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Extending a Role Graph for Role-Based Access Control

Yoshiharu ASAKURA†,††a) and Yukikazu NAKAMOTO††, Members

SUMMARY Role-based access control (RBAC) is widely used as an
access control mechanism in various computer systems. Since an organi-
zation’s lines of authority influence the authorized privileges of jobs, roles
also form a hierarchical structure. A role graph is a model that represents
role hierarchies and is suitable for the runtime phase of RBAC deployment.
Since a role graph cannot take various forms for given roles and cannot han-
dle abstraction of roles well, however, it is not suitable for the design phase
of RBAC deployment. Hence, an extended role graph, which can take a
more flexible form than that of a role graph, is proposed. The extended role
graph improves diversity and clarifies abstraction of roles, making it suit-
able for the design phase. An equivalent transformation algorithm (ETA),
for transforming an extended role graph into an equivalent role graph, is
also proposed. Using the ETA, system administrators can deploy efficiently
RBAC by using an extended role graph in the design phase and a standard
role graph in the runtime phase.
key words: RBAC, role graph, transformation algorithm, equivalence

1. Introduction

In many computer systems, such as devices or databases,
users perform work by accessing the objects, such as files or
tables, provided by these systems. A subject (e.g., a user or a
process) performs multiple operations (e.g., read and write)
on the objects in these systems. Because these objects can
contain user information and confidential data, they must be
protected against malicious subjects. Access control, which
limits the capability of subjects to perform operations on
objects, is useful for protecting such data. As an example,
discretionary access control is widely used in operating sys-
tems such as Linux ∗or UNIX. In the case of file access in
Linux, a subject is a process, an object is a file, and the op-
erations are read, write, and execute. An owner of a file sets
file permissions (e.g., 644 or 755) for the owner, a group,
and other users.

A pair consisting of an object and a set of operations is
called a privilege. If a privilege is granted to a subject, that
subject can perform any operation in the operation set on the
object. To implement proper access control in a system, it is
important to grant appropriate privileges to subjects and to
manage the associations between subjects and privilege sets.
For system administrators, however, this is costly work.

Role-based access control (RBAC) [1] can be used to

Manuscript received March 28, 2008.
Manuscript revised July 2, 2008.
†The author is with System Platforms Research Laboratories,

NEC Corporation, Kawasaki-shi, 211–8666 Japan.
††The authors are with the Graduate School of Applied Infor-

matics, University of Hyogo, Kobe-shi, 650–0044 Japan.
a) E-mail: asakura@cd.jp.nec.com

DOI: 10.1587/transinf.E92.D.211

decrease the cost of granting privileges to subjects. Several
models are used in RBAC, and some of them form hierarchi-
cal structures. A role graph [2], [3] is one such hierarchical
structure. When administrators deploy RBAC in a computer
system, there are two phases: a design phase, and a runtime
phase. Because the form of a role graph is not redundant for
a given role set, by definition, a role graph is suitable for the
runtime phase. In a role graph, however, there is no diversity
of role hierarchies, because of the role graph’s uniqueness.
Since administrators cannot design role hierarchies as they
desire, a role graph is not suitable for the design phase.

In this paper, to enable administrators to design diverse
role hierarchies, we propose an extended role graph by ex-
tending the definition of a role graph. We also clear up the
conditions that an extended role graph and a standard role
graph are equivalent and propose an equivalent transforma-
tion algorithm (ETA) that transforms an extended role graph
into an equivalent role graph. Our contribution in this paper
can be summarized in the following two points:

1. Improving diversity of role hierarchies:
We improve the diversity of role hierarchies by defining
an extended role graph, which can take a more flexible
form than that of a role graph.

2. Simplifying deployment of RBAC:
We suppose that administrators use an extended role
graph in the design phase and a role graph in the run-
time phase, in order to best use the advantages of both
graphs. Administrators can design role hierarchies by
using an extended role graph and then transform it into
an equivalent role graph for the runtime phase. The
ETA enables this transformation.

The rest of the paper is organized as follows. We re-
view the background and related works in Sect. 2 and de-
scribe the role graph in Sect. 3. Then, we define the extended
role graph and the ETA in Sects. 4 and 5, respectively. We
discuss the effectiveness of the extended role graph and the
ETA in Sect. 6. Finally, we give conclusions and remarks
and mention future works in Sect. 7.
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2. Motivation

2.1 Background of Our Work

In RBAC [1], a role is a unit that associates users † with priv-
ileges and corresponds to a job in an organization. Privileges
are associated with a role and users are assigned to a role as
shown in Fig. 1. A user assigned to a role can use privileges
associated with the role. Administrators have only to assign
roles to a user to grant privileges to the user. For example, a
user assigned to the Programmer role in Table 1 can use the
use compiler privilege. Since an organization’s lines of au-
thority influence the authorized privileges of jobs, roles also
form a hierarchical structure. RBAC1 [1] and Hierarchical
RBAC [4] define role hierarchies.

A role graph [2], [3] is a model of role hierarchies. It
is a directed acyclic graph showing hierarchies based on
the privilege inclusion relationship †† among roles. A se-
nior role inherits privileges associated with junior roles.
For example, Table 1 lists four roles, ProjectMember, Pro-
grammer, NoviceTester, and ExpertTester, and the associ-
ated privileges of each role. Since the associated privilege
set of ExpertTester includes the associated privilege sets of
Programmer and NoviceTester, these roles form a hierarchy
in a role graph, as shown in Fig. 2 †††.

2.2 Limitations of a Role Graph

Deployment of RBAC consists of a design phase and a run-
time phase. In the design phase, administrators define role
hierarchies and associate privileges with roles. In the run-
time phase, they assign roles to users according to the users’

Fig. 1 Assignment and association in RBAC.

Table 1 Examples of privileges associated with roles.

Role Associated privileges

ProjectMember read file, write file
Programmer read file, write file, use compiler
NoviceTester read file, write file, use profiler
ExpertTester read file, write file,

use compiler, use profiler

Fig. 2 Allowed role hierarchy.

job functions and implement access control on a computer
system. The form of a role graph is unique for a given role
set, because it is a transitive reduction and has no redun-
dant edges and no redundant privileges [2]. Therefore, a role
graph is suitable for the runtime phase. Because there is no
diversity of role hierarchies for a given role set and abstrac-
tion of roles is not well defined in a role graph, however, it
is not suitable for the design phase. We give two examples
here to illustrate these problems.

Example 1: Suppose hierarchies are formed by the four
roles, ProjectMember, Programmer, NoviceTester, and
ExpertTester, listed in Table 1. From the definition of a
role graph, the role hierarchy shown in Fig. 2 is the only
one allowed in a role graph. The role hierarchies shown
in Fig. 3 are not allowed in a role graph, even if ad-
ministrators wanted to design such role hierarchies. In
other words, a role graph has no flexibility for a given
role set, and it is difficult for administrators to design
role hierarchies as they desire.

Example 2: To clarify the common features of specific
roles, a virtual role [5] can be used in a role graph, just
as an abstract class clarifies the common features of
specific classes in object-oriented design. Because no
user can be assigned to a virtual role in user-role as-
signment, virtual roles intrinsically become useless in
the runtime phase. To reduce consumption of system
resources, administrators can delete virtual roles in the
runtime phase.
To verify whether a role graph changes or not after
deleting virtual roles, we need equivalence definitions.
Suppose that a role graph includes a virtual role, Pro-

Fig. 3 Disallowed role hierarchies.

†A user is generally used as a subject in RBAC.
††A stricter definition is given in [2] and discussed here in

Sect. 3.
†††In a role graph, we do not show privileges inherited from ju-

nior roles.
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grammer. The role graph should maintain equivalence
before and after administrators remove the Program-
mer role. It is not clear, however, how administra-
tors can remove the Programmer role while preserving
equivalence.

In this paper, we propose an extended role graph that
can take various forms and clarifies a virtual role. We clear
up the conditions that an extended role graph and a stan-
dard role graph are equivalent. We also propose an equiva-
lent transformation algorithm (ETA) that transforms an ex-
tended role graph into an equivalent role graph, which in-
cludes no virtual roles. The ETA enables administrators to
deploy RBAC efficiently by using an extended role graph in
the design phase and a standard role graph in the runtime
phase.

2.3 Related Work

RBAC [1] and the role graph [2], [3] are the bases of our
work. As described above, the form of a role graph is unique
for a given role set. In contrast, our extended role graph can
flexibly take various forms for a given role set. Therefore,
administrators can design desired role hierarchies more eas-
ily with an extended role graph than with a role graph.

In a role graph, a virtual role [5] is one such that no
user can be assigned to this role in user-role assignment and
is not well defined. Here, an extended role graph clarifies a
virtual role. We also define equivalent transformation ma-
nipulations (ETMs) for transforming an extended role graph
while preserving equivalence. ETMs include the manipula-
tion for deleting virtual roles.

RBAC can be deployed not only in individual systems
but also in distributed systems. Enterprise Security Man-
agement Systems (ESMS) are examples of such distributed
systems. RBAC deployed in an ESMS is called Enterprise
RBAC (ERBAC) [6]–[8]. Enterprise Roles in ERBAC also
form role hierarchies over distributed systems, and a role
graph can be used in such role hierarchies [9]. An extended
role graph can also be used.

3. Role Graph

Nyanchama and Osborn proposed the role graph in [2], [3].
A role graph is a directed acyclic graph in which the nodes
represent roles and the edges represent the is-junior relation-
ships. The is-junior relationship (denoted→) is defined be-
tween two roles. For any two roles r1 and r2, r1 → r2 if and
only if r1.rpset ⊂ r2.rpset † holds. Here, r.rpset means a set
of privileges of r.

r1 is said to be junior to r2 and to be a junior role of r2.
Let Juniors(r) be the role set of every junior role of a role
r. In contrast, r2 is said to be senior to r1 and to be a senior
role of r1. Let S eniors(r) be the role set of every senior
role of a role r. A role graph is represented by a pair of
(RS , ES ), where RS represents a role set and ES represents
a set of the is-junior relationship (in other words, ES is a

set of edges). Privileges are divided into two types in the
is-junior relationship [2]. The first type is a direct privilege.
The direct privileges of a role r are those not assigned to any
junior roles of r. Let Direct(r) be the set of direct privileges
of r. The second type is an effective privilege. The effective
privileges of a role r are the union of Direct(r) and effective
privileges of every junior role of r. Here, r.rpset represents
the set of effective privileges of r.

Nyanchama and Osborn showed that a role graph has
the following properties [3], hereafter referred to as the Role
Graph Properties:

1. There is a single MaxRole.
2. There is a single MinRole.
3. The Role Graph is acyclic.
4. There is a path from MinRole to every role ri.
5. There is a path from every role ri to MaxRole.
6. For any two roles ri and r j, if ri.rpset ⊂ r j.rpset, then

there must be a path from ri to r j.

Here, the MaxRole has all of the privileges of every role in
the graph, while the MinRole role has only those privileges
common to every role in the graph. The privilege set of Min-
Role might thus be ∅. Nyanchama and Osborn showed an-
other property of a role graph, namely, well-formedness [2].
A well-formed role graph has no redundant edges and no re-
dundant privileges. Since it is a directed acyclic graph and
a transitive reduction, the form of a role graph is unique for
a given role set [10]. Algorithms for manipulating a role
graph were also proposed in [3]. These algorithms were for
role addition, role deletion, role partition, privilege addition,
privilege deletion, edge insertion, and edge deletion. These
algorithms preserve the Role Graph Properties and the well-
formedness of a role graph.

4. Extended Role Graph

In this section, we discuss the extended role graph and
the equivalence of extended role graphs. An extended role
graph eases the Role Graph Properties and well-formedness
of a role graph. Therefore, the form of an extended role
graph is not unique for a given role set. In other words,
equivalent extended role graphs can take various forms. Ad-
ministrators can thus flexibly manipulate an extended role
graph as they desire. In addition, an extended role graph
clarifies abstraction of roles. We can consider a standard
role graph to be a type of extended role graph satisfying
stricter properties and conditions. The algorithms in [3] can
also be applied to manipulate an extended role graph (except
for preserving well-formedness).

4.1 Definitions

We introduce several definitions to facilitate our discussion
of the extended role graph. We redefine a direct privilege
and clarify a virtual role in order to define the extended role

†Roles with the same privileges are regarded as one role [3].
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graph and describe the equivalence of extended role graphs.
First, we redefine a direct privilege to allow the existence of
redundant privileges.

Definition 1 (Direct privilege (redefined)): Direct privi
leges are associated with a role r. Unlike in the original
definition, a direct privilege p of a role r can also be inher-
ited from the junior roles of r. If p is also inherited, it is a
redundant privilege for r.

Next, we clarify a virtual role in our extended role
graph.

Definition 2 (Virtual role): A role r is said to be a virtual
role if the number of users assignable to r is 0. The direct
privilege set of a virtual role can be ∅.

In other words, a virtual role is the same as a role ex-
cept that the number of assignable users is 0 and its direct
privilege set can be ∅. A virtual role is only used for defining
the common privileges for its senior roles, making it useful
in the design phase of RBAC. It is not useful, however, in the
runtime phase. Therefore, virtual roles should be removed
from an extended role graph before the runtime phase. The
concept of a role set should be extended in order to include
virtual roles. Therefore, we define an extended role set as
follows.

Definition 3 (Extended role set): A role set ERS is an ex-
tended role set if it includes at least zero virtual role. If ERS
includes no virtual roles, it is simply a role set.

Now, we can define the extended role graph.

Definition 4 (Extended role graph): A role graph ERG is
an extended role graph if it satisfies any of the following
conditions:

C1: The role set of the role graph is an extended role set.
C2: The role graph does not satisfy Property 6 of the Role

Graph Properties.
C3: The role graph is not well-formed.

Let ERG = (ERS , ES ) denote an extended role graph,
where ERS represents an extended role set and ES repre-
sents a set of the is-junior relationships †.

4.2 Equivalence Definitions

We next introduce several equivalence definitions. First, we
clarify the condition whereby two roles are equivalent.

Definition 5 (Role equivalence): For any two roles ri and
r j, ri is equivalent to r j (denoted ri = r j) if and only if
ri.rpset = r j.rpset.

Roles are considered equivalent if their privilege sets
are equivalent, even if the names are different. Next, we
define the inclusion of role sets.

Definition 6 (Inclusion of role sets): For any two role sets
RS i and RS j, RS i is included in RS j (denoted RS i ⊆ RS j) if
and only if for any role ri ∈ RS i, there exists r j ∈ RS j such
that ri = r j.

Now, we define the equivalence of extended role sets
and the equivalence of extended role graphs.

Definition 7 (Equivalence of extended role sets): For any
two extended role sets ERS 1 and ERS 2, ERS 1 is equiv-
alent to ERS 2 (denoted ERS 1 = ERS 2) if and only if
(ERS 1 − VRS 1) ⊆ (ERS 2 − VRS 2) ∧ (ERS 1 − VRS 1) ⊇
(ERS 2 − VRS 2). Here, VRS 1 and VRS 2 are the virtual role
sets included in ERS 1 and ERS 2, respectively.

Definition 8 (Equivalence of extended role graphs): For
any two extended role graphs ERG1 = (ERS 1, ES 1) and
ERG2 = (ERS 2, ES 2), ERG1 is equivalent to ERG2 (de-
noted ERG1 = ERG2) if and only if ERS 1 = ERS 2.

Since a role graph can be regarded as a type of extended
role graph, we can replace an extended role graph with a role
graph in Defs. 7 and 8.

4.3 Extended Role Graph Diversity

As discussed in Sect. 3, the form of a role graph is unique
for a given role set. In contrast, the form of an extended role
graph is not unique for a given extended role set. We show
this property in the following theorem.

Theorem 1 (Extended role graph diversity): There exist
two extended role graphs ERG1 = (ERS 1, ES 1) and ERG2 =

(ERS 2, ES 2) such that ERS 1 = ERS 2 ∧ ES 1 � ES 2 holds
if these two extended role graphs satisfy any condition in
Def. 4.

Proof : For any two extended role graphs satisfying any
condition in Def. 4, we show examples of two extended role
graphs ERG1 = (ERS 1, ES 1) and ERG2 = (ERS 2, ES 2)
such that ERS 1 = ERS 2 ∧ ES 1 � ES 2 holds.

In the case of satisfying C1: Consider two extended role
graphs ERG1 = (ERS 1, ES 1), such that ERS 1 =

{MinRole, MaxRole, r1, vr1}, and ERG2 = (ERS 2,
ES 2), such that ERS 2 = {MinRole, MaxRole, r1, vr1,

Fig. 4 Example of satisfying C1.

†Since the set of direct privileges of a virtual role can be ∅, an
extended role set can include several roles with equivalent effective
privileges. Therefore, for any virtual role ri in an extended role
graph, ri → r j means ri.rpset ⊆ r j.rpset.
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Fig. 5 Example of satisfying C2.

Fig. 6 Example of satisfying C3.

vr2}, as given in Fig. 4. Since (ERS 1 − {vr1}) ⊆
(ERS 2 − {vr1, vr2}) ∧ (ERS 1 − {vr1}) ⊇ (ERS 2 − {vr1,
vr2}) holds, ERS 1 = ERS 2 holds from Def. 7. More-
over, ES 1 � ES 2 holds, as shown in Fig. 4. Therefore,
there exist two extended role graphs such that ERS 1 =

ERS 2 ∧ ES 1 � ES 2 holds.
In the case of satisfying C2: Consider two extended role

graphs ERG1 = (ERS 1, ES 1) and ERG2 = (ERS 2,
ES 2), as given in Fig. 5. ERS 1 = ERS 2 holds, since
each role has identical privileges. Moreover, ES 1 �
ES 2 holds, as shown in Fig. 5. Therefore, there exist
two extended role graphs such that ERS 1 = ERS 2 ∧
ES 1 � ES 2 holds.

In the case of satisfying C3: Consider two extended role
graphs ERG1 = (ERS 1, ES 1) and ERG2 = (ERS 2,
ES 2), as given in Fig. 6. Then there exist two extended
role graphs such that ERS 1 = ERS 2 ∧ ES 1 � ES 2

holds, in the same way discussed for the case of satis-
fying C2.

From the above discussion, ERS 1 = ERS 2 ∧ ES 1 � ES 2

holds if the two extended role graphs satisfy any condition
in Def. 4. �

5. Equivalent Transformation Algorithm

The extended role graph defined in Sect. 4 improves diver-
sity and clarifies abstraction of roles. Therefore, an extended
role graph facilitates the design phase of RBAC. Since an
extended role graph can have redundant edges and privi-
leges, however, a standard role graph is more suitable than

an extended role graph for the runtime phase. In fact, an ex-
tended role graph is not suitable for the runtime phase. One
solution is for administrators to use an extended role graph
in the design phase and transform it, after designing role hi-
erarchies, into a standard role graph. This solution requires
the role graph to be equivalent to the extended role graph.

In this section, we discuss the ETA for transforming
an extended role graph into an equivalent role graph. First,
we define equivalent transformation manipulations for the
ETA. Next, we give the ETA itself. Finally, we show the
complexity of the ETA. The ETA enables administrators to
best use the advantages of both an extended role graph and
a role graph, thus improving deployment of RBAC.

5.1 Equivalent Transformation Manipulations

Transformation manipulations include such operations as
adding/deleting a role and an edge to/from a role graph and
adding/deleting a privilege to/from a role’s direct privilege
set. For an extended role graph ERG2 created by apply-
ing some transformation manipulations to an extended role
graph ERG1, these manipulations are equivalent transfor-
mation manipulations (ETMs) if ERG1 = ERG2 holds. We
define ETMs in Theorem 2.

Theorem 2 (ETMs): The following five transformation
manipulations are ETMs.

Privilege distribution (PD): This manipulation distributes
a direct privilege to immediate senior roles. Given a
virtual role vr, if there exists a direct privilege cp ∈
Direct(vr), then we can delete cp from Direct(vr) and
add cp to every direct privilege set of the immediate
senior roles of vr.

Virtual role deletion (VRD): This manipulation deletes a
virtual role from an extended role graph. Given a vir-
tual role vr, if Direct(vr) = ∅, then we can delete vr
from the extended role graph. We can also add edges
from every immediate junior role of vr to every imme-
diate senior role of vr to maintain the paths between
these roles.

Edge addition (EA): This manipulation adds an edge to an
extended role graph. Given two roles ri and r j, we can
add an edge (ri, r j) if ri.rpset ⊆ r j.rpset holds.

Redundant edge deletion (RED): This manipulation de-
letes a redundant edge from an extended role graph.
Given two roles ri and r j, we can delete an edge (ri, r j)
if there exists a path such that ri→ r1→ · · · → rk→ r j,
k ≥ 1.

Redundant privilege deletion (RPD): This manipulation
deletes a redundant privilege from a role. Given a
direct privilege rp of a role r, if there exists jr ∈
IJuniors(r) such that rp ∈ jr.rpset holds, then we can
delete rp from Direct(r). Here, IJuniors(r) is the im-
mediate junior role set of r.

Proof : Suppose that we transform an extended role graph
ERG1 = (ERS 1, ES 1) into an extended role graph ERG2 =
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(ERS 2, ES 2), and that VRS 1 and VRS 2 are virtual role sets
included in ERS 1 and ERS 2, respectively.

PD: Suppose that we distribute a direct privilege cp of a
virtual role vr1 in VRS 1 to the immediate senior roles,
transforming vr1 to vr2 in VRS 2. For any immediate
senior role sr1 of vr1, we add cp to Direct(sr1), so that
sr1 becomes sr2 in ERS 2. Then, cp ∈ sr1.rpset holds,
since sr1 inherits cp from the immediate junior role vr1,
and cp ∈ sr2.rpset also holds. Thus, sr1 = sr2 holds.
Since (ERS 1 − VRS 1) ⊆ (ERS 2 − VRS 2) ∧ (ERS 1 −
VRS 1) ⊇ (ERS 2 − VRS 2) holds, ERS 1 = ERS 2 holds
from Def. 7. Hence, from Def. 8, ERG1 = ERG2 holds.

VRD: Suppose that we delete a virtual role vr, which has
no direct privilege, from ERS 1. That is, VRS 1 − {vr} =
VRS 2 and ERS 1 − {vr} = ERS 2 hold. ERS 1 = ERS 2

holds from Def. 7, and hence, from Def. 8, ERG1 =

ERG2 holds.
EA: Suppose that we add an edge (ri, r j) to ES 1. Since

ri.rpset ⊆ r j.rpset holds, r j.rpset does not change after
adding the edge. ERS 1 = ERS 2 holds from Def. 7, and
hence, from Def. 8, ERG1 = ERG2 holds.

RED: Suppose that we delete a redundant edge (ri, r j) from
ES 1. Since there exists a path such that ri → r1 →
· · · → rk → r j, k ≥ 1, r j.rpset does not change after
deleting the redundant edge. ERS 1 = ERS 2 holds from
Def. 7, and hence, from Def. 8, ERG1 = ERG2 holds.

RPD: Suppose that we delete a redundant privilege rp from
a role r1 in ERS 1, so that r1 becomes r2 in ERS 2. Since
there exists jr ∈ IJuniors(r1) (= IJuniors(r2)) such that
rp ∈ jr.rpset holds, r1.rpset = r2.rpset holds. Since
r1 = r2 holds from Def. 5, ERS 1 = ERS 2 also holds.
Hence, from Def. 8, ERG1 = ERG2 holds.

�

5.2 Equivalent Transformation Algorithm

The ETA is composed of the steps given in Theorem 3,
which guarantees that any extended role graph can be trans-
formed into an equivalent role graph.

Theorem 3 (Transformation): Any extended role graph
can be transformed into an equivalent role graph.

Proof : The following steps form the transformation from
an extended role graph ERG into an equivalent role graph
RG. We can find every (virtual) role in ERG with a depth-
first search starting at MinRole.

Step 1: For every virtual role vr, distribute Direct(vr) to ev-
ery immediate senior role of vr by applying PD, obtain-
ing ERG1.

Step 2: Delete every virtual role vr by applying VRD, ob-
taining ERG2.

Step 3: For any two roles r1 and r2, other than MinRole and
MaxRole, to which EA is applicable, add the edge (r1,
r2) by applying EA, obtaining ERG3.

Step 4: For any edge e to which RED is applicable, delete
e by applying RED, obtaining ERG4.

Step 5: For any role r, delete redundant privileges by ap-
plying RPD, obtaining ERG5.

After Steps 1 and 2, ERG2 does not satisfy C1 of
Def. 4, because every virtual role has been deleted. After
Step 3, ERG3 does not satisfy C2 of Def. 4, because ERG3

satisfies Property 6 of the Role Graph Properties. After
Steps 4 and 5, ERG5 does not satisfy C3 of Def. 4, because
all redundant privileges and all redundant edges have been
deleted. Therefore, ERG5 does not satisfy any condition of
Def. 4. Moreover, the (extended) role set (except for vir-
tual roles) remains unchanged, since the transform manip-
ulations used in the above steps are ETMs. Hence, ERG =
ERG5 = RG holds, and therefore, any extended role graph
can be transformed into an equivalent role graph by apply-
ing the above steps. �

We show an example of transformation from an ex-
tended role graph into an equivalent role graph in Fig. 7.
The extended role graph (a) includes seven roles: MinRole,
MaxRole, R1, VR2, R3, R4, and R5. VR2 is a virtual role. We
transform the extended role graph (a) according to the steps
given in Theorem 3. In Step 1, we distribute the privilege p2

to R4 and R5, transforming (a) into (b). In Step 2, we delete
the virtual role VR2. Because of the virtual role deletion,
we add the edges (MinRole,R4) and (MinRole,R5), trans-
forming (b) into (c). In Step 3, we add the edge (R3,R4),
transforming (c) into (d). In Step 4, we delete the redun-
dant edges (MinRole,R4) and (MinRole,R5), transforming
(d) into (e). Finally, in Step 5, we delete the redundant priv-
ilege p3 of R4, transforming (e) into (f), a role graph that is
equivalent to (a).

5.3 Complexity

In this section, we show the complexity of the ETA. Here,
we assume that an extended role graph is structured as fol-
lows.

• A role set is structured as a list.
• The incoming edge set and the outgoing edge set of

a role r are represented as two adjacency lists. One
adjacency list represents the reversed incoming edge
set, namely, the edge set from r to every immediate
junior role of r. The other adjacency list represents the
outgoing edge set, namely, the edge set from r to every
immediate senior role of r.
• The direct privilege set and the effective privilege set of

a role r are represented as two lists sorted by some total
order relation among privileges †. Let ω be the compu-
tational cost of comparison between two privileges.

First, we show the complexity of each ETM. Let n, e, and p
be the number of roles, the number of edges, and the number
of a type of privilege, respectively, in a role graph.

†For example, comparison between the character strings of
privilege names is a candidate for a total order relation among priv-
ileges.
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Fig. 7 Example of transformation.

PD: For any virtual role vr and any direct privilege cp,
we take O(ωp) to decide whether cp is included in
Direct(vr) and to delete cp from Direct(vr). We take
O(e) to visit every immediate senior role of vr. We take
O(ωp) to add cp to the direct privilege set of an imme-
diate senior role of vr. Therefore, PD takes O(ωp) +
O(e)O(ωp) = O(eωp).

VRD: For any virtual role vr, we take O(1) to decide
whether Direct(vr) = ∅ and O(n + e) to delete vr. We
take O(e3) to add edges from every immediate junior
role of vr to every immediate senior role of vr. There-
fore, VRD takes O(n + e3).

EA: For any two roles ri and r j, we take O(ωp) to decide
whether ri.rpset ⊆ r j.rpset holds. We take O(e) to add
an edge (ri, r j). Therefore, EA takes O(e + ωp).

RED: For any role ri and r j, we can decide whether there
exists a path such that ri → r1 → · · · → rk → r j, k ≥ 1
by applying a depth-first search starting at ri to the ex-
tended role graph obtained by removing an edge (ri, r j).
Therefore, we take O(n+ e) to decide whether this path
exists and O(e) to delete the edge (ri, r j). Therefore,
RED takes O(n + e).

RPD: For any direct privilege rp of any role r, we take
O(nωp) to decide whether there exists jr ∈ IJuniors(r)
such that rp ∈ jr.rpset holds. Therefore, RPD takes
O(nωp).

Next, we give the complexity of the ETA in the follow-
ing theorem.

Theorem 4 (Complexity): If the number of roles, the num-
ber of edges, and the number of a type of privilege are n, e,
and p, respectively, in an extended role graph ERG, then the
complexity of the ETA for ERG is O(ne(e2 + ωp) + n2(e +
ωp2)).

Proof : We show the complexity of each step in Theo-
rem 3.

Step 1: For each role r in ERG, if r is a virtual role, then
we apply PD to r. Since PD takes O(eωp), Step 1 takes
O(n)O(eωp) = O(neωp).

Step 2: For each role r in ERG1, if r is a virtual role, then
we apply VRD to r. Since VRD takes O(n + e3), Step
2 takes O(n)O(n + e3) = O(n(n + e3)).

Step 3: For any two roles r1 and r2, we apply EA to r1 and
r2. Since EA takes O(e+ωp), Step 3 takes O(n2)O(e+
ωp) = O(n2(e + ωp)).

Step 4: In a depth-first search, we visit each role once and
walk each edge once. For any edge e, we apply RED
to e. Since visiting each role takes O(n), walking every
edge takes O(e), and RED takes O(n + e), Step 4 takes
O(n) + O(e)O(n + e) = O(e(n + e)).

Step 5: For each role r, we apply RPD to every direct priv-
ilege of r. Since RPD takes O(nωp), Step 5 takes
O(n)O(p)O(nωp) = O(n2ωp2).

Therefore, the complexity of the ETA is O(neωp) +
O(n(n + e3)) + O(n2(e + ωp)) + O(e(n + e)) + O(n2ωp2) =
O(ne(e2 + ωp) + n2(e + ωp2)). �

6. Effectiveness

Here, we discuss the effectiveness of the extended role graph
and the ETA.

6.1 Effectiveness of the Extended Role Graph

We examine the effectiveness of improving diversity and
clarifying abstraction of roles by considering Examples 1
and 2 given in Sect. 2.
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In Example 1, since Programmer.rpset ⊂ Ex-
pertTester.rpset and NoviceTester.rpset ⊂ ExpertTester.rpset
holds, ExpertTester should be a senior role of Programmer
and NoviceTester in a role graph, as shown in Fig. 2. Since
an extended role graph eases the Role Graph Properties,
however, ExpertTester does not have to be a senior role of
Programmer or NoviceTester in an extended role graph, as
shown in Fig. 3. An extended role graph takes a flexible
form in this manner. This gives an example of improving
the diversity of role hierarchies.

By clarifying a virtual role, we clear up the conditions
that an extended role graph and a role graph are equivalent.
VRD preserves equivalence before and after deleting virtual
roles, enabling administrators to remove virtual roles sys-
tematically. In Example 2, administrators can remove a vir-
tual role Programmer by applying VRD to the extended role
graph. An extended role graph clarifies abstraction of roles
in this manner.

6.2 Effectiveness of the ETA

An extended role graph is suitable for the design phase of
RBAC, as described in Sect. 5. The extended role graph,
however, can have redundant edges and privileges and in-
clude virtual roles. Redundant edges and privileges are not
useful in the runtime phase. Since users cannot be assigned
to virtual roles, they also are not useful in the runtime phase.
In contrast, a role graph is suitable for the runtime phase be-
cause it has no redundancy for a given role set. The ETA
mediates between an extended role graph and a role graph.
Since the complexity of the ETA is of polynomial order, the
ETA can be implemented as a tool and automated. There-
fore, administrators can easily use the ETA to build suitable
role hierarchies in both the design phase and the runtime
phase. The ETA thus improves the efficiency of RBAC de-
ployment in this manner.

7. Conclusions and Remarks

In this paper, we have proposed an extended role graph
that improves diversity and clarifies abstraction of roles for
RBAC. We have also proposed an equivalent transformation
algorithm (ETA), which transforms an extended role graph
into an equivalent role graph. The extended role graph is
suitable for the design phase of RBAC, while the role graph
is suitable for the runtime phase. By using the ETA, system
administrators can efficiently deploy RBAC, because they
can best use the advantages of both graphs. Since the com-
plexity of the ETA is of polynomial order, the ETA can be
implemented as a tool for easy use by administrators.

On some points, the relationship between a role graph
and an extended role graph is similar to that between a non-
deterministic finite automaton (NFA) and a deterministic fi-
nite automaton (DFA). Since we have proposed the ETA in
this paper, for any extended role graph for a given role set,
there exists a role graph that includes the equivalent role set.
This relationship is similar to the relationship, which for any

NFA, there exists a DFA that accepts the same language.
However, we have not yet described the reverse manipula-
tions of the ETMs. Therefore, the converse relationship is
not currently similar.

Administrators can use the algorithms given in [3] to
manipulate an extended role graph. When they transform
an extended role graph ERG1 = (ERS 1, ES 1) into another
extended role graph ERG2 = (ERS 2, ES 2), there will be cir-
cumstances in which they would like to transform it so that
ERS 1 ⊆ ERS 2 holds. The algorithms in [3], however, do not
satisfy this need.

In future works, we will explore algorithms for manip-
ulation that do satisfy ERS 1 ⊆ ERS 2, which could be ap-
plied in the above situation. Moreover, we will define the
reverse manipulations of the ETMs. Then, we can show that
the converse relationship is also similar.
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