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PAPER

Acceleration of Genetic Programming by Hierarchical Structure
Learning: A Case Study on Image Recognition Program Synthesis∗

Ukrit WATCHAREERUETAI†a), Nonmember, Tetsuya MATSUMOTO†b), Noboru OHNISHI†c),
Hiroaki KUDO†d), and Yoshinori TAKEUCHI†e), Members

SUMMARY We propose a learning strategy for acceleration in learn-
ing speed of genetic programming (GP), named hierarchical structure GP
(HSGP). The HSGP exploits multiple learning nodes (LNs) which are con-
nected in a hierarchical structure, e.g., a binary tree. Each LN runs con-
ventional evolutionary process to evolve its own population, and sends the
evolved population into the connected higher-level LN. The lower-level LN
evolves the population with a smaller subset of training data. The higher-
level LN then integrates the evolved population from the connected lower-
level LNs together, and evolves the integrated population further by using
a larger subset of training data. In HSGP, evolutionary processes are se-
quentially executed from the bottom-level LNs to the top-level LN which
evolves with the entire training data. In the experiments, we adopt con-
ventional GPs and the HSGPs to evolve image recognition programs for
given training images. The results show that the use of hierarchical struc-
ture learning can significantly improve learning speed of GPs. To achieve
the same performance, the HSGPs need only 30–40% of the computation
cost needed by conventional GPs.
key words: hierarchical structure genetic programming, acceleration,
learning node, training subsets, population integration

1. Introduction

Fitness evaluation is the most computationally intense pro-
cess in genetic programming (GP) [21]. Using GP to evolve
very complex programs, e.g., object recognition programs,
fitness evaluation sometimes spends nearly 100% of total
computation time of evolutionary process [10], [29]. Conse-
quently, there are many researches attempt to accelerate the
fitness evaluation process of GPs. Some of them try to solve
this problem by using a parallel computer architecture or us-
ing a special hardware such as GPU [10], [23]. On the other
hand, there are many works attempting to accelerate GPs by
algorithmic approaches, as discussed below.

One approach is to avoid executions of individuals that
have been discovered in the search [11], [29]. In particular,
fitness values and canonical forms of the discovered indi-
viduals are stored in memory to be retrieved later. If the
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new individual has the same canonical form as one of those
stored in the memory, it means that the individual represents
something discovered before. Therefore the GPs need not to
re-evaluate it but just fetch its fitness value from the memory
instead. Therefore the number of fitness evaluations is re-
duced, resulting in acceleration of GPs. In addition, to avoid
executions of redundant subtrees in tree-based GP could re-
duce significant amount of computation time [19].

Dynamic subset selection approach [3], [5], [6] was
proposed to accelerate in learning speed of GP. In this ap-
proach, only a subset of entire training data (fitness cases) is
selected and used for learning GP in each generation. This
approach may randomly select fitness cases into the sub-
set [5], or select them based on some strategies [3], [5], [6].
Improved methods of this approaches have been proposed
in [20].

Gustafon and Hsu studied on the use of layered learn-
ing scheme in GP for a robot soccer problem [22]. In par-
ticular, they divided GP into two phases (layers); one is to
learn robot movement and passing, and the other is to learn
team strategy. Although the main goal of this approach is
not to reduce the number of fitness evaluations, it can im-
prove GP learning speed. The other approaches that learn
GP in multi-phase were proposed in [7], [18].

In [8], Jackson proposed two GP approaches based on
division of training data into subsets. One is the function-
based architecture that uses the program learned from a sub-
set as a function in tree-based GP. The other is the selection
architecture that uses the root node as a switching node. The
switching node selects a program, which is learned from a
subset, to be executed depending on a test input (in the train-
ing set). However, this approach would not function with the
problems with unknown test inputs.

Fillon and Bartroli proposed a divide and conquer ap-
proach to improve efficiency and probability of success of
GP [4]. They divide evolutionary process into two levels. In
the first level, multiple subpopulations are used; each one
learns with a subset of functions and terminals. Then the
second level combines the best individuals found in the first
level subpopulations and learns with the original set of func-
tions and terminals.

The method proposed here is different from those ex-
plained above. We propose a learning strategy for GP named
hierarchical structure GP (HSGP). It is designed for super-
vised learning with GP. The HSGP solves a problem by us-
ing multiple learning nodes (LNs) connected in a hierarchi-
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cal structure. This is similar to the divide and conquer GP in
[4]; however, instead of using different subsets of functions
and/or terminals, each LN in the HSGP uses different train-
ing subset. The lower-level LNs learn with smaller train-
ing subsets, whereas the top-level LN learns with the en-
tire training data. From the experimental results, we found
that the HSGPs can significantly accelerate in learning speed
compared with the conventional GPs (CGPs).

The rest of this paper is organized as follows. Section 2
explains the ideas and the details of the HSGPs. Section 3
briefly describes our target problem, i.e., GP-based synthe-
sis of image recognition programs. Section 4 shows and
discusses experimental results of the HSGPs compared with
the CGPs, which learn without hierarchical learning struc-
ture. Section 5 concludes the paper and gives the ideas of
future research.

2. GPs Acceleration by a Hierarchical Structure

2.1 Motivation and Ideas

This work was motivated by the desire to accelerate learning
speed of our GP-based image feature synthesis system [29]
(more detail will be described in Sect. 3). In this system,
an individual represents a feature extraction program which
is constructed from basic image processing operations. A
problem we found is that the overall evolution time is very
long. This is caused by the three following issues:

• By nature of image processing, fitness evaluation of the
system spends relatively long computation time, com-
pared with other problems such as symbolic regression
problems. The reason is that it has to execute a lot
of image processing operation sequences in the fitness
evaluation.
• To overcome overfitting problem, we should provide an

enough number of representative training data (some-
time called samples or fitness cases) to the system. For
simple problems, a few training data may be enough to
represent the underlying characteristics of the problem.
However, for more complex problems, a great number
of training data may be unavoidably required. Increas-
ing in the training set size M means increasing in num-
ber of program executions too; it increases overall com-
putation time.
• Usually, to achieve good results, many GP-based sys-

tems require large population size N and enough num-
ber of generations G. These two parameters directly
relate to the number of program executions and overall
computation time.

However, we found that many programs which are
evolved in the beginning of evolutionary process are fre-
quently non-reasonable and give very bad fitness. Conse-
quently, it would be wasteful to evaluate those programs by
using the entire training set. Instead, we may estimate their
fitness values from only a portion of training set and decide

Fig. 1 The HSGP using a binary-tree structure with three levels. The
top-level LN uses the entire training set with M fitness cases (illustrated by
circle) whereas the middle-level and bottom-level LNs use only portions of
the entire training set (the half-circles and 1/4 circles, respectively).

based upon the estimated fitness whether they should sur-
vive in the next generation. This reduces the number of pro-
gram executions. However, the entire training set should be
provided in the end of evolutionary process to make the GPs
generate more reliable, non-over-fitting programs. Based
upon these considerations, we propose a learning strategy
for GPs that learns in such manner, and we investigate its
effect on acceleration in learning speed.

2.2 Hierarchical Structure Genetic Programming

We propose an approach named HSGP that evolves multiple
LNs connected in a hierarchical structure. The lower-level
LNs learn with smaller subsets of training data and send the
evolved population into the next higher-level LN to evolve
further with larger subsets. The top-level LN learns with the
entire training set. The HSGPs studied in this work use a
binary-tree structure as shown in Fig. 1.

In the figure, the binary-tree structure consists of three
levels (level 1, 2, and 3). The Lth level contains S L =

2Lmax−L LNs, and learns with a training subset of size ML =

M/2Lmax−L, where Lmax is the highest level and M is the size
of the original training set. The HSGP starts evolutionary
process from the bottom-level LNs. Each LN of the bottom-
level generates its own initial population, and executes con-
ventional evolutionary process to evolve the population for
a fixed number of generations GL which can be shorter than
the number of generations G of the CGPs. Each LN in a
level learns with different and non-overlapped subset with
each other. Then each LN of the next higher-level receives
the evolved population from the connected lower-level LNs
and integrates them into a new population. The details of
various integration methods will be described in Sect. 2.3.
The integrated population will be used as the initial popula-
tion of the higher-level LN. Also the training subsets of the
connected lower-level LNs are integrated (union) together
and used as the training subset of the higher-level LN. Each
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Fig. 2 The ranked-whole method.

level of LNs is executed level-by-level and the subsets used
become larger. After the learning at the top-level LN (with
the entire training set) finished, the best individual obtained
by the top-level LN is considered as the best solution for the
problem.

One advantage of learning in this hierarchical manner
is that we can use more initial individuals (2Lmax−1×N), com-
pared with CGPs. This provides more genetic material to
be evolved to GPs and gives more diversities than those of
CGPs. In Sect. 4.2, we will show that the use of different
seeds in each bottom-level LN can improve performance of
HSGPs.

From this learning strategy, the evolutionary process
is done in hierarchical manner in which the problem diffi-
culty increases with the level index. The goal of the bottom-
level LNs is just to identify the potential areas of the solu-
tions (not to find the global optimum), whereas that of the
middle-level LNs is to confirm whether the potential areas
learned by the lower-level are really global ones. Finally, the
top-level LN exploits the complete training set and focus on
the identified potential area to find the global optima in the
search space.

2.3 Population Integration

There are a number of possible ways to integrate two pop-
ulation learned by the lower-level LNs into one population
for the next higher-level LN. In this paper, three popula-
tion integration methods are investigated. The first is named
ranked-whole method. This method firstly combines the two
populations (each contains N solutions) into a bigger popu-
lation (of size 2N), and then chooses only the best N so-
lutions from the whole population and deletes the remain-
ing N solutions out of the population (Fig. 2). The second
is named ranked-half-half method. Contrasting with the
ranked-whole method, the ranked-half-half method firstly
selects the best N/2 solutions from each population, and
then integrates those selected individuals together (Fig. 3).
The third is named n-elitist method. It selects the best n

Fig. 3 The ranked-half-half method.

Fig. 4 The n-elitist method.

solutions (n < N/2) from each population and randomly
generates N − 2n new solutions into the integrated popula-
tion (Fig. 4). The comparison of these population integration
methods will be discussed in Sect. 4.3.

2.4 Computation Cost

In the case of the CGP, the number of program execution
of an independent GP run is directly related with population
size N, training set size M, and the number of generations
G. In particular, the number of fitness evaluations of an in-
dependent run is equal to N × G. For one time of fitness
evaluation, it has to execute genetic programs M times be-
cause there are M training data in the training set. Therefore
the total number of program executions is equal to

N ×G × M. (1)

In the case of the HSGP, a LN of the Lth level executes pro-
grams N ×GL × ML times, where GL is the number of gen-
erations at level L. Therefore the total number of program
executions (NPEs) of the HSGP is equal to
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Lmax∑
L=1

S L × N ×GL × ML =

Lmax∑
L=1

N ×GL × M. (2)

In all experiments in this paper, we use the same number of
generations GL for all levels, i.e., we set GL = g. In this case,
the number of program execution in Eq. 2 can be reduce to

Lmax × N × g × M. (3)

Comparing Eq. 3 with Eq. 1, the common variables are N
and M. Therefore the variables that have to be controlled
to gain advantage in program execution reduction are only
Lmax and g. In the experiments, we set Lmax = 3 and adjust
g to compare the performance of the HSGPs with CGPs.

For the sake of clarity, the following example compares
computation cost of the CGP and HSGP. Let N = 50, M =
20, and G = 300. According to Eq. 1, computation cost of
CGP is 300, 000 NPEs. Letting Lmax = 3 (the structure in
Fig. 1), the HSGP needs 3 × 50 × 20 g = 3000 g, according
to Eq. 3. If we set g = 100, the HSGP will need the same
NPEs as the above CGP (300,000). If g = 50, only half
number of the NPEs (150,000) is needed.

3. GP-Based Image Recognition Program Synthesis

Evolutionary algorithms (EAs) have been widely used in
many image recognition problems. However, in this pa-
per, we are interested in the EA-based approaches that
synthesize image recognition programs (or a part of them
such as feature extraction programs) for a given problem.
Up to now, many approaches have been studied [1], [2],
[9], [10], [12]–[14], [16]–[19], [24]–[26], [28], [29]. The ap-
proach considered here is based on GP with linear repre-
sentation (linear GP), which encodes a program as a se-
quence of primitive operations (POs) [15]. Figure 5 shows
the overview of evolutionary system for synthesis of image
recognition programs. In this case, inputs which are needed
from user are just image processing library, training images,
and objective function. Image processing library consists of

Fig. 5 Overview of GP-based image feature extraction program synthe-
sis.

basic image processing and pattern recognition operations,
e.g., edge detection, lowpass filtering, image thresholding
(see Appendix). These operations are used as POs to con-
struct feature extraction programs. The system randomly
generates a population of individuals, which encode fea-
ture extraction programs. These individuals are decoded and
evaluated by using the given training images. In the evalua-
tion process, the defined objective function is used to com-
pute fitness value. The individuals with the higher fitness
values will have higher chance to survive and be evolved.
After evolution process finished, the program encoded by
the individual that give the best fitness value is considered
the output of the system.

In this paper, an image recognition program is repre-
sented as a sequence of POs encoded in a fixed-length string.
In execution process, each operation is sequentially inter-
preted and executed one by one, until all of the operations
in the sequence are finished. Similar to other linear GPs,
the executions are based on a set of shared registers. In par-
ticular, an operation fetches inputs from registers, processes
them, and stores its output into a register. After that, we go
to the next operation and repeat this process until all oper-
ations are finished. Each operation is coded by four parts,
i.e., one opcode (operation code) and three arguments. The
opcode tells us what operation will be executed, whereas the
arguments define related input registers and output register.
Two types of shared registers, i.e., image and numerical reg-
isters, are used. Image registers store input images and pro-
cessed images, whereas numerical registers store real-value
constants and numerical outputs. Before program execution
start, all image registers are initialized by an input images.
After program execution finished, the image stored in a pre-
defined image register is used as output of program.

The test problem is the lawn weed detection prob-
lem [27]. The goal of GPs is to evolve a program that can ac-
curately segment the area of weeds from lawn backgrounds
(Fig. 6). The dataset we used contains 30 images; 20 images
are used as a training set and the remaining 10 images as a
validation set. The image size is smaller than the original
ones used in [27]; its size is 120 × 160 pixels.

To calculate fitness value of an individual, leave-one-
out cross validation is adopted. In particular, m times of
validation are done (m is the number of images). In each
time of validation, one image is used for validation and the
remaining m − 1 images for training, and segmentation ac-
curacy of the validation image is computed. The average of
segmentation accuracies is used as the fitness value. It is

Fig. 6 An example of training image and its corresponding ground truth.
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Table 1 Segmentation accuracy (%) of the programs evolved by the CGPs and the HSGP with the
same seeds, fixed parameters, and the ranked-whole method (g = 50 and g = 100). pc, pm, and ts denote
crossover rate, mutation rate, and tournament size, respectively. NPE denotes the number of program
executions.

Method pc pm ts NPE Training Validation

Mean STD Mean STD
CGP 0.75 0.1 2 300,000 97.157 0.334 95.698 0.571
CGP 0.75 0.1 5 300,000 97.126 0.369 95.838 0.490
CGP 0.75 0.2 5 300,000 97.072 0.299 95.729 0.466
CGP 0.50 0.1 5 300,000 97.441 0.236 96.143 0.433
HSGP (g = 50) 0.50 0.1 5 150,000 97.322 0.300 95.979 0.342
HSGP (g = 100) 0.50 0.1 5 300,000 97.566 0.230 96.300 0.390

defined as

1
m · H ·W

m∑
i=1

H−1∑
x=0

W−1∑
y=0

(
1 − |Oi(x, y) −GTi(x, y)|

255

)
,

where Oi(x, y) is the segmentation result of the ith image,
whereas GTi(x, y) is the corresponding ground truth, H and
W are image height and width, respectively.

4. Experiments and Discussions

We have conducted four experiments to evaluate the per-
formance of the HSGPs compared with the CGPs. For all
experiments, the population size of the CGPs and each level
LNs of the HSGP is 50. In the case of HSGPs, the number
of levels of the binary-tree structure is three (Lmax = 3), as
shown in Fig. 1. The training set was divided into four non-
overlapped subsets for the bottom-level LNs. In the training
set, four images are lawn images that contain no weeds. We
assigned one image that contains no weeds to each subset.
The remaining images were assigned to the subsets depend-
ing on their file name (no other special selection). As men-
tioned before, we set the numbers of generation G1 = G2

= G3 = g for all experiments. This value g was varied to
compare the both GP approaches. We used parameterized
uniform crossover with genes exchange probability of 0.2,
and the mutation operator that randomly exchanges op-code
or arguments of mutated operations. The elitist model, i.e.,
to preserve a copy of the best individual into the next gen-
eration, was adopted. The number of POs in library is 51
(see Appendix). String length is 10 (operations). The num-
ber of image and numerical registers are eight. For each GP
approach, 20 independent runs were experimented.

4.1 Experiment 1: Comparison of GPs with and without
Hierarchical Structure Learning

The goal of this experiment is to investigate whether only
the use of the hierarchical structure learning can improve
performance of GPs. To do that, the use of different seeds
in the bottom-level LNs, which is an advantage of the HS-
GPs, was off, and the ranked-whole population integration
method was used so that no new random individuals were
introduced into the population during runs. All levels LNs

used the same set of parameters to investigate only the effect
of hierarchical learning structure.

Firstly, we experimented with the CGPs with four dif-
ferent sets of parameters as shown in Table 1. The maximum
number of generations G of the CGPs is 300. From the ta-
ble, we found that among the four parameter sets, the CGP
with crossover rate pc = 0.5, mutation rate pm = 0.1, and
tournament size ts = 5 gives the best results. We then ex-
perimented with the HSGP with the same set of parameters.
Each level learns with 50 generations (g = 50). According
to Eq. (3), the HSGP totally needs program executions of
1.5 × 105 times, whereas the CGP tested in this experiment
needs 3 × 105 times of program executions (according to
Eq. (1)). That means the HSGP used only the half number
of program executions of the CGPs. Its result is shown at the
second bottom row of Table 1. We found that by using only
half number of program executions, the HSGP outperforms
three CGPs and give slightly lower performance than the
CGP with the best parameter setting. We then experimented
with HSGP with g = 100 (i.e., it used the same NPEs as the
CGPS). In this case, the HSGP provides better results than
all of the CGPs (the last row in Table 1). This shows the ad-
vantage of using the binary-tree learning structure over the
CGPs.

4.2 Experiment 2: Effect of Population Initialization

Here we investigated the effect of population initialization
of the HSGPs. The use of LNs connected in a binary-tree
structure allows the HSGPs to have more initialized seeds in
the bottom-level LNs, i.e., each one has its own initialized
seeds. The HSGPs that use different seeds in the bottom-
level LNs maintain more diversity than the HSGPs with the
same seeds in all bottom-level LNs and the CGPs. Table 2
shows the comparison between the HSGPs using the same
seeds and different seeds. We varied g of the HSGPs from
25, 30, 40, and 50, as shown. We found some improvements
in performance of the HSGPs. The HSGPs that use different
seeds seem to be better than the HSGPs with the same seeds
(except for g = 30) and better than all of the CGPs tested in
the previous experiment (HSGPs with g = 40 and g = 50).
This is because it allows each of bottom-level LN to focus
on its own distinct area, whereas for the HSGPs with the
same seeds, the bottom-level LN is more likely to focus on
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Table 2 Segmentation accuracy (%) of the programs evolved by the HSGPs with same/different
seeds, fixed parameters, and the ranked-whole method. NPE denotes the number of program execu-
tions.

Generations NPE Same seeds Different seeds

G1-G2-G3 Training Validation Training Validation
Mean STD Mean STD Mean STD Mean STD

25-25-25 75,000 97.118 0.377 95.703 0.556 97.191 0.274 95.768 0.506
30-30-30 90,000 97.344 0.283 96.041 0.413 97.261 0.292 96.006 0.380
40-40-40 120,000 97.345 0.249 96.048 0.311 97.540 0.163 96.321 0.204
50-50-50 150,000 97.322 0.300 95.979 0.454 97.470 0.299 96.187 0.445

Table 3 Segmentation accuracy (%) of the programs evolved by the HSGPs with the n-elitist and
ranked-half-half methods (using different seeds). NPE denotes the number of program executions.

Generations NPE n-elitist Ranked-half-half

G1-G2-G3 Training Validation Training Validation

Mean STD Mean STD Mean STD Mean STD
25-25-25 75,000 97.327 0.239 96.046 0.318 97.261 0.400 95.896 0.559
30-30-30 90,000 97.413 0.168 96.136 0.238 97.382 0.231 96.069 0.399
40-40-40 120,000 97.400 0.242 96.128 0.318 97.284 0.254 95.978 0.413
50-50-50 150,000 97.500 0.239 96.263 0.335 97.359 0.244 96.023 0.391

Fig. 7 Comparison of average best-so-far fitness of the HSGPs (of the top-level LN only) and CGPs.

the same area with each other.

4.3 Experiment 3: Comparison of Population Integration
Methods

In this experiment, we compare the effects of population in-
tegration methods described in Sect. 2.3. The HSGPs us-
ing different seeds and fixed parameters in all levels were
experimented by changing population integration methods.
Table 3 shows the performance comparison of the three in-
tegration methods.

From the results in Tables 2 and 3, the n-elitist method
(n = 5 in this work) seems to give the best performance
compared with those of the ranked-half-half and ranked-

whole methods (except only the case of g = 40 that the
ranked-whole method outperforms the others). The reason
may be that the HSGP with the n-elitist method introduces
random individuals into populations when it combines LNs
of the lower-level together. Introduction of new random in-
dividuals increases diversity of the population and would
prevent the HSGPs from getting stuck at a local optimum.

For the ranked-whole and ranked-half-half methods,
they do not introduce more diversity into the integrated pop-
ulation but rather select the best individuals from both LNs.
Consequently, if the best individuals from the both LNs are
of local optima, it seems that the HSGPs with these inte-
gration methods can rarely escape from those local optima,
resulting in bad results. However, we found that the ranked-
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Table 4 Comparison of the program executions needed by CGPs and the
HSGPs to produce comparable performances.

Segmentation CGP HSGP Ratio

accuracy (%) (HSGP/CGP)

97.20 1.27 ×105 < 0.5 ×105 < 0.3937

97.30 1.73 ×105 0.63 ×105 0.3642

97.40 2.11 ×105 0.89 ×105 0.4218

97.50 4.73 ×105 1.5 ×105 0.3171

97.60 > 10 ×105 < 3 ×105 < 0.3000

whole method sometimes gives the best individuals with
very high fitness (many of them are better than those of the
n-elitist method). The reason would be that the HSGP with
the ranked-whole method can exploit the best individuals
faster than the HSGP with the n-elitist method; if the best
individuals found by the lower-level LNs are near the global
optimum, the ranked-whole method is more likely to find
the global optimum.

4.4 Experiment 4: Reduction in the Number of Program
Executions

In the previous experiments, we have investigated some
characteristics of the HSGPs. Here we compare the HS-
GPs with the best setting, i.e., using different seeds and the
n-elitist integration method, with the CGPs with the maxi-
mum number of generations of 1000. The number of gen-
erations g of the HSGPs is also varied from 25 to 200. Fig-
ure 7 shows the average best-so-far fitness comparison of
the CGPs and the HSGPs (only the best-so-far fitness of the
top-level LN is shown). The figure indicates that the HSGPs
outperforms the CGPs for all values of g. Also we compare
the numbers of program executions needed by both CGPs
and HSGPs to give the comparable performance (Table 4).
We found that the HSGPs need only 30–40% of the num-
ber of program executions needed by the CGP with the best
setting.

5. Conclusion and Future Works

We have investigated an idea of using the hierarchical struc-
ture learning to accelerate GPs, named HSGP. Multi LNs
are connected in a binary-tree whose lower-level LNs learn
with smaller training subsets. A higher-level LN integrates
the connected lower-level LNs together and learns with in-
tegrated training subsets. Experimental results demonstrate
the success of the HSGPs in reduction of the number of
program executions; around 60–70% of program executions
can be reduced without degradation of performances. From
the experiments, we found that major source of success of
the HSGP are as follows:

• To learn from training subsets in the lower-level LNs.
Using only training subsets to evaluate the programs
in the beginning of evolutionary process does not af-
fect performance of GPs but can significantly reduce
the number of program executions.

• More diversities which are introduced by three issues.
The first is the use of larger initial populations (dif-
ferent seeds). The second is the introduction of new
random individuals by the n-elitist population integra-
tion. And the third is the use of hierarchical structure
in which the populations in the same level are evolved
separately and independently.

Although we have experimented with a GP-based im-
age recognition program synthesis, the proposed hierarchi-
cal structure learning is general; it can be used with the other
problems and with the other EAs techniques such as GAs.
In the future, we plan to compare the HSGPs with the other
approaches and extend the experiments with the other test
problems. In addition, the following questions should be
studied further.

• What hierarchical structure is the best?
• How do we select the number of levels of the structure?
• How do we select the appropriate parameters (e.g.,

population size, maximum generation, pc, pm) in each
level?

These parameters would affect the performance of the HS-
GPs.
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Appendix: Primitive Operations

Table A· 1 shows the list of primitive operations we used.
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