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SUMMARY In this paper, we present a discriminative word-character
hybrid model for joint Chinese word segmentation and POS tagging. Our
word-character hybrid model offers high performance since it can handle
both known and unknown words. We describe our strategies that yield
good balance for learning the characteristics of known and unknown words
and propose an error-driven policy that delivers such balance by acquiring
examples of unknown words from particular errors in a training corpus.
We describe an efficient framework for training our model based on the
Margin Infused Relaxed Algorithm (MIRA), evaluate our approach on the
Penn Chinese Treebank, and show that it achieves superior performance
compared to the state-of-the-art approaches reported in the literature.
key words: word segmentation, POS tagging, error-driven, word-
character hybrid model

1. Introduction

In Chinese, word segmentation and part-of-speech (POS)
tagging are indispensable steps for higher-level NLP tasks.
Word segmentation and POS tagging results are required as
inputs to other NLP tasks, such as phrase chunking, depen-
dency parsing, and machine translation. Word segmenta-
tion and POS tagging in a joint process have received much
attention in recent research and have shown improvements
over a pipelined fashion [1]–[5].

In joint word segmentation and the POS tagging pro-
cess, one serious problem is caused by unknown words,
which are defined as words that are not found in a train-
ing corpus or in a system’s word dictionary∗. The word
boundaries and the POS tags of unknown words, which
are very difficult to identify, cause numerous errors. The
word-character hybrid model proposed by Nakagawa and
Uchimoto [2], [6] shows promising properties for solving
this problem. However, it suffers from structural complex-
ity. Nakagawa [6] described a training method based on a
word-based Markov model and a character-based maximum
entropy model that can be completed in a reasonable time.
However, this training method is limited by the generatively-
trained Markov model in which informative features are
hard to exploit.

In this paper, we overcome such limitations concerning
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both efficiency and effectiveness. We propose a new frame-
work for training the word-character hybrid model based on
the Margin Infused Relaxed Algorithm (MIRA) [7]–[9]. We
describe k-best decoding for our hybrid model and design
its loss function and the features appropriate for our task.

In our word-character hybrid model, allowing the
model to learn the characteristics of both known and un-
known words is crucial to achieve optimal performance.
Here, we describe our strategies that yield good balance
for learning these two characteristics. We propose an error-
driven policy that delivers this balance by acquiring exam-
ples of unknown words from particular errors in a training
corpus. We conducted our experiments on Penn Chinese
Treebank [10] and compared our approach with the best pre-
vious approaches reported in the literature. Experimental re-
sults indicate that our approach can achieve state-of-the-art
performance.

The paper proceeds as follows: Section 2 gives back-
ground on the word-character hybrid model, Section 3 de-
scribes our policies for correct path selection, Section 4
presents our training method based on MIRA, Section 5
shows our experimental results, Section 6 discusses related
work, and Section 7 concludes the paper.

2. Background

2.1 Problem Formation

In joint word segmentation and the POS tagging process,
the task is to predict a path of word hypotheses y =
(y1, . . . , y#y) = (〈w1, p1〉, . . . , 〈w#y, p#y〉) for a given charac-
ter sequence x = (c1, . . . , c#x), where w is a word, p is its
POS tag, and a “#” symbol denotes the number of elements
in each variable. The goal of our learning algorithm is to
learn a mapping from inputs (unsegmented sentences) x ∈ X
to outputs (segmented paths) y ∈ Y based on training sam-
ples of input-output pairs S = {(xt, yt)}Tt=1.

2.2 Search Space Representation

We represent the search space with a lattice based on the
word-character hybrid model [2]. In the hybrid model, given
an input sentence, a lattice that consists of word-level and

∗A system’s word dictionary usually consists of a word list, and
each word in the list has its own POS category. In this paper, we
constructed the system’s word dictionary from a training corpus.
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Fig. 1 Example of a lattice used in the word-character hybrid model.

character-level nodes is constructed. Word-level nodes,
which correspond to words found in the system’s word dic-
tionary, have regular POS tags. Character-level nodes have
special tags where position-of-character (POC) and POS
tags are combined [6], [11]. POC tags include {B, I, E, S},
indicating the beginning of a word, the middle of a word,
the end of a word, and a single-character word, respectively.

Figure 1 shows an example of a lattice for a Chinese
sentence: “ ” (Chongming is China’s third
largest island). Note that some nodes and state transitions
are not allowed. For example, I and E nodes cannot occur
at the beginning of the lattice (marked with dashed boxes),
and the transitions from I to B nodes are also forbidden.
These nodes and transitions are ignored during the lattice
construction processing.

In the training phase, since several paths (marked in
bold) can correspond to the correct analysis in the annotated
corpus, we need to select one correct path yt as a reference
for training †. The next section describes our strategies for
dealing with this issue.

With this search space representation, we can consis-
tently handle unknown words with character-level nodes.
In other words, we use word-level nodes to identify known
words and character-level nodes to identify unknown words.
In the testing phase, we can use a dynamic programming al-
gorithm to search for the most likely path out of all candidate
paths.

3. Policies for Correct Path Selection

In this section, we describe our strategies for selecting the
correct path yt in the training phase. As shown in Fig. 1,
the paths marked in bold can represent the correct annota-
tion of the segmented sentence. Ideally, we need to build a
word-character hybrid model that effectively learns the char-
acteristics of unknown words (with character-level nodes) as
well as those of known words (with word-level nodes).

We can directly estimate the statistics of known words
from an annotated corpus where a sentence is already seg-

mented into words and assigned POS tags. If we select the
correct path yt that corresponds to the annotated sentence,
it will only consist of word-level nodes that do not allow
learning for unknown words. We therefore need to choose
character-level nodes as correct nodes instead of word-level
nodes for some words. We expect that those words could
reflect unknown words in the future.

Baayen and Sproat [12] proposed that the characteris-
tics of infrequent words in a training corpus resemble those
of unknown words. Their idea has proven effective for es-
timating the statistics of unknown words in previous stud-
ies [6], [13], [14].

We adopt Baayen and Sproat’s approach as the baseline
policy in our word-character hybrid model. In the baseline
policy, we first count the frequencies of words†† in the train-
ing corpus. We then collect infrequent words that appear
less than or equal to r times.††† If these infrequent words are
in the correct path, we use character-level nodes to represent
them, and hence the characteristics of unknown words can
be learned. For example, in Fig. 1 we select the character-
level nodes of the word “ ” (Chongming) as the correct
nodes. As a result, the correct path yt can contain both word-
level and character-level nodes (marked with asterisks (*)).

We now describe our new approach to acquire exam-
ples of unknown words from particular errors in a training
corpus. Intuition suggests that even though the system can
handle some unknown words, many unidentified unknown
words remain that cannot be recovered by the system; we
wish to learn the characteristics of such unidentified un-
known words. We propose the following simple scheme:

• Divide the training corpus into ten equal sets and per-
†A machine learning problem exists called structured multi-

label classification that allows training from multiple correct paths.
However, in this paper we limit our consideration to structured
single-label classification, which is simple yet provides great per-
formance.
††We consider a word and its POS tag a single entry.
†††In our experiments, the optimal value r is selected by evaluat-

ing the performance on the development set.
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form 10-fold cross validation to find the errors.
• For each trial, train the word-character hybrid model

with the baseline policy using nine sets and estimate
errors using the remaining validation set.
• Collect unidentified unknown words from each valida-

tion set.

Several types of errors are produced by the baseline
model, but we only focus on those caused by unidentified
unknown words, which can be easily collected in the evalua-
tion process. As described later in Sect. 5.2, we measure the
recall on out-of-vocabulary (OOV) words. Here, we define
unidentified unknown words as OOV words in each valida-
tion set that cannot be recovered by the system. After ten
cross validation runs, we get a list of the unidentified un-
known words derived from the whole training corpus. Note
that the unidentified unknown words in the cross validation
are not necessary to be infrequent words, but some overlap
may exist. Finally, we obtain the artificial unknown words
that combine the unidentified unknown words in cross val-
idation and infrequent words for learning unknown words.
We refer to this approach as the error-driven policy.

4. Training Method

4.1 Discriminative Online Learning

Let Yt = {y1
t , . . . , y

K
t } be a lattice consisting of candidate

paths for a given sentence xt. In the word-character hybrid
model, the lattice Yt can contain more than 1000 nodes, de-
pending on the length of the sentence xt and the number of
POS tags in the corpus. Therefore, we require a learning al-
gorithm that can efficiently handle large and complex lattice
structures.

Online learning is an attractive method for the hy-
brid model since it quickly converges within a few itera-
tions [9]. Algorithm 1 outlines the generic online learning
algorithm [9] used in our framework.

4.2 k-best MIRA

We focus on an online learning algorithm called MIRA [7],
which has the desired accuracy and scalability proper-
ties. MIRA combines the advantages of margin-based and
perceptron-style learning with an optimization scheme. In

Algorithm 1 Generic Online Learning Algorithm
Input: Training set S = {(xt , yt)}Tt=1
Output: Model weight vector w
1: w(0) = 0; v = 0; i = 0
2: for iter = 1 to N do
3: for t = 1 to T do
4: w(i+1) = update w(i) according to (xt , yt)
5: v = v + w(i+1)

6: i = i + 1
7: end for
8: end for
9: w = v/(N × T )

particular, we use a generalized version of MIRA [8], [9]
that can incorporate k-best decoding in the update proce-
dure. To understand the concept of k-best MIRA, we begin
with a linear score function:

s(x, y; w) = 〈w, f(x, y)〉 , (1)

where w is a weight vector and f is a feature representation
of an input x and an output y.

Learning a mapping between an input-output pair cor-
responds to finding a weight vector w such that the best scor-
ing path of a given sentence is the same as (or close to) the
correct path. Given a training example (xt, yt), MIRA tries
to establish a margin between the score of the correct path
s(xt, yt; w) and the score of the best candidate path s(xt, ŷ; w)
based on the current weight vector w that is proportional to
a loss function L(yt, ŷ).

In each iteration, MIRA updates the weight vector w
by keeping the norm of the change in the weight vector as
small as possible. With this framework, we can formulate
the optimization problem as follows [9]:

w(i+1) = argminw‖w − w(i)‖ (2)

s.t. ∀ŷ ∈ bestk(xt; w(i)) :

s(xt, yt; w) − s(xt, ŷ; w) ≥ L(yt, ŷ) ,

where bestk(xt; w(i)) ∈ Yt represents a set of top k-best paths
given the weight vector w(i). The above quadratic program-
ming (QP) problem can be solved using Hildreth’s algo-
rithm [15]. Replacing Eq. (2) into line 4 of Algorithm 1, we
obtain k-best MIRA.

The next question is how to efficiently generate
bestk(xt; w(i)). In this paper, we apply a dynamic program-
ming search [16] to k-best MIRA. The algorithm has two
main search steps: forward and backward. For the forward
search, we use Viterbi-style decoding to find the best par-
tial path and its score up to each node in the lattice. For
the backward search, we use A∗-style decoding to generate
the top k-best paths. A complete path is found when the
backward search reaches the beginning node of the lattice,
and the algorithm terminates when the number of generated
paths equals k.

In summary, we use k-best MIRA to iteratively update
w(i). The final weight vector w is the average of the weight
vectors after each iteration. As reported in [17], [18], pa-
rameter averaging can effectively avoid overfitting. For
inference, we can use Viterbi-style decoding to search for
the most likely path y∗ for a given sentence x where:

y∗ = argmax
y∈Y

s(x, y; w) . (3)

4.3 Loss Function

In conventional sequence labeling where the observation se-
quence (word) boundaries are fixed, one can use the 0/1 loss
to measure the errors of a predicted path with respect to the
correct path. However, in our model, word boundaries vary
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Table 1 Unigram features.

ID Template Condition

W0 〈w0〉 for word-level
W1 〈p0〉 nodes
W2 〈w0, p0〉
W3 〈Length(w0), p0〉
A0 〈AS(w0)〉 if w0 is a single-
A1 〈AS(w0), p0〉 character word

A2 〈AB(w0)〉 for word-level
A3 〈AB(w0), p0〉 nodes
A4 〈AE(w0)〉
A5 〈AE(w0), p0〉
A6 〈AB(w0), AE(w0)〉
A7 〈AB(w0), AE(w0), p0〉
T0 〈TS(w0)〉 if w0 is a single-
T1 〈TS(w0), p0〉 character word

T2 〈TB(w0)〉 for word-level
T3 〈TB(w0), p0〉 nodes
T4 〈TE(w0)〉
T5 〈TE(w0), p0〉
T6 〈TB(w0),TE(w0)〉
T7 〈TB(w0),TE(w0), p0〉
C0 〈c j〉, j ∈ [−2, 2] × p0 for character-
C1 〈c j, c j+1〉, j ∈ [−2, 1] × p0 level nodes
C2 〈c−1, c1〉 × p0

C3 〈T (c j)〉, j ∈ [−2, 2] × p0

C4 〈T (c j),T (c j+1)〉, j ∈ [−2, 1] × p0

C5 〈T (c−1),T (c1)〉 × p0

C6 〈c0,T (c0)〉 × p0

based on the considered path, resulting in a different num-
bers of output tokens. As a result, we cannot directly use the
0/1 loss.

We instead compute the loss function through false
positives (FP) and false negatives (FN). Here, FP means
the number of output nodes that are not in the correct path,
and FN means the number of nodes in the correct path that
cannot be recognized by the system. We define the loss
function by:

L(yt, ŷ) = FP + FN . (4)

This loss function can reflect how bad the predicted path ŷ
is compared to the correct path yt.

4.4 Features

This section discusses the structure of f(x, y). We broadly
classify features into two categories: unigram and bigram
features. We design our feature templates to capture vari-
ous levels of information about words and POS tags. Let us
introduce some notation. We write w−1 and w0 for the sur-
face forms of words, where subscripts −1 and 0 indicate the
previous and current positions, respectively. POS tags p−1

and p0 can be interpreted in the same way. We denote the
characters by c j.

Unigram features: Table 1 shows our unigram fea-
tures. Templates W0–W3 are basic word-level unigram fea-
tures, where Length(w0) denotes the length of the word w0.
Using just the surface forms can overfit the training data
and lead to poor predictions on the test data. To alleviate
this problem, we use two generalized features of the surface

Table 2 Bigram features.

ID Template Condition

B0 〈w−1,w0〉 if w−1 and w0

B1 〈p−1, p0〉 are word-level
B2 〈w−1, p0〉 nodes
B3 〈p−1,w0〉
B4 〈w−1,w0, p0〉
B5 〈p−1,w0, p0〉
B6 〈w−1, p−1,w0〉
B7 〈w−1, p−1, p0〉
B8 〈w−1, p−1,w0, p0〉
B9 〈Length(w−1), p0〉
TB0 〈TE(w−1)〉
TB1 〈TE(w−1), p0〉
TB2 〈TE(w−1), p−1, p0〉
TB3 〈TE(w−1),TB(w0)〉
TB4 〈TE(w−1),TB(w0), p0〉
TB5 〈TE(w−1), p−1,TB(w0)〉
TB6 〈TE(w−1), p−1,TB(w0), p0〉
CB0 〈p−1, p0〉 otherwise

Table 3 Character types.

Character type Description

Space Space
Numeral Arabic and Chinese numerals
Symbol Symbols
Alphabet Alphabets
Chinese Chinese characters
Other Others

forms. The first is the beginning and end characters of the
surface (A0–A7). For example, 〈AB(w0)〉 denotes the begin-
ning character of the current word w0, and 〈AB(w0), AE(w0)〉
denotes the beginning and end characters in the word. The
second is the types of beginning and end characters of the
surface (T0–T7). We define a set of general character types,
as shown in Table 3.

Templates C0–C6 are basic character-level unigram
features taken from [6]. These templates operate over a win-
dow of ±2 characters. The features include characters (C0),
pairs of characters (C1–C2), character types (C3), and pairs
of character types (C4–C5). In addition, we add pairs of
characters and character types (C6).

Bigram features: Table 2 shows our bigram fea-
tures. Templates B0-B9 are basic word-level bigram fea-
tures. These features aim to capture all the possible com-
binations of word and POS bigrams. Templates TB0-TB6
are the types of characters for bigrams. For example,
〈TE(w−1),TB(w0)〉 captures the change of character types
from the end character in the previous word to the begin-
ning character in the current word.

Note that if one of the adjacent nodes is a character-
level node, we use the template CB0 that represents POS bi-
grams. In our preliminary experiments, we found that if we
add more features to non-word-level bigrams, the number of
features grows rapidly due to the dense connections between
non-word-level nodes. However, these features only slightly
improve performance over using simple POS bigrams.



2302
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

5. Experiments

5.1 Data Sets

Previous studies on joint Chinese word segmentation and
POS tagging have used Penn Chinese Treebank (CTB) [10]
in experiments. However, versions of CTB and experimen-
tal settings vary across different studies.

In this paper, we used CTB 5.0 (LDC2005T01) as our
main corpus, defined the training, development and test sets
according to [4], [5], and designed our experiments to ex-
plore the impact of the training corpus size on our approach.
Table 4 provides the statistics of our experimental settings
on the small and large training data. The out-of-vocabulary
(OOV) is defined as tokens in the test set that are not in the
training set [19]. Note that the development set was only
used for evaluating the trained model to obtain the optimal
values of tunable parameters.

5.2 Evaluation

We evaluated both word segmentation (Seg) and joint word
segmentation and POS tagging (Seg & Tag). We used re-
call (R), precision (P), and F1 as evaluation metrics. Fol-
lowing [19], we also measured the recall on OOV (ROOV)
tokens and in-vocabulary (RIV) tokens. These performance
measures can be calculated as follows:

Recall (R) =
# of correct tokens

# of tokens in test data

Precision (P) =
# of correct tokens

# of tokens in system output

F1 =
2 · R · P
R + P

ROOV =
# of correct OOV tokens

# of OOV tokens in test data

RIV =
# of correct IV tokens

# of IV tokens in test data
For Seg, a token is considered to be a correct one if the word
boundary is correctly identified. For Seg & Tag, both the
word boundary and its POS tag have to be correctly identi-
fied to be counted as a correct token.

5.3 Parameter Estimation

Our model has three tunable parameters: the number of
training iterations N; the number of top k-best paths; and
the threshold r for infrequent words. Since we were inter-
ested in finding an optimal combination of word-level and
character-level nodes for training, we focused on tuning r.
We fixed N = 10 and k = 5 for all experiments. In each
correct path selection policy, we chose r ∈ {1, . . . , 5} which
gave the best performance of joint word segmentation and
POS tagging on the development set. In the baseline policy,

Table 4 Training, development, and test data statistics on CTB 5.0 used
in our experiments.

(a) Experiments on small training corpus
Data set CTB chap. IDs # of sent. # of words

Training 1-270 3,046 75,169
Development 301-325 350 6,821
Test 271-300 348 8,008

# of POS tags 32
OOV ( word) 0.0987 (790/8,008)
OOV ( word&POS) 0.1140 (913/8,008)

(b) Experiments on large training corpus
Data set CTB chap. IDs # of sent. # of words

Training 1-270, 18,089 493,939
400-931,

1001-1151
Development 301-325 350 6,821
Test 271-300 348 8,008

# of POS tags 35
OOV ( word) 0.0347 (278/8,008)
OOV ( word&POS) 0.0420 (336/8,008)

setting r = 3 yielded the best performance on the develop-
ment set for both the small and large training corpus exper-
iments. In the error-driven policy, we thus used r = 3 to
train the word-character hybrid model in 10-fold cross val-
idation and collected unidentified unknown words from the
training corpus. We then generated artificial unknown words
that combine the unidentified unknown words in cross val-
idation and infrequent words, and evaluated variants of the
parameter r for infrequent words again to find the optimal
set of artificial unknown words. We found that combining
the unidentified unknown words with words that occur less
than or equal 2 times (r = 2) gave the best performance
on the development set for both the small and large training
corpus experiments.

5.4 Impact of Policies for Correct Path Selection

Table 5 shows the results of our word-character hybrid
model using the error-driven and baseline policies. The third
and fourth columns indicate the numbers of known and arti-
ficial unknown words in the training phase. The total num-
ber of words is the same, but the different policies yield dif-
ferent balances between the known and artificial unknown
words for learning the hybrid model. Optimal balances were
selected using the development set. The error-driven pol-
icy can yield overall F1 improvements on both the small and
large training sets.

5.5 Comparison with Best Prior Approaches

In this section, we attempt to make meaningful comparison
with the best prior approaches reported in the literature. Al-
though most previous studies used CTB, their versions of
CTB and experimental settings are different, which compli-
cates comparison.

Ng and Low [1] (N&L04) used CTB 3.0. However,
they just showed POS tagging results on a per character ba-
sis, not on a per word basis. Zhang and Clark [3] (Z&C08)
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Table 5 Results of our word-character hybrid model using error-driven and baseline policies.

(a) Experiments on small training corpus
# of words in training (75,169)

Eval type Policy kwn. art. unk. R P F1 ROOV RIV

Seg
error-driven 65,871 9,298 0.9600 0.9510 0.9555 0.7570 0.9823
baseline 64,999 10,170 0.9572 0.9489 0.9530 0.7304 0.9820

Seg & Tag
error-driven 65,871 9,298 0.8917 0.8833 0.8875 0.5115 0.9407
baseline 64,999 10,170 0.8897 0.8820 0.8859 0.5246 0.9367

(b) Experiments on large training corpus
# of words in training (493,939)

Eval Type Policy kwn. art. unk. R P F1 ROOV RIV

Seg
error-driven 451,243 42,696 0.9841 0.9755 0.9798 0.7698 0.9918
baseline 449,679 44,260 0.9821 0.9736 0.9779 0.7590 0.9902

Seg & Tag
error-driven 451,243 42,696 0.9442 0.9359 0.9400 0.6012 0.9592
baseline 449,679 44,260 0.9401 0.9319 0.9360 0.5952 0.9552

Table 6 Comparison of F1 results with previous studies on CTB 5.0.

Method Seg Seg & Tag

Ours (error-driven) 0.9798 0.9400
Ours (baseline) 0.9779 0.9360
Jiang08a 0.9785 0.9341
Jiang08b 0.9774 0.9337
N&U07 0.9796 0.9338

generated CTB 3.0 from CTB 4.0. Jiang et al. [4], [5]
(Jiang08a, Jiang08b) used CTB 5.0. Shi and Wang [20]
used CTB that was distributed in the SIGHAN Bakeoff. Be-
sides CTB, they also used HowNet [21] to obtain seman-
tic class features. Zhang and Clark [3] indicated that their
results cannot directly compare to the results of Shi and
Wang [20] due to different experimental settings.

We decided to follow the experimental settings of Jiang
et al. [4], [5] on CTB 5.0 and Zhang and Clark [3] on CTB
4.0 since they reported the best performances on joint word
segmentation and POS tagging using the training materials
only derived from the corpora. The performance scores of
previous studies are directly taken from their papers. We
also conducted experiments using the system implemented
by Nakagawa and Uchimoto [2] (N&U07) for comparison.
We chose the parameter r for N&U07’s system using the
development set and found that setting r = 4 yielded the
best performance.

Our experiment on the large training corpus is identical
to that of Jiang et al. [4], [5]. Table 6 compares the F1 results
with previous studies on CTB 5.0. The result of our error-
driven model is superior to previous reported results for both
Seg and Seg & Tag, and the result of our baseline model
compares favorably to the others.

Following Zhang and Clark [3], we first generated CTB
3.0 from CTB 4.0 using sentence IDs 1–10364. We then di-
vided CTB 3.0 into ten equal sets and conducted 10-fold
cross validation. Unfortunately, Zhang and Clark’s experi-
mental setting did not allow us to use our error-driven pol-
icy since performing 10-fold cross validation again on each
main cross validation trial is computationally too expensive.
Therefore, we used our baseline policy in this setting and
fixed r = 3 for all cross validation runs. Table 7 compares
the F1 results of our baseline model with N&U07’s system

Table 7 Comparison of F1 results of our baseline model with N&U07
and Z&C08 on CTB 3.0.

Seg Seg & Tag
N&U07 Z&C08 Ours N&U07 Z&C08 Ours

Trial (base.) (base.)

1 0.9711 0.9721 0.9732 0.9279 0.9346 0.9358
2 0.9755 0.9762 0.9752 0.9338 0.9385 0.9380
3 0.9561 0.9594 0.9578 0.9020 0.9086 0.9067
4 0.9643 0.9592 0.9655 0.9147 0.9160 0.9223
5 0.9600 0.9606 0.9617 0.9134 0.9172 0.9187
6 0.9497 0.9456 0.9460 0.8859 0.8883 0.8885
7 0.9547 0.9500 0.9562 0.9024 0.9051 0.9076
8 0.9517 0.9512 0.9528 0.8995 0.9030 0.9062
9 0.9574 0.9479 0.9575 0.9017 0.9033 0.9052
10 0.9635 0.9645 0.9659 0.9167 0.9196 0.9225

Avg. 0.9604 0.9590 0.9611 0.9098 0.9134 0.9152

Table 8 Comparison of averaged F1 results (by 10-fold cross validation)
with previous studies on CTB 3.0.

Method Seg Seg & Tag

Ours (baseline) 0.9611 0.9152
Z&C08 0.9590 0.9134
N&U07 0.9604 0.9098
N&L04 0.9520 -

(used r = 4) and Z&C08 [3] on CTB 3.0. Table 8 shows a
summary of averaged F1 results on CTB 3.0. Our baseline
model outperforms all prior approaches for both Seg and
Seg & Tag, and we hope that our error-driven model can
further improve performance.

6. Related Work

In this section, we discuss related approaches based on sev-
eral aspects of learning algorithms and search space repre-
sentation methods. Maximum entropy models are widely
used for word segmentation and POS tagging tasks [1], [2],
[6], [22] since they only need moderate training times while
they provide reasonable performance. Conditional random
fields (CRFs) [23] further improve the performance [20],
[24] by performing whole-sequence normalization to avoid
label-bias and length-bias problems. However, CRF-based
algorithms typically require longer training times, and we
observed an infeasible convergence time for our hybrid
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model.
Online learning has recently gained popularity for

many NLP tasks since it performs comparably or better than
batch learning using shorter training times [9]. For exam-
ple, a perceptron algorithm is used for joint Chinese word
segmentation and POS tagging [3]–[5]. Another potential
algorithm is MIRA, which integrates the notion of the large-
margin classifier [7]. In this paper, we first introduce MIRA
to joint word segmentation and POS tagging and show very
encouraging results. With regard to error-driven learning,
Brill [25] proposed a transformation-based approach that
acquires a set of error-correcting rules by comparing the
outputs of an initial tagger with the correct annotations on
a training corpus. Our approach does not learn the error-
correcting rules. We only aim to capture the characteristics
of unknown words and augment their representatives.

As for search space representation, Ng and Low [1]
found that for Chinese, the character-based model yields
better results than the word-based model. Nakagawa
and Uchimoto [2] provided empirical evidence that the
character-based model is not always better than the word-
based model. They proposed a hybrid approach that ex-
ploits both the word-based and character-based models. Our
approach overcomes the limitation of the original hybrid
model by a discriminative online learning algorithm for
training.

7. Conclusion

In this paper, we presented a discriminative word-character
hybrid model for joint Chinese word segmentation and POS
tagging. Our approach has two important advantages. The
first is robust search space representation based on a hybrid
model in which word-level and character-level nodes are
used to identify known and unknown words, respectively.
We introduced a simple scheme based on the error-driven
concept to effectively learn the characteristics of known and
unknown words from the training corpus. The second is
a discriminative online learning algorithm based on MIRA
that enables us to incorporate arbitrary features to our hy-
brid model. Based on extensive comparisons, we showed
that our approach is superior to the existing approaches re-
ported in the literature. In future work, we plan to apply
our framework to other Asian languages, including Thai and
Japanese.
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