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Fast Computation of Rank and Select Functions for Succinct
Representation∗

Joong Chae NA†, Member, Ji Eun KIM††, Kunsoo PARK†††, and Dong Kyue KIM††††a), Nonmembers

SUMMARY Succinct representation is a space-efficient method to rep-
resent n discrete objects using space close to the information-theoretic
lower bound. In order to directly access the ith object of succinctly rep-
resented data structures in constant time, two fundamental functions, rank
and select, are commonly used. In this paper we propose two implemen-
tations supporting rank and select in constant time for non-compressed
bit strings. One uses O(n log log n/

√
log n) bits of extra space and the other

uses n + O(n log log n/ log n) bits of extra space in the worst case. The for-
mer is rather a theoretical algorithm and the latter is a practical algorithm
which works faster and uses less space in practice.
key words: succinct representation, rank function, select function

1. Introduction

To analyze the performance of data structures, the process-
ing time and the amount of used space are measured in gen-
eral. With the rapid proliferation of information, it is in-
creasingly important to focus on the space requirements of
data structures. Traditionally, discrete objects such as ele-
ments of sets or arrays, nodes of trees, vertices and edges of
graphs, etc., are represented as integers which are the indices
of elements in a consecutive memory block or values of log-
ical addresses in main memory. If we store n discrete objects
in this way, they occupy O(n) words, i.e., O(n log n) bits.

Recently, a method to represent n objects using space
close to the information-theoretic lower bound, which is
called succinct representation, was developed. Various suc-
cinct representation techniques have been developed to rep-
resent data structures such as sets, static and dynamic dictio-
naries [1], [2] trees [3], graphs [4], [5], permutations [6], and
functions [7]. Moreover, succinct representation is indispen-
sible to develop compressed index data structures [8]–[11].
If we use these succinctly represented data structures, we
can perform very fast pattern searching using little space.

Most succinct representations use rank and select
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for a bit-string as their basic functions. The rank and select
functions are defined as follows. Given a static bit-string A,

• rankA(x): Counts the number of 1’s up to and includ-
ing the position x in A.
• selectA(y): Finds the position of the yth 1 bit in A.

For example, if A = 1 0 0 1 0 1 1 0, rankA(5) = 2 and
selectA(2) = 4.

The study of the implementation of rank and select
was started by Jacobson [1], [5], who proposed a data struc-
ture supporting the functions in O(log n) time. Jacob-
son constructs a two-level directory structure and performs
a direct access and a binary search on the directory for
rank and select, respectively. Later, Munro [12] and
Clark [13] improved Jacobson’s result to support rank and
select in constant time by adding lookup tables to com-
plement the two-level directory of Jacobson’s. Their data
structure requires n +O(n log log n/ log n) bits for rank and
n + O(n/ log log n) bits for select (including the original
bit-string). Pagh [14] and Raman et al. [15] studied succinct
representations of compressible strings. Their data struc-
ture supports rank and select in constant time and re-
quires nH0(A) + O(n log log n/ log n) bits, where H0(A) is
the zeroth-order entropy of A. Their data structure can
also be applied to uncompressed bit-strings. González
et al. [16] studied the practicality of these solutions for
incompressible sequences. Miltersen [17] studied lower
bounds on the space and query time of rank and select.
For constant query time, he obtained a lower bound of
Ω(n log log n/ log n) space for auxiliary data structures of
rank and a lower bound of Ω(n/ log n) space for those of
select. Recently, Okanohara and Sadakane [18] proposed
practical implementations of rank and select, which do
not support constant query time.

In this paper we consider implementations of rank and
select (especially, focusing on select) supporting worst-
case O(1) query time for non-compressed bit strings. The
rank and select implementations use hierarchical direc-
tory structures, called rank-directory and select-directory,
respectively. In rank-directories, a bit-string is partitioned
into substrings with the same number of bits, and thus rank-
directories consist of regular tables of uniform sizes. Mean-
while, in select-directories, a bit-string is partitioned into
substrings with the same number of 1’s, and thus select-
directories consist of irregular tables of diverse sizes. In
previous algorithms [13], [15], the key idea for handling this
irregularity in select-directories is to divide substrings into
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two classes, dense substrings and sparse substrings, and
to apply different techniques. For this reason, the select
query time varies significantly according to the distribution
of 0’s and 1’s in bit-strings even though the differences are
bounded by a constant. This kind of phenomenon was also
reported in [16].

In this paper we propose two alternative implementa-
tions of rank and select, whose query time is uniform
regardless of distribution of 1’s. Our contributions are as
follows:

• Algorithm I: Its main idea is to transform the given bit-
string A into a bit-string where 1’s are distributed quite
regularly. Algorithm I uses a select-directory but its
structure is simpler and more regular than the select-
directories of previous algorithms. Algorithm I uses at
most n +O(n log log n/

√
log n) bits for select, which

is better than Clark’s n + O(n/ log log n) bits but worse
than Raman et el.’s n + O(n log log n/ log n) bits
• Algorithm II: It is a more practical algorithm. Its

query time is faster than that of Algorithm I. It needs
2n + O(n log log n/ log n) bits in the worst case. When
it is necessary to support only select, this algorithm
needs n + O(n log log n/ log n) bits in the worst case.
The main advantage of Algorithm II is that it uses only
rank directories for select as well as for rank. Thus,
its data structure is the most regular and so it is the
most suitable for applying byte-based implementation
method.

We analyze the performance of our algorithms and
compare ours with previous algorithms on various random
strings. Our algorithms take uniform query time regardless
of distribution of 1’s. Especially Algorithm II is fastest in
practice. Moreover, our algorithms are easy to implement
because data structures are regular. In our experiment, we
implemented [13] but not [15], because [13] and [15] follow
the same idea and [13] is easier to implement. (The algo-
rithm of [15] is quite complicated since it is originally de-
signed for compressed bit-strings.)

This paper is organized as follows. We first define basic
data structures and introduce previous algorithms in Sect. 2.
We present new algorithms for select in Sects. 3 and 4 and
describe the experimental results in Sect. 5. We conclude in
Sect. 6.

2. Preliminaries

In this section we introduce basic data structures that are
used in previous algorithms as well as in our algorithms and
describe briefly Clark’s algorithm [13]. Let A be a static
bit-string of length n. We denote the ith bit by A[i] and
the substring A[i]A[i + 1] · · · A[ j] by A[i.. j]. For simplicity,
we assume that

√
log n, log n and log2 n are integers, where

log2 n means (log n)2. We assume the word RAM model. On
this model, n can be represented by one machine word, and
arithmetic operations and memory accesses for O(log n)-bits
word can be done in constant time.

Fig. 1 Examples of data structures.

We first define a hierarchical directory structure for
rank. Given a bit-string A, we define rank-directory
of A as the following two-level directory (see Fig. 1 (a)):

• We partition A into big blocks of size log2 n. Each big
block of the 1st-level directory records the accumulated
number of 1’s from the first big block. That is, the ith
entry contains the number of 1’s in A[1..i log2 n] for
1 ≤ i ≤ �n/ log2 n�.
• We partition A into small blocks of size log n. Each

small block of the 2nd-level directory records the ac-
cumulated number of 1’s from the first small block
within each big block. That is, the ith entry contains
the number of 1’s in A[i′ log2 n + 1..i′ log2 n + i log n]
for 1 ≤ i ≤ �n/ log n�, where i′ =

⌊
i log n/ log2 n

⌋
.

Lemma 1: [13] Given a bit-string A of length n,
rank-directory of A can be stored in O(n log log n/ log n)
bits.

We define lookup tables that enable us to compute
rank and select in constant time. For some integer c > 1
(c = 2 suffices), rank-lookup-table is the table where
an entry contains the number of 1’s in each possible bit pat-
tern of length (log n)/c. Similarly, select-lookup-table
is the table where an entry contains the position of the ith
1 bit in each possible bit pattern of length (log n)/c, for 1 ≤
i ≤ log n/c. Figure 1 (b) and (c) show rank-lookup-table
and select-lookup-table for patterns of length 3, re-
spectively.

Lemma 2: [13] rank-lookup-table and select-
lookup-table can be stored in O(n1/c log log n) bits and
O(n1/c log n log log n) bits, respectively, where c > 1 is a
constant.

We describe briefly Clark’s algorithm. For rankA,
Clark used rank-directory of A and rank-lookup-
table. To get rankA(x), one first computes rankA(i) for
an ending position i of the �x/ log n�th small block using
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rank-directory, and then counts the number of 1’s in re-
maining x mod log n bits, which can be found by adding at
most c entries in rank-lookup-table after masking out
unwanted trailing bits.

Example 1: For bit-string A in Fig. 1, let log2 n = 9 and
log n = 3. Suppose that we want to compute rankA(23). We
first get rankA(21) = 10 by adding the value 9 in the 2nd entry
of the 1st-level directory and the value 1 in the 7th entry of the
2nd-level directory, which give the numbers of 1’s in A[1..18] and
A[19..21], respectively. Then, we get a bit-pattern 100 by mask out
A[22..24] = 101 with 110 and get the number of 1’s in 100 using
rank-lookup-table. So, we get rankA(23) = 11 by adding 1 to
10. �

For selectA, Clark partitioned A into blocks so that
each block has the same number of 1’s. Differently from
rank-directory, the sizes of the blocks are diverse. Thus,
Clark divided the blocks into two classes, dense blocks
and sparse blocks, and handled two classes with different
techniques. For a dense block, a similar partition is per-
formed one more time, and for a sparse block, all answers
of select are recorded explicitly. Finally, select can be
computed by scanning a small number of bits using lookup
tables. We omit the detailed algorithm and refer the reader
to [13].

3. Algorithm I

In this section we present our first algorithm. This algo-
rithm also adopts the approach of using multi-level directo-
ries and lookup tables. The difficulty of developing an al-
gorithm for select results from the irregular distribution
of 1’s. While Clark’s algorithm overcomes the difficulty
by classifying the subranges of directories into two groups:
dense one and sparse one, we do it by transforming A into a
bit-string where 1’s are distributed quite regularly.

3.1 Definitions

Given a bit-string S of length m, we divide S into blocks of
size b. There are two kinds of blocks. One is a block where
all elements are 0 and the other is a block where there is at
least one 1. We call the former a zero-block and the latter a
nonzero-block.

• The contracted string of S is defined as a bit-string S c

of length m/b such that S c[i] = 0 if the ith block of S
is a zero-block, S c[i] = 1 otherwise.
• The extracted string of S is defined as a bit-string S e

which is formed by concatenating nonzero-blocks of S
in order. Hence, the length of S e is m in the worst case,
and the distance between the ith 1 bit and the jth 1 bit
is at most ( j − i + 1)b − 1 for i < j.
• The delimiter string of S is defined as a bit-string S d

such that S d[i] = 0 if the ith 1 bit and the (i − 1)st 1 bit
of S are contained in the same block, and S d[i] = 1
otherwise. We define S d[1] = 1. Note that the length
of S d is equal to the number of 1’s in S and so it is m

Fig. 2 Structure of Algorithm I.

in the worst case. The value of rankS d (i) means the
number of nonzero blocks up to the block (including
itself) containing the ith 1 bit of S .

Example 2: Bit-strings S , S c, S e and S d. We assume that we
divide S into blocks of size 4.

S 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1
S c 1 0 1 1
S e 0 1 1 1 0 0 1 0 1 1 0 1
S d 1 0 0 1 1 0 0

�

3.2 Skeleton of Algorithm I

Let B be the extracted string of A, and C be the contracted
string of A when dividing A into blocks of size

√
log n. We

transform A into B and C, and we will compute rankA and
selectA using B and C. We first consider the properties of
B and C and describe how to compute rankA and selectA

using rank’s and select’s of B and C. In the next section
we will present algorithms and data structures for rank’s
and select’s of B and C. Figure 2 shows the overall struc-
ture of Algorithm I.

Recall that blocks of B contain at least one 1 bit, and
thus the distance between the ith 1 bit and the jth 1 bit in
B is at most ( j − i + 1)

√
log n − 1 for i < j. Bit-string C

represents a mapping between A and B. The length of C is
n/
√

log n and the length of B is n in the worst case.

Example 3: Bit-strings A, B and C. We assume that
√

log n =
5.

↓ ⇓
A 01101 00000 00000 11010 00000 01001 00100
C 1 0 0 1 0 1 1
B 01101 11010 01001 00100↑ ⇑

�

We describe how to compute rankA(x) and selectA(y)
using B and C. For computing rankA(x), we find the index
x′ of B which corresponds to A[x] and compute rankB(x′).
Let xb be the block number of A which contains A[x] and
xp be the position of A[x] in the xbth block of A, that is,
xb = �x/

√
log n  and xp = x − (xb − 1)

√
log n. Then,

x′ = rankC(xb − 1) × √log n + xp ×C[xb] and

rankA(x) = rankB(x′).

For computing selectA(y), we compute selectB(y) and
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find an index of A which corresponds to B[selectB(y)]. Let
sb be the block number of B which contains the yth 1 bit, that
is, sb = �selectB(y)/

√
log n . Then,

selectA(y)=selectB(y)+(selectC(sb)−sb)
√

log n.

Example 4: For A of Example 3, suppose that we want to com-
pute rankA(28) and selectA(9). For rankA(28), we get xb = 6
and xp = 3, that is, A[28] is the 3rd bit in the 6th block of
A. Because rankC(5) = 2, we get x′ = 2 × 5 + 3 = 13,
so rankA(28) = rankB(13) = 6. For selectA(9), we get
selectB(9) = 18, so sb = 4. Because selectC(4) = 7, we get
selectA(9) = 18 + (7 − 4) × 5 = 33. �

3.3 Ranks and Selects for B and C

We describe algorithms and data structures for rank’s
and select’s of B and C. For rankB, we build
rank-directory of B and use rank-lookup-table.
For rankC , we build rank-directory of C and use
rank-lookup-table. We can compute rankB(x) and
rankC(x) using these data structures in constant time as in
Sect. 2.

3.3.1 Select for Extracted String B

For selectB, we use lookup tables and a two-level directory
which is similar to rank-directory because 1’s in B are
distributed regularly.

• The 1st-level directory records the position of every
log2 n’th 1 bit in B. This directory has at most n/ log2 n
entries and each entry requires log n bits. Thus the
space of this directory is n/ log2 n × log n bits.
• The 2nd-level directory records the position of every√

log n’th 1 bit in the ranges of the 1st-level direc-
tory. This directory has at most n/

√
log n entries and

each entry requires log(log2 n× √log n) bits because all
blocks of size

√
log n have at least one 1 bit. Thus the

space of this directory is n/
√

log n×5/2×log log n bits.
• We also maintain rank-lookup-table and select-
lookup-table for bit strings of length (log n)/c.

We can compute selectB(y) using the above directory
and the lookup tables. Let y′ = y mod

√
log n and p =

selectB(y − y′), which can be computed using the above
directory because y − y′ is a multiple of

√
log n. Since the

distance between the (y − y′)th 1 bit and the yth 1 bit is at
most (y′ + 1)

√
log n − 1 < log n, the yth 1 bit in B exists in

B[p+ 1..p+ log n] and the remaining thing is to find the po-
sition of the y′th 1 bit in B[p+1..p+ log n]. It can be done in
constant time using the lookup tables. We divide B[p+1..p+
log n] into c pieces of length log n/c. We first find the piece
containing the y′th 1 bit by accessing rank-lookup-table
at most c times, and then we get the position of the y′th 1 bit
in the piece using select-lookup-table.

3.3.2 Select for Contracted String C

We use a different approach for selectC because the range
of contiguous 0’s is not bounded in C. When dividing C into
blocks of size log n, let D and E be the delimiter string and
the contracted string of C, respectively. Since the length of
C is n/

√
log n, the length of D is n/

√
log n in the worst case

and the length of E is n/ log n
√

log n.

Example 5: Bit-strings C, D and E. We assume that log n = 4.

↓
C 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1
E 1 0 1 1 1
D 1 0 0 1 1 0 0 1 0

�

We describe how to compute selectC(y) using D and
E. We first compute the block number u containing the yth
1 bit in C using rankD and selectE . Notice that rankD(y)
means the number of nonzero blocks up to the block (includ-
ing itself) containing the yth 1 bit of C and selectE(k) rep-
resents the block number of the kth nonzero block. Hence,

u = selectE(rankD(y)).

Let r be the number of 1’s in the first (u − 1) blocks of C,
i.e.,

r = rankC((u − 1) × log n).

Let s be the position of the (y− r)’th 1 bit in the uth block of
C, which can be found by scanning the uth block using the
lookup tables. Then,

selectC(y) = (u − 1) × log n + s.

Example 6: Suppose that we want to find selectC(6) in Ex-
ample 5. Because rankD(6) is 3 and selectE(3) is 4, the 6th 1 bit
is in the 4th block of C. We can also know that the first 3 blocks
of C contains four 1 bits using rankC and that the position of the
2nd 1 bit in the 4th block is 3 using lookup tables. So, we get
selectC(6) = 3 × 4 + 3 = 15. �

We describe data structures for rankD and selectE .

• For rankD, we build rank-directory of D and use
rank-lookup-table.
• For selectE , we construct an array whose ith en-

try records selectE(i) naively. This array has at
most n/(log n

√
log n) entries and each entry requires

log(n/(log n
√

log n)) bits. Thus the space of this array
is O(n/

√
log n). We call this array the select array of

E. Note that we do not need to maintain bit-string E.

Theorem 1: Algorithm I performs rankA and selectA in
constant time using at most n+O(n log log n/ log n) bits and
at most
n + O(n log log n/

√
log n) bits, respectively.

Proof: We transform A into B and discard A. That is, we
maintain B using the space charged for A. Although A is
discarded, we can easily restore a substring of A using B



NA et al.: FAST COMPUTATION OF RANK AND SELECT FUNCTIONS
2029

and C. Furthermore, we can know in constant time what a
character A[i] is, which is the most fundamental operation
in bit-strings.

All other bit-strings take O(n/
√

log n) bits. The direc-
tory for selectB takes O(n log log n/

√
log n) bits. All other

auxiliary data structures, directories and lookup tables take
O(n log log n/ log n) bits. It has already been shown that the
algorithm has constant retrieval time. �

4. Algorithm II

In this section we describe Algorithm II, which is simpler
and more practical than Algorithm I but theoretically uses
at most 2n + O(n log log n/ log n) bits. We also propose a
new byte-based implementation method reducing a waste of
space, which is suitable for Algorithm II because its data
structures are regular.

4.1 Description of Algorithm II

We only describe the algorithm for selectA since the algo-
rithm for rankA is the same as Clark’s. Figure 3 shows the
overall structure of Algorithm II. The approach for selectA

is similar to the one for selectC in Sect. 3.3.2. When di-
viding A into blocks of size log n, let P and Q be the delim-
iter string and the contracted string of A, respectively. The
length of P is n in the worst case and the length of Q is
n/ log n. Note that P (resp. Q) is to A what D (resp. E) is to
C in Sect. 3.3.2.

To compute selectA(y), we use the same algorithm
as the one for computing selectC(y). Thus, we need
to compute rankP and selectQ. For rankP, we build
rank-directory of P. For selectQ, we use a new ap-
proach, which uses little space in practice. The reason why
we don’t use the select array of Q (i.e., naive implementa-
tion of selectQ) is because it takes nearly n bits in practice
as well as in the worst case.

We describe our approach for selectQ. We call a bun-
dle of contiguous 0’s a clump. In Example 7, there are 4
clumps in Q. We define the clump-delimiter string R of Q
as follows: R[i] = 0 if the ith 1 bit of Q is adjacent to the
(i− 1)st 1 bit, and R[i] = 1 otherwise. We define R[1] as 0 if
Q[1] = 1, and 1 otherwise. See Example 7. The length of R

Fig. 3 Structure of Algorithm II.

is n/ log n in the worst case since the length of Q is n/ log n.
We construct the following auxiliary data structures.

• We construct a data structure for rankR. The value of
rankR(i) means how many clumps there are in front of
the ith 1 bit of Q. In Example 7, there are 3 clumps in
front of the 7th 1 bit.
• We construct an array where the ith entry represents the

accumulated number of 0’s up to the ith clump (includ-
ing itself) in Q. We call it the clump array of Q. Note
that we do not need to maintain bit-string Q.

Example 7: Bit-strings Q and R, and the clump array of Q.

↓
Q: 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1
R: 1 0 0 1 0 1 0 0 0 1

The clump array of Q
index 1 2 3 4

2 3 5 6
�

In order to compute selectQ(i), we first find how many
clumps there are in front of the ith 1 bit of Q using rankR(i)
and get the number j of 0’s in front of the ith 1 bit using the
clump array. Then selectQ(i) = i + j.

Theorem 2: Algorithm II performs rankA and selectA

in constant time using n + O(n log log n/ log n) bits and at
most 2n + O(n log log n/ log n) bits (including the original
bit-string), respectively.

Proof: We omit the case of rankA since the algorithm for
rankA is the same as Clark’s. Auxiliary data structures
for selectA are bit-strings P and R, their rank-directories
and the lookup tables, and the clump array of Q. The data
structures except string P and the clump array of Q takes
O(n log log n/ log n) bits.

We show that string P and the clump array of Q takes
at most n bits in total. Let p be the number of 1’s in A, i.e.,
the length of P is p. Since Q is the contracted string of A
whose size is n/ log n, the number of 0’s in Q is at most (n−
p)/ log n. Therefore, the clump array of Q has at most (n −
p)/ log n entries and each entry requires log(n/ log n) bits.
The clump array requires at most n − p bits. Hence we can
get the theorem. �

4.2 Byte-Based Implementation of Algorithm II

We present an efficient byte-based implementation method
of Algorithm II. The directories and lookup tables are based
on bits, while atomic units in modern computers are not
bits but bytes. Therefore, we need bit-operations such as
bitwise-and, bitwise-or, and shift in order to get the values
of entries. It causes inefficiency in time. One method avoid-
ing such inefficiency is to allocate space to entries by the
units of bytes. For example, we allocate 2 bytes to an en-
try which requires 12 bits. However, this method may waste
much space. We present a byte-based implementation re-
ducing waste of space and avoiding bit-operations. A sim-
ilar method was used in [16]. This method is applied to Q
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and R as well as A. We assume that n is less than 232, the
maximum value represented by a word in 32-bit machines.
However, our method can be extended to the case of n ≥ 232.

The key idea of our method is that ranges of directories
and lookup tables are adjusted to multiples of 8. The follow-
ing data structure, which we use to implement Algorithm II,
is an instance of our implementation method.

• The 1st-level directory contains rank for every multi-
ple of 28. Each entry requires at most 32 bits. Particu-
larly, the ranges of the 1st-level directory is adjusted to
2k, where k is a multiples of 8 in order to allocate space
to entries of the 2nd-level directory by byte units.

• The 2nd-level directory contains rank for every multi-
ple of 25, within the subranges of size 28. Each entry
requires 8 bits.

• For each possible bit pattern of length 8, the rank-
lookup-table gives the number of 1’s in the pattern.
Each entry requires 3 bits but we allocate 8 bits for each
entry in order to avoid bit-operations. We may access
the rank-lookup-table four times to get rank.

Because each entry in all directories is stored in bits of a
multiple of 8, we can find values of entries without bit-
operations. So retrievals in our method are fast.

Algorithm II is the most suitable for applying this
method because it uses a rank directory but not a select di-
rectory. Subranges of select directories are determined ac-
cording to the distribution of 0’s and 1’s and they are of var-
ious lengths. Note that we can bound the sizes of subranges
of select directories, but we cannot control them. Hence,
such a byte-based implementation as described above can-
not be applied to select directories of Algorithm I and
Clark’s algorithm, which are main data structures of these
algorithms.

5. Experimental Results

In this section we present experimental results comparing
Clark’s algorithm (CA) with Algorithm I (A1), Algorithm
II (A2), and byte-based Algorithm II (BA). All algorithms
except algorithm BA are allowed to use bit-operations, i.e.,
they are optimized for space. We included algorithm BA in
our experiments to look into efficiency in time and ineffi-
ciency in space of byte-based implementations.

We compare the performance of the algorithms on 98
(= 7 × 14) random bit-strings of 7 kinds of lengths (1, 10,
20, 30, 40, 50, and 100 Mbits) and with 14 kinds of ra-
tios of 1’s (1, 3, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80,
and 90%). We measured rank retrieval time, select retrieval
time, construction time, and space of auxiliary data struc-
tures in order to compare the performances. For rank and
select retrieval time, we measured the time taken to perform
107 random queries. We used Microsoft Visual C++ 6.0 to
implement the algorithms and performed these experiments
on the 2.8 GHz Pentium IV with 2 GB main memory.

Fig. 4 Rank retrieval time.

Fig. 5 Select retrieval time on bit-strings of length 50 Mbit.

5.1 Rank Retrieval Time

In every algorithm, rank retrieval time is uniform regardless
of the ratio of 1’s and the length of a string. Figure 4 (a)
and (b) show rank retrieval times for bit-strings with 10%
1’s and 50% 1’s, respectively. In these figures, the vertical
axis represents the time taken to perform 107 queries and the
horizontal axis represents the length of bit-string A. Byte-
based Algorithm II is the fastest and Algorithm I is the slow-
est. The reason why Algorithm I is slow is that it needs two
rank’s. Algorithm II and Clark’s algorithm have the same
performance in rank because the two algorithms for rank
are the same.

5.2 Select Retrieval Time

In every algorithm, select retrieval time is slower than rank
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Fig. 6 Select retrieval time on various bit-strings.

retrieval time. Figure 5 shows select retrieval times for bit-
strings of length 50 Mbit, where the horizontal axis repre-
sents the ratio of 1’s in A. Figure 6 (a)∼(d) show select
retrieval times for bit-strings with 1%, 3%, 10%, and 50%
1’s, respectively. Our algorithms have roughly uniform se-
lect retrieval time regardless of both the ratio of 1’s and the
length of a string. The performance of Clark’s algorithm

Fig. 7 Construction time.

varies according to the ratio of 1’s. Its retrieval time be-
comes slower as the ratio of 1’s becomes lower except for
1%. Select queries in strings with 3% 1’s are more than three
times as slow as those in strings with 50% 1’s. The reason is
because the block size in the directory for select become
long and so many accesses to lookup tables are needed as the
ratio of 1’s becomes lower. An exception is the case of 1%
1’s. In this case, no accesses to lookup tables are needed in



2032
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Fig. 8 Size of auxiliary data structures.

many queries because answers are recorded explicitly in the
directory for select. This behavior of Clark’s algorithm is
observed also in another implementation [16]. In all cases,
byte-based Algorithm II is the fastest and Algorithm II is the
second. In cases that the ratio of 1’s is less than 40% (ex-
cept for 1%), Algorithm I is faster than Clark’s, and the two
algorithms have a similar performance in other cases.

5.3 Construction Time

In every algorithm, the construction time of auxiliary data
structures is proportional to the length of a string. Fig-
ure 7 (a)∼(c) show construction times for bit-strings with
25%, 50%, and 75% 1’s, respectively. In all cases, byte-
based Algorithm II is the fastest, Algorithm II is the second,
and Algorithm I is the third. Clark’s algorithm is the slow-
est due to the complication and irregularity of the data struc-
tures. Figure 7 (d) shows construction times for bit-strings
of length 50 Mbit, where the horizontal axis represents the
ratio of 1’s in A. While the construction times are generally
uniform in Algorithm II and byte-based Algorithm II, the
construction time in Clark’s algorithm greatly increases as
the ratio of 1’s becomes higher.

5.4 Space

In every algorithm, the size of auxiliary data structures
looks proportional to the length of a string. Theoreti-
cally, the size of auxiliary data structures are bounded by
O(n log log n/

√
log n) or O(n log log n/ log n). It seems,

however, that 100 Mbits is so short that these complexi-
ties are not discriminated from O(n). Figure 8 (a)∼(c) show
spaces of auxiliary data structures for bit-strings with 5%,
40%, and 70% 1’s, respectively. Figure 8 (d) shows spaces
for bit-strings of length 50 Mbit, where the horizontal axis
represents the ratio of 1’s in A. We do not count the space
for a given string A. The reason why Algorithm I has neg-
ative values in Fig. 8 (a) is that a transformed string B is
even shorter than given string A. Because it is very difficult
and complex to implement Clark’s algorithm using dynamic
memory allocation, we used static allocation. Thus, data of
Clark’s algorithm in Fig. 8 (d) represent the size in the worst
case, which are uniform regardless of the ratio of 1’s. If
we implement Clark’s algorithm using dynamic allocation,
the space of Clark’s algorithm is decreased, and the retrieval
time and the construction time are increased. Algorithm I
uses the least space when the ratio of 1’s is low, and Clark’s
algorithm does when the ratio of 1’s is high.

6. Conclusions

We proposed two algorithms supporting rank and select
in constant time. Algorithm I requires at most n +
O(n log log n/

√
log n) bits and Algorithm II does at most

2n + O(n log log n/ log n) bits. Our algorithms have con-
stant query time for select in practice. Furthermore, we
proposed the byte-based implementation method which is
efficient in space as well as in time and described how to
apply this method to Algorithm II. This implementation
method can be applied to some parts of Algorithm I but not
to Clark’s algorithm for select because of irregularity in
data structures. The experimental results show that our al-
gorithms are faster than Clark’s algorithm for select queries.
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They also show that Algorithm II (using the byte-based im-
plementation) is the most efficient in practice when consid-
ering both time and space.
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