
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009
1961

PAPER Special Section on New Technologies and their Applications of the Internet

Service Independent Access Control Architecture for User
Generated Content (UGC) and Its Implementation∗

Akira YAMADA†a), Ayumu KUBOTA†, Yutaka MIYAKE†, and Kazuo HASHIMOTO††, Members

SUMMARY Using Web-based content management systems such as
Blog, an end user can easily publish User Generated Content (UGC). Al-
though publishing of UGCs is easy, controlling access to them is a difficult
problem for end users. Currently, most of Blog sites offer no access con-
trol mechanism, and even when it is available to users, it is not sufficient
to control users who do not have an account at the site, not to mention that
it cannot control accesses to content hosted by other UGC sites. In this
paper, we propose new access control architecture for UGC, in which third
party entities can offer access control mechanism to users independently of
UGC hosting sites. With this architecture, a user can control accesses to
his content that might be spread over many different UGC sites, regardless
of whether those sites have access control mechanism or not. The key idea
to separate access control mechanism from UGC sites is to apply crypto-
graphic access control and we implemented the idea in such a way that it
requires no modification to UGC sites and Web browsers. Our prototype
implementation shows that the proposed access control architecture can be
easily deployed in the current Web-based communication environment and
it works quite well with popular Blog sites.
key words: Web, User Generated Content (UGC), blog and cryptographic
access control

1. Introduction

In the era of Web 2.0, many users generate Web content as
well as just browse through them. Web-based content man-
agement systems such as various Blog sites make it easier
for users to generate content, which are called User Gener-
ated Content (UGC) or Consumer Generated Media (CGM).
UGC opens to access to the public and the openness encour-
ages many users to read them, which results in active and
personal communications between generator and consumer
users. We call a user who creates a content generator user,
and a user who reads the content consumer user. However,
the openness is not always a desirable feature for generator
users. For example, a generator user would want to restrict
accesses to a private portion of his content except from cer-
tain members, such as his family or friends.

Although some Blog sites offer access control mech-
anism, their functionality is limited within content hosted

Manuscript received February 3, 2009.
Manuscript revised May 21, 2009.
†The authors are with KDDI R&D Laboratories Inc.,

Fujimino-shi, 356–8502 Japan.
††The author is with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8579 Japan.
∗This paper was originally presented at SAM ’08–The 2008 In-

ternational Conference on Security and Management, and some
sections were added to the manuscript for the evaluation of our
implementation.

a) E-mail: yamada.akira@kddilabs.jp
DOI: 10.1587/transinf.E92.D.1961

by the site and users registered on the site. For example,
Vox∗∗, a popular Blog site, allows generator users to clas-
sify their content into friends, family, neighborhood
and public, each of which classes specifies who can access
the content. Although they provide the fine granularity of
accessing content, the content must be hosted by VOX. In
addition, both generator and consumer users must have their
accounts on VOX. It means that consumer users cannot read
the content unless they have an identifier at the same UGC
site as generator users do.

To identify users who do not have an account at
the site but at other sites, independent identifiers such as
TypeKey [1] and OpenID [2] are proposed. If a user pos-
sesses one of those identifiers, UGC sites can identify the
user even if the user does not register to the site. However,
the access control is limited within content hosted by the
UGC site, and is not available for content hosted by other
sites even if those content are generated by the same user.

In this paper, we propose new access control architec-
ture for UGC, which enables users to employ a particular ac-
cess control mechanism separately from the UGC site. The
key idea to separate access control mechanism from UGC
hosting sites is to use cryptographic access control [3], [4],
which is originally proposed for access control of distributed
storages. In the cryptographic access control, all content are
protected by encryption algorithm so that the only user who
has a decryption key can access to the content. Therefore,
the system can enforce the access policy of content by con-
trolling delivery of the decryption key instead of controlling
accesses to the content.

Our contributions are not only the new architecture but
also its implementation. Though the previous works re-
quire renovation of access control [5]–[7] or modification of
UGC sites [8], [9], our architecture is implemented in such a
way that it requires no modification to UGC sites or Web
browsers. We evaluate that it can work well with exist-
ing UGC sites such as Blogger∗∗∗ and LiveJournal∗∗∗∗. This
shows that the proposed architecture can be easily deployed
in the current Web based communication environment.

The rest of this paper is organized as follows. We sum-
marize background and problem statements in Sect. 2. In
Sect. 3 we explain the proposed architecture, and we de-
scribe the implementation in Sect. 4. Section 5 discusses the

∗∗http://www.vox.com
∗∗∗http://www.blogger.com
∗∗∗∗http://www.livejournal.com

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



1962
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

security and related work. Finally, we conclude in Sect. 6.

2. Background

2.1 Problem Statements

Let’s take an example of access control on UGC sites. Al-
ice has an identifier at a Blog site, such as Blogger, and has
generated many content on the site for a long time. Bob is
a reader of Alice’s Blog, and frequently comments on the
articles. Alice wants to reply to a comment that Bob have
written in private. Because the reply comment is relevant to
the article and Bob’s comment, she wants to write it on her
Blog. Of course, there is no such an access control mecha-
nism at Blogger, and Alice does not know the e-mail address
of Bob.

Therefore she gets a new identifier on another site,
such as MySpace†, which provides a desirable access con-
trol mechanism. Then she transfers the article from Blogger
to MySpace, and invites Bob to MySpace. Because Bob
has an identifier on another Blog site, such as LiveJournal,
and attaches the URL with those comments, Alice can post
a comment about an article at Bob’s Blog to invite Bob to
MySpace. Considering the above example, the problems are
summarized as follows.

1. Most UGC sites do not have enough fine-grained ac-
cess control mechanism for their content.

2. Because the generator users have generated many con-
tent on a UGC site, the users want to continue to use
the UGC site.

3. Even if a UGC site has access control mechanism, not
all consumer users have an identifier at the same UGC
site that the generator user does. Because multiple
identifiers bother the user, the consumer user does not
want to take another identifier.

4. A UGC site cannot control accesses to content hosted
by other sites, despite the fact that those content are
generated by a same user.

2.2 Conventional Access Control for UGC

Access control is defined as a mechanism to control accesses
from subjective users to objective content based on their ac-
cess policies. A typical UGC site adopts an access control
system that consists of an authentication, authorization, and
content hosting function (Fig. 1).

At the authentication, the system identifies users by an
authentication protocol such as a simple password or cryp-
tographic authentication protocol. The system compares an
identifier of a user with the user database, which records a
list of registered users. If the identifier is not registered in
the database, the UGC site suggests the user to register in
the site.

At the authorization, the system entitles the identified
users to access the objective content according to how their
access policies correspond to the content. Content has an

Fig. 1 Conventional access control for UGC.

access policy that lists allowed to or denied users, so the
system compares the identifier of the user with the list to
determine whether the user is allowed or not to access.

At the content hosting, the system lets the only enti-
tled users to access the objective content. The system also
has a function for users to generate content. Because the
content database holds unprotected content, usually it is op-
erated with the authorization to prevent from unauthorized
accesses to the content.

2.3 Authentication API and OpenID

Currently some UGC sites provide authentication API (Ap-
plication Program Interface) [1], [10], [11], which enables
other UGC site to obtain identifier information of the API’s
sites. In other words, a UGC site can identify users, who do
not have an identifier on the site but have an identifier on the
API’s site. Using an API, an access control system can del-
egate authentication function to the API’s site. When a user
accesses to a UGC site, the access control system redirects a
user’s session to an API’s site. After authentication in API’s
site, the UGC site receives only the result of authentication.

Alternatively, OpenID [2] authentication protocol, is a
similar functionality to authentication APIs. One of the sig-
nificant features is that OpenID employs a URL (Uniform
Resource Locator) based identifier. Because URL primi-
tively indicates the location of resource, the URL of a user’s
Blog page is used as the identifier URL of the user as it is.
Recently, many Blog sites started to provide OpenID to the
users, such as LiveJournal, TypePad††, and so on.

As another advantage of OpenID, the HTML docu-
ment located on the identifier URL can be a bootstrap to
discover the provider of the identifier, including the loca-
tion of the identifier provider. For example, to use http:
//identifier.example.com as a user’s identifier and
http://openid.example.com as the provider of the iden-
tifier, the following tag would be added by the owner of URL
to the HEAD section of the HTML document returned when
fetching the identifier URL [2].

†http://myspace.com
††http://www.typepad.com



YAMADA et al.: SERVICE INDEPENDENT ACCESS CONTROL ARCHITECTURE FOR USER GENERATED CONTENT
1963

<head>
<link rel="openid.server"
href="http://openid.example.com">
</head>

2.4 Cryptographic Access Control

As we describe in Sect. 2.2, the authorization and content
hosting functions are usually bonded to each other. This
brings that the access control mechanism depends on the
content hosting site, which may not have a desirable ac-
cess control mechanism. To separate those functions, we
employ cryptographic access control [3], [4], which is origi-
nally proposed to secure distributed databases.

In cryptographic access control, content are protected
by encryption algorithm so that the only user who acquires
the decryption keys can access to the content. Note that
we assume the encryption algorithm is sufficiently robust
against any attacks. When a user generates content, the user
encrypts the content then puts it on a UGC site. Meanwhile
the key used at the encryption is deposited to a Key Man-
ager. Because the content is protected, the UGC site does
not have to control accesses to the content. On the other
hand, the Key Manager enforces the policy of the content
instead of the UGC site. This mechanism makes the autho-
rization free from the location of the content hosting site.

2.5 Related Works

Bauer et al. proposed an access control system for the Web
content [8], which can be operated among multiple Web
sites. However, the prototype system is implemented with
a local Web proxy and server module, so that the scheme re-
quires modification to UGC sites. As a more feasible solu-
tion, some Web browsers’ extensions [12]–[14] have mech-
anisms to encrypt messages of Gmail. However, those ex-
tensions also require modification of Web browser, and have
no function to manage content.

As the protection of XML document, there are some
architectures [5]–[7], which control access to a portion of
the document hosted by distributed sites. Though the ar-
chitectures have a potential, they require conventional UGC
sites to support the architecture. Alternatively, a URL based
Identifier such as OpenID [2] and XRI [15] also have mes-
saging protocols [16], [17], which enables communication
between users who have an identifier at different UGC sites.
However, those protocols have not been implemented yet for
popular Web browsers or UGC sites.

OAuth [18] is an authorization protocol, which has a
similar concept to our proposal in terms of content’s access
control on Web sites. However, there are differences in the
assumptions, access control methodologies, and use cases.
The proposed architecture assumes that a user cannot trust
the Content Hosting Site completely. On the other hand,
OAuth protocol assumes that a Content Hosting Site is trust-
worthy to authorize accesses to its content. In this context,

a Content Hosting Site corresponds to a Service Provider in
OAuth’s specification.

The assumption that our proposal employ is reason-
able, because most Content Hosting Sites are started by ven-
ture companies, which forces on developing the site’s new
functions rather than security functions. Furthermore, it is
possible that the site’s owner sells the site and its hosted
content to other company. Concerning such situations, we
introduce a Key Manger and User Agents as the trusted third
party, which enables to separate authorization from a Con-
tent Hosting Site.

Although, our proposal is more secure than OAuth,
it has disadvantage in the implementation. We implement
User Agent using JavaScript invoked from Bookmark so that
a user does not have to modify her Web browser. However,
the architecture is troublesome for developers that imple-
ment in a limited environment of a programming language
JavaScript. As the result, we only target on text-based con-
tent in this paper. OAuth does not have such limitation so
that a Content Hosting Site can easily control rich content,
such as images and videos.

In addition, the proposal and OAuth are different in
their use cases. The proposed architecture is convenient
to control accesses from individual users, rather than Web
applications. On the other hand, OAuth has an advantage
in controlling accesses from other Web applications rather
than individual users. OAuth protocol requires initializa-
tion, which is acceptable for Web applications but bothers
individual users. Twitter announces that it provides an inter-
face of OAuth protocol to other Web applications, but not to
individual users who possess OpenID. It is an example that
OAuth protocol is not good for handling individual users.

3. Proposed Architecture

3.1 Goal

Figure 2 illustrates the goal of our architecture, which en-
ables access control on any Web content based on identifiers
issued by any ID providers. The key idea is to apply cryp-
tographic access control of Web content on a Web browser.
Currently, there are numerous UGC sites, on which users
generate content individually. Our architecture introduces
desirable access control to any UGC sites, even if the users

Fig. 2 Overview of proposed architecture.



1964
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

do not have account at a same UGC site, ID provider, Key
Manager, which is newly added a Web-based service in our
architecture. For example, User1 can distribute an access-
controlled content only for User2, who does not have an ac-
count on Blog1 but Blog2.

3.2 Separation of Content Hosting, Authorization, and
Authentication

In this section, we compare conventional access controls
for UGC and the proposed architecture. As we explain
in Sect. 2.2, conventional UGC sites own their access con-
trol mechanism consists of an authentication, authorization,
content hosting function individually. Obviously, the UGC
site cannot distinguish users who do not have an identifier
on the site. In addition, the UGC site cannot control content
hosted by other sites, even if those content are generated by
a same user (Fig. 3 (a)).

Using authentication APIs or OpenID, the UGC site
can distinguish users who do not have an identifier on the
site but have one on an API’s site or an OpenID’s ID-
provider. Though the authentication function is separated
from access control, the authorization function is still tied
with the content hosting site. It means that the policies re-
lated to content are managed on a UGC site, and accesses to
the content are controlled by the UGC site. Therefore, the
users cannot control access to their own content that spread
over many different UGC sites (Fig. 3 (b)).

The proposed architecture enables to operate an au-
thentication, authorization, and content hosting function in-
dependently. Not only users but also policy can be man-
aged by third party entities, which is different from the con-
tent hosting site. With this architecture, a user can employ
a desirable access control mechanism against the content
that might be spread over various UGC sites, regardless of
whether the hosting sites have an access control mechanism
or not (Fig. 3 (c)).

3.3 Definitions

In the proposed architecture, an access control for UGC
is separated into authentication, authorization and content
hosting, which are called Content Hosting Site, Key Man-
ager, and User Manager. Each entity manages protected
content, decryption keys, and users, using Location ID, Key
ID and User ID individually. The definitions of the entities
and identifiers are following.

• Content Hosting Site: A content hosting site is one of

Fig. 3 Separation of content hosting, authorization, and authentication.

UGC sites where a generator user has an account. The
content protected by cryptographic access control, are
stored at the Content Hosting Site.
• Key Manager: A key manager is a newly introduced

entity in our architecture, managing decryption keys
corresponding to protected content.
• User Manager: We employ OpenID and OpenID’s ID

provider as User ID and User Manager. The architec-
ture can also support alternative identifiers provided by
authentication APIs.
• Location ID: Location ID is an identifier of location

to discover the location of a protected content. Be-
cause protected content are hosted by UGC sites such
as Blog, Permalink (permanent link) of an article can
be a Location ID. A user can easily retrieve the pro-
tected content using a Web browser, given a Permalink
as a Location ID.
• Key ID: Key ID is an identifier of a decryption key,

and is also used to discover the location of the corre-
sponding Key Manager. The Key ID is embedded in
the header of a protected content, a user can obtain cor-
responding Key ID from a protected content. Key ID
employs the same protocol to discover the Key Man-
ager as the part of OpenID protocol. It means that Key
ID is also an identifier URL, which HTML document
includes the location of Key Manager in the HEAD
section.
• User ID: User ID is an identifier URL of OpenID pro-

tocol. In most UGC sites that support OpenID protocol,
the top page of each user’s Blog can be the identifier
URL of the user. OpenID protocol has method to dis-
cover the ID provider from identifier URL as the part
of the protocol.
• User Agent: Because we target only on Web content

such as articles on Blog or Wiki, User Agent is a Web
Browser. The User Agent can be an agent of a con-
sumer or a generator user of content, accessing to each
entity to retrieve and create content.

3.4 Content Publication

Figure 4 shows a sequence of content publication. (1) At
first, a user generates content at a Content Hosting Site.
Most Content Hosting Sites, such as Blog sites, have in-
put form to write an article. After generation of content,
the user invokes JavaScript to enhance User Agent. (2) The
User Agent displays a dialog to be input the User ID, and
transfers the User ID to Key Manager. The Key Manager
redirects User Agent’s session to the User Manager related
to the User ID. (3) The User Manager identifies the user
using a certain authentication protocol. If the authentication
is successful, User Agent’s session is redirected again to the
Key Manager with a notification. (4) The User Agent dis-
plays a dialog to be input Policy, and sends the policy to the
Key Manager. (5) The Key Manager issues a pair of Key ID
and Key, and sends them to the User Agent. (6) The User



YAMADA et al.: SERVICE INDEPENDENT ACCESS CONTROL ARCHITECTURE FOR USER GENERATED CONTENT
1965

Fig. 4 Content publication.

Fig. 5 Content retrieval.

Agent encrypts the content, and replaces the plain content
with the protected content and the Key ID. After protection
process, the user submits the article to the Content Hosting
Site as usual.

3.5 Content Retrieval

Figure 5 shows a sequence of content retrieval. (1) At first,
a User Agent gets the Location ID, for example, it is given
by a user or is a hyperlink of a HTML document. Because
a Location ID indicates the location of the protected con-
tent, the User Agent accesses to the Content Hosting Site
to get the protected content. (2) From the protected con-
tent, the User Agent extracts the Key ID indicating the Key
Manager, and accesses to the Key Manager. (3) The User
Agent shows the Key ID and the User ID to the Key Man-
ager. Because the User Manager is discovered from the User
ID, the Key Manager redirects the User Agent’s session to
the User Manager. (4) The User Manager identifies the user
using a certain authentication protocol. If the authentica-
tion is successful, User Agent’s session is redirected again
to the Key Manager with a notification. (5) The Key Man-
ager determines whether the user is permitted to access or
not based on the notification and the access policy related to

the Key ID. If the user is permitted to access the content,
then the Key Manager sends the decryption key to the User
Agent. (6) Finally, the User Agent cancels the protection
of the content using the decryption key to obtain the plain
content.

3.6 Access Policy

The description of a policy is based on a typical access
control list, which is an ordered list of rules with allow
or deny. For example, the following policy allows Bob
http://bob.UserManager1 and Carol http://carol.
UserManager2, and denies all the other users. In this case,
Bob’s and Carol’s identifiers are managed by User Managers
UserManager1 and UserManager2 individually.

deny all;

allow http://bob.UserManager1;

allow http://carol.UserManager2;

all is a predefined group consists of all users. A user
can also define private groups, which include multiple iden-
tifiers and groups. The groups are managed by User Man-
agers, where users’ IDs are also managed. In order to evalu-
ate a policy composed of group rules, the Key Manager has
to queries the User Managers administrating the groups.

We modify a User Manager, OpenID provider, to sup-
port group management, because OpenID does not have
such protocols. Though the modification is required, it does
not affect easy deployment of our architecture. Since User
Managers can separate the group management function, the
users can employ another User Manager for the purpose of
group management.

For example, a user Alice http://alice.UserManager1
defines a group school that includes Bob and Carol on
UserManager3. Alice defines a rule allow http://
school.alice.UserManager3 as a policy instead of the
above policy. When a Key Manager asks the members
of the group, then UserManager3 responds the mem-
bers http://bob.UserManager1 and http://carol.
UserManager2.

If Alice want to describe a policy in a form of logical
products such as “allow groups school and college,” she
transforms the form into a logical sum. Using De Morgan’s
law, she can convert any logical product into a combination
of negative and logical sum. For example, the above policy
is transformed into the following form:

allow all;

deny not http://school.alice.UserManager1;

deny not http://college.alice.UserManager1;

By constructing groups includes the other groups, users
can define a hierarchical access policy. For example,
neighbors contains family and friends, friends con-
tains bob and carol, and so on (Fig. 6). Note that there are
some conditions to construct a proper hierarchy. Users have
to pay attention to avoid conflicts of some policies.



1966
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Fig. 6 Hierarchical access policy.

Table 1 Implementation targets.

Entity Targets

User Manager OpenID providers, LiveJournal
Key Manager Apache with CGI on Linux
Content Hosting
Site

Blogger, LiveJournal and Gmail

User Agent JavaScript on Internet Explorer 5, 6
and Firefox 1.5, 2.0

4. Evaluation

4.1 Implementation Targets

To demonstrate the feasibility of the proposed architecture,
we implemented a prototype system. Table 1 shows our im-
plementation targets. The prototype system supports at least
three UGC sites: Blogger, LiveJournal and Gmail†. Gmail is
one of a Web-based e-mail services, the messages of Gmail
are also protected by our architecture.

As mentioned previously, our architecture does not re-
quire any modification both the Web browser and UGC
sites. The cryptographic access control is implemented as
a JavaScript program on Web browser, and the only thing a
user has to do is to set a line of JavaScript at their bookmark
of the Web browser. A JavaScript invoked from Bookmark
is called Bookmarklet [19], which requires no modification
against typical Web browsers, such as Internet Explorer and
Firefox. After the Bookmarklet is invoked, the Web browser
is enhanced as a User Agent of the proposed architecture.

4.2 Key Manager

A Key Manager has functions: key delivery, policy manage-
ment, and OpenID’s consumer. Requested by User Agents,
the Key Manager distributes a key related to Key ID based
on the user’s access policy. We are considering Web API
to provide the key management service as a Web service,
which is available for any other Web service.

The policy management function enables users to man-
age access polices individually. Figure 7 illustrates the pol-
icy management Web site. Each user has an own personal-
ized top page, which manages new articles, policies, and
contact-list. When a user has a new article that another
user publishes, the Key Manager displays the Key ID on
the user’s page. Because the Manager displays unused keys
only, the user can distinguish whether an article is read or

Fig. 7 Content is listed at Key Manager Web site. The user can modify
the policy at the site.

not.
The user can edit the access control lists on the Key

Manager after publication. Of course, the user can delete the
keys, if the user wants to stop distribution. In order to edit
the access policies, we introduce contact-list, which lists up
users’ IDs that the user previously used. The Key Manager
complements listed users’ ID, when the user types prefix of
an ID to add a policy.

In order to manage groups seamlessly for users, we de-
velop the User Manager for group management as a part of
the Key Manager. After a user login to the Key Manager
using an OpenID, the user can manages groups as well as
policies. We also implement users’ profile page, which pro-
vides information about each user. If a user has multiple IDs
and want to announce them, the user can put the list of IDs
on the profile page.

The Key Manage has an interface of OpenID protocol
to delegate authentication to User Managers. A Key Man-
ager connects other OpenID providers as an OpenID con-
sumer, accessing the user information of the ID provider.
We adapt libopkele 0.0††, an OpenID library written in C++,
for the implementation.

4.3 User Agent

We implement User Agent using JavaScript on two popu-
lar Web browsers: Internet Explorer and Firefox. JavaScript
is not only embedded in HTML file by a server, but also
invoked on displayed HTML file by a client. There are
2 techniques to execute a script at the client side, such as
Bookmarklet and Greasemonkey†††. We select Bookmarklet
since it does not depend on a specific browser, and not re-
quire installation except for a line of Bookmark.

Cross-domain access is a hurdle to implement the User
Agent. After User Agent invoked on a Content Hosting
Site, the Agent has to access objects on the Content Hosting
Site, the Key Manager, and the User Manager. However,
Web browsers have same origin policy, which restricts ac-
cesses between objects hosted on different sites. We employ
JSONP (JSON with Padding)†††† to overcome the restric-
tion.

†http://mail.google.com
††http://kin.klever.net/libopkele/
†††http://www.greasespot.net
††††http://bob.pythonmac.org/archives/2005/12/05/

remote-json-jsonp/



YAMADA et al.: SERVICE INDEPENDENT ACCESS CONTROL ARCHITECTURE FOR USER GENERATED CONTENT
1967

(a) A protected content is hosted by LiveJour-
nal. The detail of the format is illustlated at
Fig. 8.

(b) User Agent is overlaid on
LiveJournal using JavaScript
invoked by Bookmarklet.

(c) The protected content is replaced with the
unprotected content on LiveJournal.

Fig. 9 How it works (on LiveJournal).

Based on the same origin policy, browsers restrict des-
tination of a function XMLHttpRequest() (XHR), which
enables JavaScript to retrieves XML data on a remote host.
In our case, invoked on the domain of the Content Host-
ing Site, the script cannot access to the Key manager using
XHR.

JSON (JavaScript Object Notation) is a text-based,
human-readable format to exchange data, and is originally
employed by JavaScript. JSONP is JSON data wrapped
within parentheses and padded with an arbitrary text. The
following JSONP is a response of a Web site† supporting
JSONP request. The first and last lines are padded text, and
the middle is JSON data.

mycallback(

[{

"u":"http:\/\/www.kddi.com\/",

"d":"KDDI Designing The Future",

"t":["kddi"],

"dt":"2008-09-17T02:25:51Z","n":""},

...

]

)

The format of JSONP works as a function in a script
even if the function is hosted on the other domain. The same
origin policy does not restrict JavaScript files as well as im-
age files or HTML files hosted on the other domain. There-
fore, JSONP can substitute XHR in terms of accessing data
of the other domains.

4.4 Protected Content

A protected content, which are stored by Content Hosting
Site, is text-based format. Usually those sites prohibit users
from uploading binary data and tags of HTML/XML as the
content, so we cannot employ binary format or XML format
for the protected content.

Figure 8 shows a sample of a protected content, which
consists of a Key ID and an encrypted content. The plain
content is encrypted with the AES (Advances Encryption
Standard) algorithm and encoded with BASE64. Because

Fig. 8 An example of a protected content.

processes of public key cryptography require more calcula-
tion power than secret key cryptography, we adapts a secret
key block cipher AES. The encrypted content is assigned a
Key ID by the Key Manager.

4.5 How it Works

Figure 9 shows a sequence of screenshots that a consumer
user retrieves a protected content hosted on a UGC site. At
first, the user visits the UGC site pointed by Location ID,
that is to say Permalink, and then invokes Bookmarklet to
retrieves the protected content (Fig. 9 (a)). We assume that
the user set the Bookmarklet in advance. It is also possible
that the generator user distributes the line of hyperlink with
the Location ID.

After JavaScript is invoked via Bookmarklet, it en-
hances user’s Web browser as a User Agent of our mecha-
nism (Fig. 9 (b)). The User Agent extracts the Key ID point-
ing the Key Manager, and sends the Key ID and User ID to
the Key Manager. The Key Manager redirects the session
of the User Agent to User Manager, by which the user is
authenticated. After authentication, the Key Manager sends
decryption key to the User Agent, according to the access
policy.

Finally, the User Agent unprotects the content using the
key, and replaces the protected content with the plain con-
tent (Fig. 9 (c)). Because the key-retrieval and the content-
decryption are processed by the User Agent automatically,
all the users have to do is respond the authentication dialog.

†http://delicious.com



1968
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Table 2 Average time for content publication.

Content Hosting User User Manager Key User Content Hosting
Site (LiveJournal) Agent (LiveJournal) Manager Agent Site (LiveJournal)
/ /update.bml Load Redirect Authentication Key Issue Encrypt Post

[sec.] [sec.] [sec.] [sec.] [sec.] [sec.] [KB/sec.] [sec.]
1 2.33 3.51 0.512 3.95 1.69 0.043 1.75 3.37
2 2.09 3.17 0.505 2.79 2.11 0.042 1.63 2.14
3 2.14 3.13 0.536 2.76 1.46 0.042 1.63 1.71
4 2.06 3.89 0.566 2.64 2.43 0.041 1.75 3.02
5 2.43 3.21 0.559 2.81 1.43 0.043 1.63 2.06
6 2.04 3.14 0.524 3.60 1.84 0.042 1.63 2.14
7 2.22 3.1 0.569 2.88 1.52 0.042 1.63 1.92
8 2.63 3.24 0.578 2.82 1.58 0.049 1.63 2.32
9 2.33 3.03 0.543 3.61 1.51 0.042 1.63 2.41
10 2.11 3.07 0.531 2.77 1.49 0.042 1.63 2.51

Ave. 2.24 3.25 0.542 3.06 1.7 0.043 1.65 2.36

4.6 Performance Evaluation

In order to evaluate performance of our architecture, we
measure required time for 10 sequences of content publi-
cation. As comparison of a conventional access control on
a Web site, we can compare response time of the proposed
Key Manager with the Content hosting site or a User Man-
ager, because these sites have an access control mechanism
for handling their users. Table 2 shows required time. We
measure required time using Web browser Firefox 3.0.1 with
an extension FireBug† 1.2.1, which enables to monitor load-
ing time for each Web page. The OS and CPU are Mi-
crosoft Windows XP Professional SP3 and Intel Pentium 4
3.60 GHz with 2 GB RAM.

We selected LiveJournal as a conventional Content
Hosting Site and a User Manager. There is latency about
0.17 [sec.] between Web browser’s machine and these sites.
LiveJournal’s top page “/” and a next page “/update.bml,”
which is for submission of an article, need about 2–3 sec.
for downloading and rendering. As the user executes the
Bookmarklet, the invocation of User Agent takes about
0.5 sec. User authentication using OpenID protocol takes
about 5 sec., which is dominant in the sequence. The User
Agent requests the Key Manager to issue a key, and re-
ceives a key in 0.043 sec. User Agent encrypts content with
1.65 KB/sec.; it encrypts an article contains 1,000 ASCII
characters within 1 sec. It takes about 2 sec. to post the pro-
tected content to the Content Hosting Site. This evaluation
shows that the conventional Content Hosting Site and the
User Manager takes more time more than the proposed Key
Manager does.

We evaluated scalability of the Key Manger. The spec-
ifications of the Key Manager are as follows; OS is Linux
Fedora 7 and CPU is Intel Core2 1.86 GHz with 3 GB mem-
ory. We employ WebLOAD†† as a load testing tool. Fig-
ure 10 shows round time of the Key Manager. X-axis is the
number of users and Y-axis is round time. Round time is
total time that the Key Manager takes for a set of user au-
thentication, a policy evaluation, a key issue/search, and a
key delivery, without waiting for user’s input.

The round time increases linearly as the number of

Fig. 10 Round time of Key Manager.

users. When 100 users access to the Key Manager at the
same time, the Key Manager takes 4.7 and 2.7 second for a
content publication and retrieval sequence. Comparing con-
ventional Web sites LiveJournal, the response time of pro-
posed Key Manager is feasible.

5. Discussion

According to a survey††† conducted by Japanese Ministry
of Internal Affairs and Communication, 568 million articles
on Blog sites occupy 5 Tbyte on a storage. It means that an
article contains 9.5 Kbyte of text in average. Another sur-
vey†††† indicates that the number of characters in an article
depends on Blog sites, and are about 700 to 2,200. In our
implementation, a User Agent can encrypt articles within
from 0.41 sec. to 5.7 sec. in average. In a sequence of a con-
tent publication process, the proposed architecture increase
additional 5.8 sec. to 11.1 sec. in average.

We believe that this additional processing time is ac-
ceptable for users who require more security on current
Content Hosting Sites. It is true that evaluation of users’

†http://getfirebug.com
††http://www.webload.org
†††http://www.soumu.go.jp/iicp/chousakenkyu/data/research/

survey/telecom/2009/2009-02.pdf
††††http://glink.jp/files/BlogSustainability060615.pdf



YAMADA et al.: SERVICE INDEPENDENT ACCESS CONTROL ARCHITECTURE FOR USER GENERATED CONTENT
1969

patience is difficult without launching a service of the pro-
posal. However, considering a number of related works and
implementations, such as OAuth, we think that the proposed
functionalities are potentially desired by users, even if it in-
creases processing time.

The Key Manager plays a strong role in the proposed
system, the server handle the every encryption key. How-
ever, the server cannot access the plain content directly, be-
cause the content is encrypted and decrypted at the Browser
of the client. Though the server could also access the en-
crypted content published on the user’s Blog site, the server
needs to discover the location of the encrypted content cor-
responds to the key.

The architecture, which controls all accesses at a single
point, has both advantages and disadvantages. As the advan-
tage, the Key Manager can easily enforce the all access poli-
cies at a single point. On the other hand, if the Key Manager
is compromised by an attacker, then all controlled content
become vulnerable. However, there is another barrier; the
attackers have to find out the location of the encrypted con-
tent, similar as the above Key Managers’ case.

Some users may be anxious, even if the above mecha-
nisms guarantee the security. For higher security demands,
it is possible to introduce more than one Key Manager. Ap-
plying cryptographic secret sharing [20] algorithm, the sys-
tem can divides the encryption key into several shares. The
multiple Key Managers store one of these shares indepen-
dently. It is cryptographically impossible for any attacker to
retrieve the key from shares less than threshold.

Furthermore, a personal Key Manager is another solu-
tion to enhance security. Because the format of protected
content contains Key ID, which works as a bootstrap to dis-
cover the corresponding Key Manager, the user can easily
introduce a personal Key Manager. This concept is similar
to OpenID protocol, any entity, which includes a user, can
establish an ID provider. Because management of a personal
Key Manager is costly, the users have to balance between the
gain of security and its cost.

6. Conclusion

In this paper, we propose a new access control architecture
for UGC, which separates not only authentication but also
authorization from Content Hosting Site. This architecture
enables users to employ desirable access control mecha-
nism, regardless of whether the UGC site has an access con-
trol mechanism or not. The key idea to separate access con-
trol mechanism from UGC sites is to apply cryptographic
access control, which encrypts all content and controls ac-
cesses to decryption keys instead of the content themselves.
Using our architecture, the users can publish their content,
which can be accessed by certain members, even if the users
have an account at the various UGC sites and the content are
spread over various sites.

Our contributions are not only architecture but also its
implementation. Our architecture can be applied to current
Web browser and UGC site without any modifications on

both sides. We believe that this architecture stimulates a
Web-based communication environment.

References

[1] Six Apart, Ltd., “Typepad - profiles - typekey faq.”
(Online), 〈http://www.typepad.com/profiles/typekey-faq.html〉
(Reference 2009-01-27).

[2] D. Recordon and B. Fitzpatrick, “Openid authentication 1.1,” May
2006. (Online), 〈http://openid.net/specs/
openid-authentication-1 1.html〉 (Reference 2009-01-27).

[3] T. Wilkinson, D. Hearn, and S. Wiseman, “Trustworthy access
control with untrustworthy web servers,” ACSAC ’99: Proc. 15th
Annual Computer Security Applications Conference, pp.12–21,
Washington, DC, USA, Dec. 1999.

[4] A. Harrington and C. Jensen, “Cryptographic access control in a
distributed file system,” SACMAT ’03: Proc. 8th ACM Symposium
on Access Control Models and Technologies, pp.158–165, ACM,
Como, Italy, June 2003.

[5] E. Bertino, S. Castano, and E. Ferrari, “Securing xml documents:
The author-x project demonstration,” SIGMOD 2001: Proc. 2001
ACM SIGMOD International Conference on Management of Data,
p.605, Santa Barbara, California, USA, June 2001.

[6] G. Miklau and D. Suciu, “Controlling access to published data using
cryptography,” VLDB ’03: Proc. 29th International Conference on
Very Large Data Bases, pp.898–909, Berlin, Germany, Sept. 2003.

[7] L. Bouganim, F.D. Ngoc, and P. Pucheral, “Client-based access
control management for xml documents,” VLDB ’04: Proc. Thir-
tieth International Conference on Very Large Data Bases, pp.84–95,
Toronto, Canada, Sept. 2004.

[8] L. Bauer, M.A. Schneider, and E.W. Felten, “A general and flexible
access-control system for the web,” Proc. 11th USENIX Security
Symposium, pp.93–108, Monterey, Canada, June 2002.

[9] D. Balfanz, “Usable access control for the world wide web,” AC-
SAC ’03: Proc. 19th Annual Computer Security Applications Con-
ference, pp.406–415, Las Vegas, Nevada, USA, Dec. 2003.

[10] Yahoo! Inc., “Flickr services.” (Online), 〈http://www.flickr.com/
services/api〉 (Reference 2009-01-27).

[11] Google, Inc., “Authentication for web appplication api — Google
code.” (Online), 〈http://code.google.com/apis/accounts/
AuthForWebApps.html〉 (Reference 2009-01-27).

[12] linux solution park, “freenigma gmbh.” (Online),
〈http://www.freenigma.com/index.html〉 (Reference 2009-01-27).

[13] R. Jones, “Gmail s/mime for firefox.” (Online),
〈http://richard.jones.name/google-hacks/gmail-smime/
gmail-smime.html〉.

[14] M. Langenhoven, “Gmail encryption.” (Online),
〈http://www.langenhoven.com/code/emailencrypt/
gmailencrypt.php〉.

[15] G. Wachob, D. Reed, D. McAlpin, C. Sabnis, P. Davis, and
M. Lindelsee, “Extensible resource identifier (xri) resolution
v2.0,” March 2005. (Online), OASIS Committee Draft Version 01
〈http://docs.oasis-open.org/xri/xri/V2.0/〉 (Reference 2009-01-27).

[16] G. Monroe and C. Howells, “Openid dtp messages 1.0 - draft 03,”
Dec. 2006. (Online), 〈http://openid.net/specs/
openid-dtp-messages-1 0-03.txt〉.

[17] D. Reed and G. Strongin, “The dataweb: An introduction to xdi,”
April 2004. (Online), A. White Paper for the OASIS XDI Technical
Committee 〈http://www.oasis-open.org/committees/download.php/
6434/wd-xdi-intro-white-paper-2004-04-12.pdf〉.

[18] M. Atwood, R.M. Conlan, B. Cook, L. Culver, K. Elliott-McCrea,
L. Halff, E. Hammer-Lahav, B. Laurie, C. Messina, J. Panzer,
S. Quigley, D. Recordon, E. Sandler, J. Sergent, T. Sieling, B.
Slesinsky, and A. Smith, “Oauth core 1.0,” Dec. 2007. (Online),
〈http://oauth.net/core/1.0/〉.

[19] “Bookmarklets home page - free tools for power surfing.” (Online),



1970
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

〈http://www.bookmarklets.com/〉 (Reference 2009-01-27).
[20] A. Shamir, “How to share a secret,” Commun. ACM, vol.22, no.11,

pp.612–613, Nov. 1979.

Akira Yamada received the Ph.D. degree
in Information Science from Tohoku University,
Japan and the B.E. and M.E. degrees in Electri-
cal and Electronic Engineering from Kobe Uni-
versity, Japan, in 1999 and 2001, respectively.
He joined KDDI in 2001, and has been engaged
in research on information security and network
security. He is currently a research engineer
of Network Security Laboratory in KDDI R&D
Laboratories Inc.

Ayumu Kubota received the B.E. and M.E.
degrees in Information Science from Kyoto Uni-
versity, Japan, in 1993 and 1995, respectively.
He joined KDD (now KDDI) in 1995, and has
been engaged in the research on mobile com-
puting and secure communication system. He is
currently a research engineer of Network Secu-
rity Laboratory in KDDI R&D Laboratories Inc.

Yutaka Miyake received the B.E. and
M.E. degrees of Electrical Engineering from
Keio University, Japan, in 1988 and 1990, re-
spectively. He joined KDD (now KDDI) in
1990, and has been engaged in the research on
high-speed communication protocol and secure
communication system. He is currently a se-
nior manager of Network Security Laboratory in
KDDI R&D Laboratories Inc. He received IPSJ
Convention Award in 1995.

Kazuo Hashimoto received the Ph.D. de-
gree in Information science and the M.E. and
B.E. degrees in Electronics Engineering from
Tohoku University, Japan, in 2001, 1979 and
1977, respectively. He also received his M.S.
degree in Computer Science from Brown Uni-
versity, USA, in 1986. He joined KDD (now
KDDI) in 1979, was the president and CEO of
KDDI Labs. USA. Inc. He won the best paper
award in the field of Artificial Intelligence from
IEICE in 2001. He is presently the Professor of

Tohoku University.


