Security Technology of Harbin In-
stitute of Technology, his primary research focus
lies in network security and Information Content
Security.

Hao Luo is a PhD and Assistant Professor of
Research Center of Information Intelligent and
Information Security of Institute of Computing
Technology, Chinese Academy of Sciences. His
research interest is network security.

Binxing Fang is a professor of Department
of Computer Science and Engineering, Harbin
Institute of Technology. He is academician of
Chinese Academy of Engineering. His research
interests include computer network and infor-
mation security.

Xiaochun Yun is a professor of the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include network
security and information security.


