
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009
2043

PAPER

A Technique for Defining Metamodel Translations

Iván GARCÍA-MAGARIÑO†a), Member and Rubén FUENTES-FERNÁNDEZ†b), Nonmember

SUMMARY Model-Driven Engineering and Domain-Specific Model-
ing Languages are encouraging an increased used of metamodels for the
definition of languages and tools. Although the Meta Object Facility lan-
guage is the standard for metamodeling, there are alternative metamodeling
languages that are aimed at satisfying specific requirements. In this con-
text, sharing information throughout different domains and tools requires
not only being able to translate models between modeling languages de-
fined with the same metamodeling language, but also between different
metamodeling languages. This paper addresses this latter need describing
a general technique to define transformations that perform this translation.
In this work, two case studies illustrate the application of this process.
key words: Model Transformation, Metamodel Translation, Model-Driven
Engineering

1. Introduction

Metamodeling is [1] the study and development of the the-
ories, rules, constraints, and models used for modeling
in a given domain. It is becoming increasingly popular
for the definition of Domain-Specific Modeling Languages
(DSML) [2]–[4] and it is standard procedure in Model-
Driven Engineering (MDE) [5]. Among the advantages
of metamodeling are its aim of defining graphical model-
ing languages, the availability of frameworks to build sup-
port tools, and the possibility of manipulating the models
through automated transformations, at least in MDE.

In short, metamodeling languages (MMLs) describe
metamodels that characterize modeling languages (MLs).
The Object Management Group (OMG), which is the main
standardization organism for metamodeling, has defined a
metadata architecture [6] to explain the relations between
the previous elements in the definition of languages. This
architecture considers four layers of abstraction:

• The Meta-Metamodel layer (M3). This is the layer of
the MMLs such as the Meta Object Facility [6] lan-
guage.
• The Metamodel layer (M2). M2 is the layer where the

metamodels of MLs are defined using MMLs from M3.
For instance, the definition of the Unified-Modeling
Language (UML) [7], [8] metamodel in M2 uses MOF
from M3.

Manuscript received October 9, 2008.
†The authors are with the Dept. of Software Engineering and

Artificial Intelligence, Facultad de Informática, Universidad Com-
plutense de Madrid, Spain.

a) E-mail: ivan gmg@fdi.ucm.es
b) E-mail: ruben@fdi.ucm.es

DOI: 10.1587/transinf.E92.D.2043

• The Model layer (M1). It contains specific models de-
fined from the metamodels in M2. In this layer specific
UML diagrams for a given problem could appear.
• The User Objects layer (M0). M0 defines the concrete

objects of a problem as instances of models in M1.

The current standard MML is the Meta Object Facil-
ity (MOF) [6] language defined by the OMG. Neverthe-
less, there is a variety of MMLs targeted to satisfy spe-
cific requirements. Some of them emerge from MOF as
Essential MOF (EMOF) and Complete MOF (CMOF) [6],
which are the subsets of MOF that organize its description.
For DSMLs, the INRIA (Institut National de Recherche
en Informatique et en Automatique, France) has devel-
oped the KM3 [9] language for metamodeling. GOPRR
(Graph Object Property Relationship Role) [10] is the MML
used by the MetaEdit+ tool. The ECore [11] language of
the Eclipse Modeling Framework (EMF) [12] is probably
the most widely used MML for implementation due to its
Eclipse support. It is almost aligned with EMOF [12]. Other
platforms like MS/DSL [13] or Coral [14] also include their
own metamodeling languages.

This variety of MMLs makes the exchange of informa-
tion difficult between solutions that adopt different propos-
als to define their modeling languages (MLs). Transforma-
tions between MMLs have been proposed for this purpose,
in the same way that they are already used to share informa-
tion between MLs based on the same MML. Existing liter-
ature contains examples of ad-hoc metamodel translations,
like the one for the translation between MOF and ECore in
[15]. However, these works do not explicitly define a gen-
eral technique for the development of metamodel transla-
tions, since they are more like guidelines or catalogues of
correspondences between abstractions for specific cases.

There are two facts that make the definition of gen-
eral metamodel translations difficult. First, the meaning and
level of abstraction of the different MMLs vary. For in-
stance, both GOPRR [10] and ECore [11] contain elements
to connect entities. GOPRR uses relationships and ECore
uses references. Nevertheless, GOPRR relationships can
contain attributes in the body or in the ends of the rela-
tionships, whereas ECore references do not have attributes.
Even in cases where the languages are more similar such as
MOF and ECore [15], the definition of transformations has
to deal with non-aligned languages that do not have the same
expressive power. The second problem is that model trans-
formation languages rely on unique specific MMLs. That

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



2044
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

is, for a given transformation language, a transformation
needs its source and target MLs to be defined in the same
MML. For instance, the ATLAS Transformation Language
(ATL) [16] relies on ECore. However, the meta-metamodels
of these MMLs are not usually defined in other MMLs
and therefore there is no convenient transformation between
these MMLs. Thus, model-transformation languages can-
not usually be used for defining metamodel translations.
As an exception, KM3 [9] is defined with ECore, and an
ATL transformation can translate between KM3 and ECore
MMLs.

This paper presents a general technique for defining
metamodel translations. This technique relies on the cate-
gorization of the elements or element-patterns of metamod-
eling languages. This classification is based on the fact that
most MMLs are graph-based, so they share concepts such
as node or edge. The technique includes several steps for:
the identification of correspondences between elements of
MMLs, the propagation of their attributes and links, the dis-
ambiguation of conflicts in the translation, and the imple-
mentation of transformation rules. A conflict in the transla-
tion appears when an element in the target metamodel could
be the result of the translation of different elements of the
source metamodel. For instance, an EClass of ECore is
required to represent both Objects and Relationships from
GOPRR, since both Objects and Relationships have proper-
ties but in ECore only EClasses can have properties. De-
pending on the case, the technique defines its rules with a
different approach according to the classification in [17]. If
there are no conflicts, the technique adopts a declarative ap-
proach that only considers the correspondences between el-
ements, attributes and links; if conflicts appear, additional
package-like structures must be added to the target and a
structure-driven approach is better suited to this task. In
both cases, the experimentation of this technique is carried
out on general-purpose transformation languages. Existing
model transformation languages are not suitable for meta-
model translations since they usually need both the source
and target models to be defined in the same MML.

The structure of the remainder of the paper is as fol-
lows. The next section provides a background on model
transformations. Section 3 presents the technique devel-
oped in this research for translating metamodels. Then,
Sect. 4 gives a detailed description of two case studies of
metamodel translation defined using this technique. This
work is contextualized and compared with related research
in Sect. 5. Finally, conclusions and future work are dis-
cussed in Sect. 6.

2. Background

Metamodel translations are a particularization of model
transformations in which models are metamodels and the
semantic of the source remains in the target model. Model
transformations can be classified into the following ap-
proaches [17]:

Approach 1: Direct-manipulation approaches. The mod-
els have some kind of internal representation and an API to
manipulate it. Generally, these transformations are managed
with imperative languages such as Java.

Approach 2: Declarative approaches. These are based on
mathematical relations. A relation indicates the type of
source and target elements and uses constraints for its defini-
tion. Satisfying these constraints is necessary for the rules to
be applied. An example with the Mercury variant of Prolog
appears in the work of Gerber et al. [18]. For the purpose of
this discussion, graph approaches (see [17]) are considered
a particular type of declarative approach.

Approach 3: Structure-driven. In model transformation
literature [16], this approach is also called imperative.
Transformations in this category have two phases, the first
one creates the hierarchical structure of the target model,
and the second one fills in the attributes and references in
the target model. An example of this approach is the frame-
work provided by OptimalJ [19].

Approach 4: Hybrid approaches. They combine tech-
niques from the other approaches. For instance, ATL [16]
combines declarative and imperative approaches.

The technique presented in this paper uses a hybrid ap-
proach, declarative and structure-driven, to define the meta-
model translations. The choice depends on the features of
the translation. If it does not need to organize elements in
the target with some package-like structure, the declarative
approach is preferred given its flexibility and declarative ex-
pression of transformations. Otherwise, the declarative ap-
proach is complemented with a structure-driven one because
it facilitates the insertion of new elements and its rearrange-
ment in the package-like structure.

In order to implement the technique, the chosen trans-
formation language must be able to satisfy the previous
requirements. Given the hybrid (both declarative and
structure-driven) nature of the technique, we have chosen
standard model transformation languages such as ATL [16],
Query/View/Transformation (QVT) (or some of its vari-
ants) [20], or XSL Transformations (XSLT) [21]. They al-
low both approaches to be implemented although biased to
a declarative expression.

The previous transformation languages can be classi-
fied into two groups. Some of them define transformations
that rely on the availability of the metamodels for the in-
volved MLs. These metamodels allow the compliance of the
source and target models to be validated. The metamodels
need to be defined with a particular metamodeling language,
like ECore in the case of ATL or MOF for QVT. Hence, this
kind of language is not usually applicable to the problem of
translation between MMLs, since the MMLs of the source
and target models may be different. A second group of lan-
guages defines transformations between models of different
modeling languages without an explicit definition of their
metamodels. These transformations have the advantage of
being very flexible since there are few constraints on the



GARCÍA-MAGARIÑO and FUENTES-FERNÁNDEZ: A TECHNIQUE FOR DEFINING METAMODEL TRANSLATIONS
2045

MLs that they can process. Nevertheless, they are less robust
than the previous transformations since they cannot validate
their source and target models unless this check is imple-
mented with their own transformations. These languages are
known as general-purpose transformation languages. The
most widely used is XSLT [21], which is originally intended
to transform general XML documents. An example of the
use of XSLT for metamodel translations is the work of Ger-
ber and Raymond [15] with MOF and ECore.

Since the goal of the transformations introduced in
this paper is to translate between MLs defined with differ-
ent MMLs, our technique usually needs a general-purpose
transformation language. In this case, the recommended
choice is XSLT given the extended availability of automated
support, although the technique can be applied with other
transformation languages.

3. Process for the Definition of a Metamodel Transla-
tion

The technique for defining metamodel translations contains
the following steps:

Step 1: Identification of correspondences between ele-
ments. Find the element patterns that match with the source
and target MMLs. Current MMLs are connection-based [22]
MLs. Thus, all of these include concepts for nodes, edges
that link nodes, and properties with primitive values.

Step 2: Propagation of attributes and links. Determine
how to propagate the information and relations of nodes and
edges from the source to the target metamodel. This infor-
mation includes the properties of the elements in the meta-
model.

Step 3: Disambiguation of conflicts. Look for elements in
the target MML that are used to represent more than one el-
ement of the source MML. If any, the proposed technique
places the results of these correspondences in different pack-
ages to clearly state the source of the translation. This orga-
nization reduces potential ambiguities in interpretation.

Step 4: Implementation. Define rules to transform the
identified element patterns. Depending on the result ob-
tained in the previous step, the target elements produced by
the rules must be properly placed in the corresponding pack-
ages of the target.

The first step takes advantage of the common graph
structure of current MMLs to establish correspondences be-
tween element patterns. It looks for modeling primitives
that correspond to nodes, edges and properties. The concept
of a node as an element that contains pieces of informa-
tion usually offers clear correspondences amongst MMLs.
A node is a Class in MOF, EMOF, and CMOF, an EClass
in ECore, and an Object in GOPRR. The concept of edge
presents more difficulties as the elements that it contains or
the type of links are different among MMLs. For this reason,
the number and type of elements required for its translation

varies greatly amongst MMLs. Properties are usually de-
scribed as attributes of some of the previous elements.

Depending on the features of MMLs, it is possible that
the previous correspondences appear just between elements
(i.e. correspondences 1-1) or between a group of elements
(i.e. correspondences 1-n, n-1 or n-n). For very similar lan-
guages, the correspondences are 1-1. This is the case of the
translation from CMOF to ECore that relates a CMOF Class
with an ECore EClass, a CMOF Association with a pair of
opposed ECore EReference, or a CMOF Property with an
ECore EAttribute for the data of nodes. Note that these cor-
respondences are so simple because ECore is almost aligned
with EMOF. The only element from CMOF not included in
EMOF in the previous translations is the Association, which
also has a simple translation in ECore. Another possibility
is that each source element can be translated to one element
of the target, but not all the elements of the target MML
are used. An example of this case occurs in the transla-
tion from ECore to MOF. These matchings are 1-1, so the
translation is as simple as the aforementioned case. How-
ever, here it may be necessary to decide which elements of
the target MML are used if several translations are possi-
ble. The translation of ECore to MOF also offers examples
of translations n-1, where several ECore elements are trans-
lated to one MOF element. A third scenario is that in which
the source elements contain more information than those of
the target. In this case, each source element corresponds
to a group of target elements that produce 1-n correspon-
dences. This is the case for the GOPRR to MOF translation.
A GOPRR relationship represents an edge, but several el-
ements are required in MOF to represent that relationship.
The GOPRR relationship has attributes and MOF needs at
least one class to contain those attributes and several ref-
erences to connect the linked nodes and the one that con-
tains the information. The last case is n-n correspondences,
where a group of elements of the target represents a group
of elements from the source. An example of this situation is
the translation from MOF to GOPRR. For instance, OMG’s
specifications contain recursive patterns for describing the
edges: classes represent the body of the edge and their ends
in the UML and SPEM metamodels. These OMG recur-
sive patterns can be translated into a relationship and several
roles in GOPRR.

The second step is intended to translate the informa-
tion (represented by attributes and metattributes) and links
from the source to the target metamodel. Attributes are in-
formation in the elements defined by the users. They are
represented with EAttributes in ECore, Properties in MOF,
or Properties in GOPRR. Metattributes are information in
the elements defined as part of the MML. Examples of them
in MOF are the multiplicity of the edge ends, which is repre-
sented with the upperBound and lowerBound, or indications
of whether or not an attribute is required. The connections
between the elements of the source are also translated into
the connections of the target elements at this stage. Some
examples of these connections are those between edges and
nodes, or inheritance relations.



2046
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

In Step 3, the designer of the translation must check
if there is any target element used in more than one corre-
spondence. This situation causes ambiguity in the transla-
tion, making the interpretation of the target model confus-
ing and precluding traceability. When this occurs, this tech-
nique recommends placing the conflictive elements in differ-
ent packages or another kind of container of the target meta-
model to distinguish the source of their translations. Some
examples of these conflictive translations appear from MOF
to ECore and from MOF to EMOF. MOF have a greater
expressive power than ECore or EMOF and thus some of
their elements are translated into the same target elements.
If there are conflicts, the designer establishes the structure
of the target metamodels for the disambiguation. In general,
structure-driven approaches implement this kind of conflic-
tive translations with greater ease than a declarative one.
Otherwise, a declarative approach is suitable for the transla-
tion.

Finally, in Step 4 the designer chooses a particular
transformation language and creates the proper rules for the
translation according to that language. The rules follow
the matchings between source and target elements identi-
fied in Step 1 and propagate links and attributes according
to Step 2. If Step 3 found conflictive situations, rules may
need to place the target elements according to the structure
established for the disambiguation of conflictive elements.

4. Case Studies

This section exemplifies the application of the technique de-
scribed in the previous section with two case studies. They
correspond to translations from GOPRR [10] to ECore [11]
and from ECore to EMOF with the addition of Associa-
tions [6]. Associations are considered here, in spite of not
belonging to EMOF but to CMOF, since there is no way to
represent the concept of reference in EMOF. This section
firstly makes a brief introduction to the concepts of these
MMLs involved in the case studies. Then, it presents each
case study with a motivation of the translation and the de-
scription of the application of the technique in that scenario.

4.1 Metamodeling Languages

4.1.1 GOPRR

GOPRR (Graph Object Property Relationship Role) [10] is
the MML used in the MetaEdit+ [23] tool. It has also been
used in frameworks for component reuse on metamodeling-
based developments [24], to integrate concepts from differ-
ent development stages (i.e. analysis, design and implemen-
tation) in object-oriented approaches [25], or in the adapta-
tion of CASE tools to specific environments [26]. The main
disadvantage of GOPRR is the lack of standardization in the
instantiation of its metamodels, that makes the exchange of
information difficult between tools using their proprietary
formats. The main elements of GOPRR are:

• Graph. This is the root element which contains the
other elements.
• Object. It represents an entity. The objects can extend

other objects through inheritance hierarchies.
• Relationship. The relationships connect roles in any

number. Therefore, the GOPRR relationships are n-
ary.
• Role. It represents a relationship end. A role is con-

nected to its Relationship and one Object.
• Property. It contains a value of a primitive type. Both

objects, relationships and roles can have properties.

4.1.2 ECore

ECore is the MML of the Eclipse Modeling Framework
(EMF) [11], [27], which is the metamodeling framework
distributed as a plug-in of the Eclipse development envi-
ronment. EMF provides support for the automated genera-
tion of textual editors from ECore metamodels and libraries
for the serialization of both metamodels and models. With
this support, the Graphical Editing Framework (GEF) [11]
makes it possible to generate graphical editors for ECore
metamodels. Also integrated in Eclipse as a plug-in, the
ATL [16] defines transformations among ECore metamod-
els. ECore has a standard metamodel instantiation provided
by EMF, in which, both metamodels and models are repre-
sented with XMI [28] documents. ECore includes as its key
concepts:

• EClass. The single ECore element that contains EAt-
tributes or EReferences. The instances of EClass can
extend other instances of EClass by means of the ESu-
pertType property.
• EAttribute. It contains values of primitive types, like

integers, strings, and characters.
• EReference. It represents a binary relationship between

two EClasses. The instance of the first EClass contains
the instance of the EReference. The second EClass is
referenced by the EReference. The multiplicty meta-
tribute of EReferences is indicated by the UpperBound
and LowerBound properties. There are two kinds of
EReferences:

– containment. The element representing the con-
tainer includes an element that represents the ref-
erenced object. Each element can only be refer-
enced by one containment reference.

– non-containment. The container simply includes
a path to the element representing the referenced
element. An element can be referenced by several
non-containment references.

• EPackage, ESubPackage. They are containers of
EClasses. An EPackage can contain ESubPackages.

4.1.3 EMOF with Associations

EMOF is the core of the definition of the standard MOF [6].



GARCÍA-MAGARIÑO and FUENTES-FERNÁNDEZ: A TECHNIQUE FOR DEFINING METAMODEL TRANSLATIONS
2047

Fig. 1 Correspondences from GOPRR to ECore.

The key elements of EMOF are:

• Class. It is the element able to contain both Properties
and Operations. It can extend other Classes, by means
of the Inheritance concept.
• Property. It contains values of primitive types, such as

integer, strings, and characters.
• Package. It represents a collection of related Classes

and Associations.

For this case study we also consider the Association
element from CMOF since EMOF does not contain an el-
ement to represent references. An Association describes a
binary relation between classes where both association-ends
are distinguished from each other by means of the FirstEle-
ment and SecondElement properties. The containment and
non-containment Associations are distinguished from each
other through the IsComposite property.

4.2 Translation from GOPRR to ECore

This section presents the translation from the GOPRR lan-
guage to the ECore one. It offers examples of 1-n matchings
and conflictive elements in the target metamodel. Thus, this
translation requires a structure-driven approach according to
the presented technique. The development of the translation
follows the process proposed in Sect. 3, with the following
subsections applying the different steps.

4.2.1 Correspondences between Elements

Step 1 requires determining the correspondences between
GOPRR and ECore elements based on the identification
of nodes, edges and their properties. For this purpose,
the descriptions for GOPRR and ECore in Sect. 4.1.1 and
Sect. 4.1.2 are considered. The correspondences detected in
this step are introduced in Fig. 1 and described below.

Firstly, the node concept must be matched between
GOPRR and ECore. A node in GOPRR is an Object that
represents a piece of information and may contain Proper-
ties. The only element in ECore able to contain properties
is an EClass. For this reason, the EClass element is selected
as the translation for the Object.

In GOPRR and ECore, the properties of nodes are
respectively represented with Properties and EAttributes.
Both of them represent primitive values. This matching is
another correspondence detected in this step.

A correspondence for the edge concept must also be
found. The GOPRR Relationships and their Roles rep-
resent edges. As it happens with the GOPRR Objects,

Fig. 2 An example of edge that is generated by the GOPRR-to-ECore
taken from the INGENIAS ML. Boxes represent EClasses, continuous ar-
rows containment EReferences, and discontinuous arrows non-containment
EReferences.

both Relationships and Roles can have properties. Since
in ECore only the EClass element can contain properties,
the translation of each Relationship and Role requires at
least one EClass. Moreover, Relationships are connected
to Roles. Thus, Relationships must also be represented
with EReferences for their connections in ECore. Since
each Role is only referenced by one Relationship in GO-
PRR, the corresponding EReference can be containment
(see Sect. 4.1.2). In the same way, Roles are connected to
Objects, so Roles must also be represented with EReferences
besides EClasses. Each Object can be referenced by several
Roles and for this reason, those EReferences related to Roles
must be non-containment. Briefly, an edge is represented in
GOPRR with a Relationship and several Roles. Its trans-
lation in ECore includes several EClasses (one for the Re-
lationship and one for each Role) and several EReferences
for the necessary connections (containment for the links be-
tween Relationship and Roles and non-containment for the
links between Roles and Objects). Figure 2 presents an ex-
ample of edge in ECore obtained as a result of the current
translation from GOPRR. The example is taken from the
INGENIAS [29] agent-oriented language.

Finally, in GOPRR the Graph is the container of the
other elements. The correspondence of a Graph is estab-
lished with an EClass that includes containment ERefer-
ences to link with the elements of that graph.

4.2.2 Propagation of Links and Attributes

Figure 3 introduces the correspondences for the propaga-
tion of links and attributes in the GOPRR-to-ECore transla-
tion according to Step 2. The links between GOPRR Rela-
tionships and Roles are preserved by means of containment
EReferences between EClasses, as seen in the previous sec-
tion. The containment EReferences are used to make sure
that each Role is only referenced by one Relationship. In
addition, the GOPRR Roles are connected to Objects, and
these links are translated to non-containment EReferences.
The reason is that the same Object can be referenced by sev-



2048
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Fig. 3 Propagation of links from GOPRR to EMF.

eral Roles. Graphs can contain Objects, Relationships and
Roles. For Objects and Relationships, these links are pre-
served by means of containment EReferences, which allow
an EClass to contain another. The links Graph-Roles can-
not be translated to containment EReferences. ECore pre-
cludes that an EClass can be contained in more than one
containment EReferences, and as seen before, the transla-
tions of Roles are already contained by the translations of
Relationships. However, as the translation of Graphs ac-
tually contains the translation of Relationships, and these
contain the translation of Roles, the translation of Graphs
indirectly contains the translation of Roles.

Inheritance is a particular type of link. The GOPRR
inheritance is translated into the inheritance of ECore, which
is expressed with the metattribute called ESuperTypes. This
translation preserves inheritance hierarchies.

As stated before, GOPRR properties are translated into
ECore EAttributes. This step places these attributes in the
elements that contain them. For example, an Object is
transformed into an EClass; then the properties of the Ob-
ject are transformed into EAttributes of the aforementioned
EClass. In the same way, the properties of Relationships and
Roles are also transformed and placed in their corresponding
EClasses. According to the metattributes, the multiplicity
of the connection between Relationships and Roles is trans-
lated in the ECore LowerBound and UpperBound properties
of the corresponding containment EReferences.

4.2.3 Disambiguation of Conflicts

As indicated in the presentation of the technique (see
Sect. 3), conflicts are detected by searching in the correspon-
dences of the translation, which appear in Fig. 1. The EClass
and EReference target elements are included in several cor-
respondences, thus several conflicts arise. More specifically,
EClasses and EReferences are included in the correspon-
dences of the GOPRR Graphs, Relationships and Roles, and
EClasses are also included in the correspondences of GO-
PRR Objects.

Therefore, according to the technique, conflicts must
be disambiguated by a structure-driven approach. Firstly,
the transformations must generate the target metamodel
structure that permits the source of the elements to be dis-
tinguished. Considering the aforementioned conflicts, the
structure of the target metamodel includes a package for
each correspondence with conflict. Figure 4 shows this

Fig. 4 The initial structure of the target metamodel of the GOPRR to
EMF translation.

structure which contains the following packages:

• entities. This contains the EClasses that correspond to
GOPRR Objects.
• relations. This contains the EClasses and EReferences

that correspond to GOPRR Relationships.
• association ends. This contains the EClasses and

EReferences that correspond to GOPRR Roles.
• specification. This contains the EClasses and ERefer-

ences that correspond to GOPRR Graphs.

After generating the aforementioned packages, they are
populated with the elements from the translations.

4.2.4 Implementation

As mentioned in Sect. 4.1.1, the serialization of metamod-
els described with GOPRR lacks a standard implementa-
tion. This work adopts the serialization used by the IDK [29]
tool, which is introduced later. The IDK serializes the GO-
PRR metamodels as XMI [28] documents according to the
following correspondences. Each Object, Relationship and
Role is serialized as an XML element. These XML elements
contain XML elements that represent the properties of their
objects, relationships or roles. The XML element of an ob-
ject also contains an inherits XML attribute to indicate the
parent of the object. This attribute represents the inheritance
among objects. The XML element of a relationship contains
XML elements indicating the XML elements of its roles. Fi-
nally, the XML elements of the roles contain XML elements
called players to indicate the valid objects that they connect.

The serialization of ECore has an accepted implemen-
tation provided by the EMF (see Sect. 4.1.2). This serializa-
tion represents ECore models as XMI documents.

Once the serialization formats of GOPRR and ECore
have been chosen, designers implement the transforma-
tions. Section 2 already mentioned that this problem re-
quires the use of a general-purpose transformation language
since the transformations consider models defined with dif-
ferent MMLs. Among these transformation languages, the
choice is XSLT as the metamodels are expressed in XML.
XSLT has been widely used in model transformation liter-
ature [15], [30], [31]. The whole XSLT transformation for
translating GOPPR metamodels into ECore metamodels is
available on our web site †. An excerpt of this translation
follows, where “...” omits parts of the transformation.

†http://grasia.fdi.ucm.es/ (in “Software”/“Additional Material
for Papers” section)



GARCÍA-MAGARIÑO and FUENTES-FERNÁNDEZ: A TECHNIQUE FOR DEFINING METAMODEL TRANSLATIONS
2049

<eSubpackages name="entities" ...>

...

<xsl:for-each select=".../object">

<xsl:element name="eClassifiers">

<xsl:attribute ...> ecore:EClass </...>

...

<eSubpackages name="relations" ... >

...

<xsl:for-each select=".../relationship">

<xsl:element name="eClassifiers">

<xsl:attribute ...> ecore:EClass</...>

<eSubpackages name="association_end" ...>

...

<xsl:for-each select=".../role">

<xsl:element name="eClassifiers">

<xsl:attribute ...> ecore:EClass</...>

...

This excerpt of the translation shows the structure of
the target metamodel. It includes the ESubPackages en-
tities, relations and association end. These subpackages
contain the instances of the EClass element that are the
conflictive element in this translation. The conflict arises
from its use with nodes, edges and edge-ends that are re-
spectively extracted from GOPRR Objects, Relationships
and Roles. Each of these EClass instances are individually
placed on the paths †.../object, .../relationship and
.../role of the source metamodels.

The GOPRR to ECore translation presented has been
successfully applied in the modernization of the model-
driven development tool of the INGENIAS methodol-
ogy [32]. The INGENIAS methodology is research work of
our group aimed to develop multi-agent systems. Its main
feature is the coverage of the whole development cycle,
from analysis to implementation. Its tool support is known
as the INGENIAS Development Kit (IDK) [29]. The specifi-
cation of the INGENIAS ML has used metamodeling since
its inception. One of the INGENIAS concerns is to provide
a ML adaptable to the advances in agent research and for
this reason the specification of its language and the develop-
ment of its tools is based on metamodels. The INGENIAS
metamodel currently has 88 objects, 89 relationships and
98 roles. The first versions of the metamodel [32] were ex-
pressed with GOPRR. In order to take advantage in the IDK
of the automated support from the EMF, that metamodel was
translated into ECore. This translation allows the IDK to
use EMF [27] libraries for serialization or the future integra-
tion of ATL [33] in its model-driven development. Given
the large number of elements in the INGENIAS metamodel,
the automatic translation between MMLs saved an impor-
tant amount of time and effort.

4.3 ECore to EMOF Translation

ECore and MOF are currently the most popular MMLs. The
evolution pace of ECore is faster than that of MOF, as it is

ECore EMOF with Associations
EClass Class
EReference Association
EAttribute Property

Fig. 5 Correspondences between ECore and EMOF with Associations.

Fig. 6 Propagation of connections between ECore and EMOF with As-
sociations.

based on the Eclipse implementation of EMF while MOF
is based on standardization. However, ECore is intended
to be almost aligned (with minor differences) with EMOF.
Therefore, translations between ECore and EMOF should
help to bridge differences and at the same time make the
differences explicit between both languages, while allowing
the exchange of models between their users. As explained in
the introduction to EMOF (see Sect. 4.1.3), it does not con-
tain an element to represent references. The MOF element
for references is the Association from CMOF, which is the
extension of EMOF that defines the full MOF. To provide a
complete translation of ECore, this case study also considers
Associations in this section.

Given the similarities, the translation between ECore
and EMOF is simpler than the one presented in the previ-
ous section. It exemplifies an application of the technique
with one-to-one correspondences and no conflictive target
elements, since each target element is the result of only one
matching. For the definition of the translation, this sec-
tion considers the introductions to ECore in Sect. 4.1.2 and
EMOF in Sect. 4.1.3.

Figure 5 introduces the correspondences between
ECore and EMOF languages according to Step 1 of the tech-
nique. Nodes correspond to the ECore EClass and EMOF
Class elements and the edges to the ECore EReference and
to CMOF Association. Notice that in this translation, the
references represent the edges because in the source and
in the target MMLs there is the same information. Nei-
ther ECore EReferences nor CMOF Associations contain at-
tributes, and their metattributes are similar to each other.

Step 2 focuses on the propagation of information and
links. The metattributes in EMOF and ECore are very simi-
lar and thus the copy actions are simple. The connections be-
tween elements (see Fig. 6) are also copied from the source
metamodel to the target metamodel. In this case, the ESu-
pertypes of EClasses and the connections of EReferences
are respectively copied to the inheritance of Classes and
connections of Associations in CMOF. In ECore, the con-
nection between EClasses and their EReferences is differ-
ent from the connection between EReferences and the refer-

†“...” omits parts of the paths.



2050
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

enced EClasses. This difference also exists in CMOF, and
it is indicated by the firstElement and secondElement metat-
tributes of Associations.

In this translation, none of the target elements is pro-
duced by more than one correspondence. Thus, a declarative
approach is enough to define the transformations according
to Step 3.

Finally, in Step 4, designers define declarative rules
so each source element is translated into its correspond-
ing target element following the one-to-one correspondence.
This translation is defined with XSLT [21] for experimenta-
tion, but any other transformation language that support the
declarative approach could be used. This translation can be
symmetrically defined in the two directions, from ECore to
EMOF, and from EMOF to ECore.

5. Related Work

Literature offers examples on translations between different
MMLs that can be classified into three main groups: the
use of general-purpose programming languages for transla-
tions, general-purpose transformation languages, or trans-
formation languages for specific metamodels.

The use of general-purpose programming languages
[17] relies on the availability of APIs to internal represen-
tations of the models of the considered MMLs. The transla-
tion itself is programmed in these languages as a manipula-
tion of these internal models. Examples of this approach are
several MDE tools that include code generation, as this ap-
proach is well-suited for this kind of instantiation. Among
these tools appear OptimalJ [19], the IDK [29] support to
build modules, AndroMDA [34], or MS/DSL [13]. This ap-
proach has the advantage of efficiency and a high flexibility
as designers are only tied by the limitations of the program-
ming language. In terms of drawbacks, it lacks scalability
given that the support for MMLs, MLs, and transformations
is always built ad-hoc. Besides, it hides and intermingles
most of this information in the code, making it difficult to
understand.

The second group of approaches relies on general-
purpose transformation languages for the translation. One
work to consider here is the aforementioned one by Gerber
and Raymond [15] that defines a translation between MOF
and EMF (i.e. ECore in this work) using XSLT. The
resulting XSLT transformations are difficult to maintain
and understand given their verbosity and complexity. The
MTRANS framework [30] tries to overcome these limita-
tions by adding a layer of declarative rules that are later
translated to XSLT. This line of research is closer to ours but
it does not describe a detailed technique for defining meta-
model translations. Besides, the work in [15] only focuses
on a case where the MMLs are almost aligned. As seen in
the case study with GOPRR, more complex techniques are
required when the MMLs are different. Nevertheless, our
work could use a framework like MTRANS to ease the im-
plementation of the transformations in Step 4.

The third group of approaches uses transformation

languages for specific metamodels. The ATLAS Group
has carried out several projects to translate between ECore
and other MMLs like GME [35] or MS/DSL [36] using its
ATL [16]. These works take advantage of the possibility of
generating XMI files from non-ECore models through XML
injectors. They then define an ECore metamodel for the
non-ECore MMLs and use ATL transformations to gener-
ate models compliant with the new ECore metamodels from
the XML files. Additional modifications can be made with
standard ATL mechanisms. These works offer some hints on
how to build the new ECore metamodels but they are not as
detailed as the technique guidelines in this paper. Besides,
these translations split the interpretation of the original lan-
guage between the development of the XML injectors, the
creation of the new metamodels, and the ATL transforma-
tions. Although one could argue that this process offers a
certain degree of modularity, it makes it difficult to follow
the design decisions or to find mistakes. Our approach, on
the other hand, prefers to work with one translation resource
that centralizes the interpretation and the transformation.

From a broader perspective, all these efforts focused
on MMLs translations can be seen as part of the effort to
enable the exchange of information between different mod-
eling and technical spaces. According to [37], a model-
ing space is a modeling architecture defined by a particu-
lar meta-metamodel, while a technical space is a working
context with a set of associated concepts, body of knowl-
edge, and tools. Examples of modeling spaces are those of
MOF [6] or EBNF [38], and of technical spaces are those
related with XML [39], MDA [6], or EMF [12]. Research
in this field [37], [40] proposes the use of general projectors
(either injectors or extractors) to propagate information to
those spaces where it has to be processed. Nevertheless, this
is still a recent theoretical work without implementations.

6. Conclusions and Future Work

This paper presents a guideline to define translations be-
tween metamodels defined with different MMLs. This tech-
nique is based on the common basis of these MMLs in
graph representations. Thus it proposes the definition of
a catalogue of mappings between MMLs that relates the
primitives used to represent the different types of nodes,
edges, and their properties in these languages. The tech-
nique then identifies new correspondences that enable the
propagation of links between the previous elements and of
their attributes. Finally, in the case of conflicts in correspon-
dences, the technique proposes the addition of additional
packages for disambiguation. The conflicting elements in
the target metamodel are rearranged in the packages in such
a way that no pair of conflicting elements are in the same
package. The definition of rules for the kind of rearrange-
ment is easier with a structure-driven approach. If there are
no conflicts, the technique adopts a declarative approach.

In order to illustrate the technique and its complexity,

†http://grasia.fdi.ucm.es (in “Software” section)



GARCÍA-MAGARIÑO and FUENTES-FERNÁNDEZ: A TECHNIQUE FOR DEFINING METAMODEL TRANSLATIONS
2051

the paper includes two case studies. They clarify some im-
portant semantic and syntactic differences between available
MMLs outside the MOF space (in the GOPRR case) and the
case of issues that can arise even with similar languages (like
ECore and EMOF).

The work presented is an initial step in addressing
the development of translations between different model-
ing spaces. Until now, our research has focused on MMLs,
where we plan to extend the development of translations to
other MMLs such as KM3, Coral or the full MOF. This
work will allow the exchange of information between dif-
ferent platforms, but also a detailed analysis and clear com-
parison regarding the features of these MMLs. Another im-
portant issue is the need to adopt a model-driven approach
for the development of transformations. As seen in the ex-
perimentation and related works, developing these general-
purpose transformations is error prone, generates cumber-
some transformations, and makes maintenance difficult. A
model-driven approach should provide an abstraction layer
over general-purpose transformation languages, in the line
of work with MTRANS. More specifically, our research
group has begun the development of a tool that generates
transformations from models. A prototype of this tool is
now available for practitioners in GRASIA web †.

Acknowledgements

This work has been supported by the project Methods and
tools for agent-based modeling supported by the Spanish
Council for Science and Technology with grant TIN2005-
08501-C03-01, and by the grant for Research Group 910494
by the Region of Madrid (Comunidad de Madrid) and the
Universidad Complutense Madrid.

References

[1] A. Rugnone, C. Nugent, M. Donnelly, D. Craig, C. Paggetti, E.
Tamburini, and E. Vicario, “HomeTL: A visual formalism, based
on temporal logic, for the design of home based care,” IEEE Int.
Conf. Automation Science and Engineering, CASE 2007, pp.747–
752, 2007.

[2] J. Tolvanen and M. Rossi, “MetaEdit+: Defining and using domain-
specific modeling languages and code generators,” Conference on
Object Oriented Programming Systems Languages and Applica-
tions, pp.92–93, 2003.

[3] D. Amyot, H. Farah, and J. Roy, “Evaluation of development tools
for domain-specific modeling languages,” Proc. 5th Workshop on
System Analysis and Modelling, vol.4320/2006, pp.183–197, 2006.

[4] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale,
and D. Schmidt, “A platform-independent component modeling lan-
guage for distributed real-time and embedded systems,” J. Comput.
Syst. Sci., vol.73, no.2, pp.171–185, 2007.

[5] D. Schmidt, “Guest Editor’s introduction: Model-driven engineer-
ing,” Computer, vol.39, no.2, pp.25–31, 2006.

[6] OMG, “Meta Object Facility (MOF) core specification. Version 2.0.”
http://www.omg.org/ (available on Aug. 15, 2008), Jan. 2006.

[7] OMG, “OMG Unified Modeling Language (OMG UML), Infras-
tructure, V2.1.2.” http://www.omg.org/ (available on Aug. 15, 2008),
Nov. 2007.

[8] OMG, “OMG Unified Modeling Language (OMG UML), supestruc-
ture, V2.1.2.” http://www.omg.org/ (available on Aug. 15, 2008),

Nov. 2007.
[9] F. Jouault and J. Bezivin, “KM3: A DSL for metamodel specifica-

tion,” Formal Methods for Open Object-Based Distributed Systems,
Lecture Notes in Computer Science, vol.4037/2006, pp.171–185,
2006.

[10] S. Kelly, GOPRR Description, PhD Dissertation, vol.Appendix 1,
Jyväskylä University, Finland, 1997.

[11] B. Moore, D. Dean, A. Gerber, G. Wagenknecht and P.
Vanderheyden, Eclipse Development using Graphical Editing
Framework and the Eclipse Modelling Framework, IBM Redbooks,
2004.

[12] Eclipse, “Eclipse Modeling Framework (EMF).”
http://www.eclipse.org/modeling/emf/ (available on Aug. 15, 2008).

[13] J. Greenfield and K. Short, Software factories: Assembling appli-
cations with patterns, models, frameworks and tools, ACM Press
New York, NY, USA, 2003.

[14] M. Alanen and I. Porres, “Coral: A metamodel kernel for transfor-
mation engines,” Proc. 2nd European Workshop on Model Driven
Architecture (MDA 2004) with an emphasis on Methodologies and
Transformations, University of Kent, United Kingdom, Technical
Report.

[15] A. Gerber and K. Raymond, “MOF to EMF: There and back again,”
Proc. 2003 OOPSLA Workshop on Eclipse Technology eXchange,
pp.60–64, 2003.

[16] F. Jouault and I. Kurtev, “Transforming models with ATL,”
Proc. Model Transformations in Practice Workshop at MoDELS,
vol.3844, pp.128–138, 2005.

[17] K. Czarnecki and S. Helsen, “Classification of model transformation
approaches,” Proc. 2nd OOPSLA Workshop on Generative Tech-
niques in the Context of the Model Driven Architecture, 2003.

[18] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood, “Trans-
formation: The missing link of MDA,” Graph Transformation: First
International Conference, Icgt 2002, Barcelona, Spain, Oct. 7-12,
2002: Proceedings, vol.2505/2002, pp.90–105, 2002.

[19] Compuware, “OptimalJ 3.0 user’s guide.”
http://www.compuware.com/products/optimalj (available on Aug.
15, 2008).

[20] OMG, “Meta Object Facility (MOF) 2.0 query/ view/ transformation
specification. Version 1.0.” http://www.omg.org/ (available on Aug.
15, 2008), April 2008.

[21] W3C, “XSL Transformations (XSLT) Version 1.0.”
http://www.w3.org/TR/xslt (available on Aug. 15, 2008), Nov. 1999.

[22] G. Costagliola, A. Delucia, S. Orefice, and G. Polese, “A classifica-
tion framework to support the design of visual languages,” Journal of
Visual Languages and Computing, vol.13, no.6, pp.573–600, 2002.

[23] S. Kelly, K. Lyytinen, and M. Rossi, “MetaEdit+ a fully config-
urable multi-user and multi-tool CASE and CAME environment,”
Advanced Information Systems Engineering: 8th International Con-
ference, CAiSE’96, Heraklion, Crete, Greece, May 20-24, 1996:
Proceedings, vol.1080/1996, pp.1–21, 1996.

[24] Z. Zhang and K. Lyytinen, “A framework for component reuse in
a metamodelling-based software development,” Requirements Engi-
neering, vol.6, no.2, pp.116–131, 2001.

[25] J. Van Hillegersberg and K. Kumar, “Using metamodeling to inte-
grate object-oriented analysis, design and programming concepts,”
Information Systems, vol.24, no.2, pp.113–129, 1999.

[26] K. Lyytinen, P. Marttiin, J. Tolvanen, M. Jarke, K. Pohl, and K.
Weidenhaupt, “CASE environment adaptability: Bridging the is-
lands of automation,” Proc. 8th Annual Workshop on Information
Technologies and Systems (WITS’98), pp.1–13, 1998.

[27] F. Budinsky, Eclipse Modelling Framework: Developer’s Guide,
Addison Wesley, 2003.

[28] OMG, “MOF 2.0/XMI mapping, Version 2.1.1.” http://www.omg.org/
(available on Aug. 15, 2008), Dec. 2007.

[29] G. of Research on Agents: Software Engineering and A. (GRASIA),
“INGENIAS development kit.” http://ingenias.sourceforge.net/ (avail-
able on Sept. 2, 2008).



2052
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

[30] M. Peltier, J. Bézivin, and G. Guillaume, “MTRANS: A general
framework, based on XSLT, for model transformations,” Workshop
on Transformations in UML (WTUML), Genova, Italy, April 2001.

[31] R. Grønmo and J. Oldevik, “An empirical study of the UML model
transformation tool (UMT),” Proc. First Interoperability of Enter-
prise Software and Applications, Geneva, Switzerland, Feb. 2005.

[32] J. Gómez-Sanz and J. Pavón, “Agent oriented software engineering
with INGENIAS,” Multi-Agent Systems and Applications III, Lec-
ture Notes in Artificial Intelligence, vol.2691, pp.394–403, 2003.

[33] F. INRIA (Institut National de Recherche en Informatique et en
Automatique), “ATL home page.” http://www.eclipse.org/m2m/atl/
(available on Aug. 15, 2008).

[34] A. Team, “AndroMDA-4.0.” http://www.andromda.org/ (available
on Aug. 15, 2008), May 2007.

[35] J. Bézivin, C. Brunette, R. Chevrel, F. Jouault, and I. Kurtev, “Bridg-
ing the Generic Modeling Environment (GME) and the Eclipse
Modeling Framework (EMF),” Proc. Best Practices for Model
Driven Software Development at OOPSLA, vol.5, 2005.

[36] J. Bézivin, G. Hillairet, F. Jouault, I. Kurtev, and W. Piers, “Bridg-
ing the MS/DSL tools and the eclipse modeling framework,” Proc.
International Workshop on Software Factories at OOPSLA, 2005.

[37] D. Djurić, D. Gašević, and V. Devedžić, “The Tao of modeling
spaces,” J. Object Technology, vol.5, no.8, pp.125–147, 2006.

[38] I. JTC1, Information technology - Syntactic metalanguage - Ex-
tended BNF, ISO/IEC Internationl Standard, vol.14977:1996 (E),
ISO/IEC, 1996.

[39] W3C, Extensible Markup Language (XML) 1.0, Fourth ed., 2006.
[40] J. Bézivin, V. Devedžić, D. Djurić, J. Favreau, D. Gašević, and F.

Jouault, “An M3-Neutral infrastructure for bridging model engi-
neering and ontology engineering,” Proc. 1st International Confer-
ence on Interoperability of Enterprise Software and Applications,
pp.159–172, 2005.

Iván Garcı́a-Magariño was born in
1982, in Madrid. He is a Ph.D. student of
Computer Science at the Complutense Uni-
versity in Madrid, Spain. He is currently
working with the GRASIA research group
(http://grasia.fdi.ucm.es/). He has also pub-
lished articles in the “International Trans-
actions on Systems Science and Applica-
tions” journal and conferences such as Au-
tonomous Agents and Multiagent Systems
(AAMAS’08), Agent-Oriented Software Engi-

neering (AOSE’08), Practical Applications of Agents and Multi-Agent
Systems (IWPAAMS’07). He and other members of his research group
won the prize of “Best Academic Demo” at the AAMAS’08. His 14 pub-
lications over the last year relate to model-driven engineering, metrics, and
multi-agent systems. He worked as a software consultant before joining
the GRASIA group. His work is now supported by a research grant at the
Complutense University in Madrid.

Rubén Fuentes-Fernández holds a Ph.D.
in Computer Science from the Complutense
University in Madrid, Spain. He is Asso-
ciate Professor at this university and mem-
ber of the GRASIA research group. Amongst
other journals, he has had research papers pub-
lished in “IEICE Transactions on Information
and Systems”, “IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Hu-
mans”, “International Journal of Web Engineer-
ing and Technology”, and “International Journal

of Agent-Oriented Software Engineering”. Previously, he worked as a con-
sultant in database systems for four years. His main interests are concerned
with the application of Social Sciences to software development, model-
driven engineering, and agent-oriented methodologies.


