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SUMMARY  We present the concept of folksonomical peer-to-peer
(P2P) file sharing networks that allow participants (peers) to freely assign
structured search tags to files. These networks are similar to folksonomies
in the present Web from the point of view that users assign search tags to in-
formation distributed over a network. As a concrete example, we consider
an unstructured P2P network using vectorized Kansei (human sensitivity)
information as structured search tags for file search. Vectorized Kansei in-
formation as search tags indicates what participants feel about their files
and is assigned by the participant to each of their files. A search query also
has the same form of search tags and indicates what participants want to
feel about files that they will eventually obtain. A method that enables file
search using vectorized Kansei information is the Kansei query-forwarding
method, which probabilistically propagates a search query to peers that are
likely to hold more files having search tags that are similar to the query.
The similarity between the search query and the search tags is measured
in terms of their dot product. The simulation experiments examine if the
Kansei query-forwarding method can provide equal search performance for
all peers in a network in which only the Kansei information and the ten-
dency with respect to file collection are different among all of the peers.
The simulation results show that the Kansei query forwarding method and
a random-walk-based query forwarding method, for comparison, work ef-
fectively in different situations and are complementary. Furthermore, the
Kansei query forwarding method is shown, through simulations, to be su-
perior to or equal to the random-walk based one in terms of search speed.
key words: P2P file sharing, folksonomy, query forwarding, Kansei, hu-
man

1. Introduction

Recently, peer-to-peer (P2P) network models have attracted
a great deal of attention. The concept of the P2P network
model is completely different from that of a conventional
client-server network model. While a conventional server-
client network model explicitly distinguishes hosts provid-
ing services (servers) from hosts receiving services (clients),
a P2P network model does not assign fixed roles to hosts.
Hosts composing P2P networks, referred to as peers, can be
both servers and clients and provide services for each other
with direct connection between them, so that P2P networks
could be used to facilitate autonomic and decentralized ser-
vice management.

One of the applications of P2P networks that has at-
tracted interest is a distributed storage system for file shar-
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ing. A distributed storage system for file sharing provides a
large amount of storage by accumulating unused storage of
hosts, enabling large amounts of data to be stored and shared
without the need for a costly file server. According to [1],
there are several forms in P2P networks for file sharing. We
can roughly classify P2P networks for file sharing into two
types. One type is P2P networks that have a mechanism to
manage file locations in a network. The other type is P2P
networks that do not have such a mechanism.

One of the mechanisms to manage file locations in P2P
networks is a distributed hash table (referred to hereinafter
as DHT) [2]-[5]. P2P networks using DHT instruct peers in
a network as to which files they require and how peers are
connected to one another. Therefore, these network are gen-
erally referred to as structured P2P networks. An exhaus-
tive survey on structured P2P networks is provided in [1].
In addition, P2P networks that do not have a mechanism to
manage file locations in a network, which are referred to as
unstructured P2P networks, cannot provide peers with the
locations of requested files. Therefore, a query-forwarding
method is needed to find requested files. Most studies on un-
structured P2P networks have examined query-forwarding
methods [6], [7].

With respect to information search techniques, the sim-
plest method is to search for objects by explicitly expressing
target objects such as file names. However, in order to ex-
press the target objects precisely, we need to know what to
search for in advance, and such a situation is rare. Therefore,
searching for objects from pieces of information included in
target objects has been considered. The present Web search
techniques adopt such a strategy. Pieces of information in-
cluded in target objects are not target objects themselves, but
can be thought of as alternative forms pointing to target ob-
jects, and the alternative forms can be regarded as a sort of
search tags of target objects. Furthermore, as a variation of
pieces of information included in target objects, we can use
features that are extracted by processing the target objects.

Focusing on ways to assign search tags to shared infor-
mation, in conventional Web information retrieval systems,
some authorities have been assigning search tags to shared
information in fixed ways, which is an top-down approach.
Meanwhile, users have recently been interested in informa-
tion retrieval systems that allow them to assign search tags
to shared information as their ways. Such a bottom-up in-
formation retrieval system is referred to as a folksonomy [8].
At this moment, several folksonomies are running and most
of them allow the users to freely assign keywords to shared
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information [9], [10].

Besides keywords, one of the possible forms of search
tags that people can assign to shared information is Kansei
information, which in Japanese means ‘human sensitivity’
information. There have been several attempts to use Kansei
information in a manner such that how people feel about ob-
jects is assigned as the search tags of the participant. Such
information retrieval systems are referred to as Kansei in-
formation retrieval systems, and there exist several concrete
Kansei information retrieval systems[11],[12]. However,
existing Kansei information retrieval systems are built upon
a client-server network model. In addition, the Kansei in-
formation retrieval systems are required to build a map be-
tween search objects and Kansei information as search tags
in advance.

In the present paper, we propose the concept of file
sharing P2P networks that allow the participants (peers) to
freely assign structured search tags to files. Since we refer
to the present Web information retrieval systems that allows
users to freely assign search tags to shared information like
web pages as folksonomies, we can refer to the P2P file shar-
ing systems proposed in the present paper as folksonomical
P2P file sharing systems.

As a concrete example of this concept, we consider an
unstructured P2P network using vectorized Kansei informa-
tion as structured search tags for file search. The vectorized
Kansei information as search tags indicates what people feel
about their files, and is assigned by the participant to each of
their files. A search query also has the same form of the vec-
torized Kansei information and indicates what people want
to feel about files that they will eventually obtain. One of
the original ideas in this paper is that the Kansei informa-
tion is transformed into search tags and queries by each par-
ticipant in a P2P network. A mechanism that enables file
search using the vectorized Kansei information is the Kan-
sei query-forwarding method, which probabilistically prop-
agates a search query from a peer making a query to peers
that are likely to hold more files whose search tags is similar
to the query. The similarity between the search query and
the search tags is measured by their dot product.

The present paper is organized as follows. Section 2
briefly describes related work. We describe the motivation
behind the present work and the basic concept of the pro-
posed network in Sect.3. In Sect.4, we describe the pro-
posed P2P file sharing network that uses Kansei informa-
tion as search tags, as well as the Kansei query-forwarding
method. In Sect.5, we examine through simulations if the
Kansei query-forwarding method can provide equal search
performance to participants that are different from each
other in Kansei information and the tendency of queries. In
Sect. 6, search speed for each file search using the Kansei
query-forwarding method is examined through simulations.
Finally, Sect. 7 presents our conclusions.

2. Related Work

In this section, we describe studies related to Kansei in-
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formation retrieval systems as well as P2P networks with
query-forwarding methods using search tags, which are not
flooding-based and random-walk-based methods. In addi-
tion, we mention researches on a fusion of folksonomines
and distributed systems like P2P networks.

According to [13], in which a variety of P2P networks
with query-forwarding methods using search tags (meta-
data) are introduced, there are two types of P2P networks
that use search tags. One type of P2P network can provide
deterministic routing for queries with a form of search tags
by means of a mechanism to locate files without question
to which search tags is assigned, such as DHT. The other
type of P2P network employs non-deterministic routing due
to the lack of a mechanism to locate files without question.
Most of the P2P networks introduced in [13] use text data as
search tags.

The P2P network presented herein does not have a
mechanism to manage file locations in the network. The
reason for choosing this form of P2P network is as follows.
Since Kansei information should vary among individuals,
a map between files and Kansei information as search tags
for the files could be a one-to-many map. In this case, it
is difficult to generate a framework of P2P networks that
is equipped with deterministic routing, such as DHT-based
P2P networks, in which the basic assumption is that a map
between files and search tags for the files is a many-to-one
map. The P2P network proposed herein uses individual
Kansei information (impression) with a form of a numeri-
cal vector having a fixed length as search tags for the files.
Such P2P networks have not yet been investigated.

File search in the proposed P2P network is conducted
using a query forwarding method that propagates a query in
the form of vectorized Kansei information over a network,
which is referred to herein as the Kansei query forwarding
method. The Kansei query forwarding method basically for-
wards a query to peers that have more files with search tags
similar to the query. In this case, a map between files and
their search tags is a one-to-many map. Meanwhile, for the
case in which a map between files and their search tags is
a many-to-one map, such a query forwarding method is re-
ferred to as semantic routing [13]-[15]. The focus of se-
mantic routing is literally semantics, and semantic routing
usually employs text data extracted from text files as their
search tags.

Besides search tags that participants freely assign to
files in folksonomical P2P networks, reputation and recom-
mendation is information that includes users’ judgement or
description in P2P networks. P2P networks utilizing repu-
tation and/or recommendation have been well studied [16]—
[19]. In both of P2P networks utilizing reputation and/or
recommendation and folksonomical P2P ones, it is common
that users are explicitly or implicitly asked to judge or de-
scribe objects in P2P networks such as persons, files, nodes,
and so on.

However, reputation and recommendation is not search
tags. In fact, to give recommendation or reputation in P2P
networks, we need another mechanism to make recommen-
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dation or reputation and input information for that mecha-
nism. For instance, in Tribler proposed in [17], the Rec-
ommendation Engine that is common to all peers analyzes
preference of each peer and then recommends information
to the peer based on the analysis. Peers can request to make
recommendation or reputation to the P2P network. How-
ever, this request is not a search tag itself but just a trigger
to have recommendation or reputation.

Meanwhile, in the folksonomical P2P file sharing net-
work presented in this paper, the participants just search files
for the network using search tags and then retrieve the files.
Therefore, we think that a P2P network utilizing reputation
and/or recommendation and the folksonomical P2P one can
be integrated together and also that they are not compareable
opponents. Unlike normal P2P networks, the folksonomical
P2P network allows the participants to freely assign search
tags to files. In this paper, we adopt vectorized Kansei in-
formation as search tags that participants can freely assign
to files. The reason for allowing the participants to freely
assign search tags to files, that for choosing vectorized Kan-
sei information as the search tags, and the expected effects
of using Kansei information will be described in Sect. 3 in
details.

Next, existing Kansei information retrieval sys-
tems [11], [12],[20] have a common approach to informa-
tion retrieval. First, these systems are built on server-client
networks. Second, these methods are composed of two
spaces and a map between them. One of the two spaces
is of search objects, such as multi-media content. More pre-
cisely, one of the two spaces is of features extracted from the
objects. The other space is of the impressions that partici-
pants form regarding the search objects. The fundamental
difference among the existing systems is in a way to build a
map between the two spaces mentioned above. On the other
hand, the P2P network presented in this paper does not re-
trieve information by means of such a map between the two
spaces.

3. Motivation and Concept

Although the goal of conventional information retrieval is
usually to find desired information, the motivation of the
present study is not to develop more efficient search tech-
niques. Rather, we focus herein on information as interme-
diates that facilitate communication between humans. Al-
though conventional information retrieval techniques recog-
nize the identity of information itself, they do not assume
the identity of the participant holding the information. Since
there may be personal reasons for holding specific informa-
tion, if we can understand these reasons during information
retrieval, we may improve inter-participant communications
beyond simple information retrieval.

The proposed approach, considering the identities of
information holders in information retrieval systems, allows
participants to assign search tags to their files as they see fit.
In this case, different search tags can be assigned to iden-
tical information by different participants. This situation
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is not desirable in terms of efficient information retrieval.
However, once a participant encounters other participants
that assign the same or similar search tags to identical infor-
mation through information retrieval, it is expected that the
participants will share a great deal of information.

Next, we have to consider the form of search tags that
participants are allowed to assign to their information in
order to facilitate communication between the participants.
An extreme method is to allow participants to assign search
tags in a completely free manner. However, this would not
realize practical information retrieval because the size of the
search space can become large. Therefore, in the present
study, we consider structured search tags, such as vectorized
information, and the number of structured search tags types
that participants can assign to their information is finite. In
the present paper, we employ vectorized Kansei informa-
tion as structured search tags. We will mention the reason
for choosing vectorized Kansei information in the beginning
of Sect. 4.

Finally, we must examine whether search tags that a
certain search technique uses for information retrieval is
useful for improving communication between participants,
in which case the first information retrieval process is sim-
ply a trigger. However, this is difficult to examine because
a model of human communications beyond actions of infor-
mation retrieval is needed. Therefore, the simulation exper-
iments in Sect. 5 examine whether such search tags helps to
provide opportunities for a participant to meet other partici-
pants with a similar sense regarding their files.

4. Kansei Information in P2P Networks

In the present paper, we assume P2P networks for file shar-
ing that do not have a mechanism to manage file locations.
Under the condition in which there is no constraint on files
that peers are allowed to hold, we can expect that files that
participants (peers) in a network hold reflect the Kansei in-
formation of the participants. For instance, different partici-
pants may like different music or movies, based on personal
preferences. If participants in a network assign information
on how they feel about the contents of their files to these
files and then release the Kansei information of these files
to each other, the participants can not only learn what files
are owned by other participants, but they may also learn
how other participants feel about these files. This learn-
ing process could help the participant to communicate with
each other beyond actions of information retrieval. That is
why we choose vectorized Kansei information as structured
search tags.

4.1 Vectorized Kansei Information as Search Tags

The simplest conventional file search mechanism requires
explicit information to be given regarding search objects,
such as file names or pieces of file names. Here, we con-
sider file search with search tags as a query, such that file
search begins by specifying a name or feature of a set to
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which search objects belong and eventually reaches concrete
desired objects. A name or feature of a set to which files be-
long is upper concept than a file itself.

A set to which files belong consists of two sub-sets.
One sub-set is related to a category, which is objective, such
as the “music” category. The other sub-set is related to the
impression or feeling of participants regarding the contents
of files, which is quite subjective. Some participants may
consider certain music to be pleasant, while other partici-
pants consider the same music to be unpleasant. In this case,
a “music” file may belong to different subsets of impression
or feeling, depending on the participant.

Next, one method of representing which sets a file be-
longs to is to use words such as “music” and “pleasant”.
Here, we use not words, but vectors of numerical values of
fixed length, which enables the calculation of the dot prod-
uct mentioned later herein. Owners of files are not allowed
to completely freely assign vectors of numerical values as
search tags to their files. Vectors of numerical values that
owners of files are allowed to assign to their own files are
determined in advance, and participants can assign a vector
of numerical value to each file.

For example, a file that belongs to the “music” cate-
gory is represented by (text, music, movie)= (0, 1, 0), where
“1” indicates that the file belongs to the category repre-
sented by the category name, and “0” indicates that the
file does not belong to the category. Meanwhile, with re-
spect to a numerical vector representing impression or feel-
ing, a file is, for example, represented by (light, pleasant,
beautiful)= (—1,0, 1), where “1” indicates that the content
of the file gives the impression represented by the impres-
sion word, “0” indicates that the content of the file gives the
impression represented by the impression word to an extent,
and “—1” indicates that the content of the file does not give
the impression represented by the impression word at all.

Participants may wish to add elements of a numerical
vector to represent files during file sharing. For example,
“complicated” is added into a numerical vector represent-
ing impression or feeling as its element. In a situation in
which the elements of a numerical vector representing a file
increase dynamically, the participants need to guarantee that
consistent numerical vectors are assigned to their files. One
solution for this is to introduce a server that manages ele-
ments of a numerical vector to represent files. The server
accepts the registration of elements from participants and
then forms a numerical vector by arranging the elements
from the left side in old order. Participants obtain informa-
tion on a new numerical vector regularly. In this way, even
if a participant does not have information on a new numer-
ical vector, there is no inconsistency in terms of the order
of elements between a numerical vector that the participant
knows and a new numerical vector up to the length of the
numerical vector that the participant knows.

In addition, it may not be practical to force participants
to assign a numerical vector to all of their files with the in-
creasing number of files. One solution for this is to assign
a certain numerical vector, for example (text, music, movie,
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light, pleasant, beautiful) = (0, 0,0,0,0,0), to all files as a
default or to simply ignore the elements of numerical vec-
tors that are not filled in by participants when performing
operations on numerical vectors, as explained later herein.
While each file is represented by a numerical vector
as mentioned above, a peer that would hold several files is
represented by the sum of all numerical vectors for the files.
The representation of a peer is used for query forwarding
mentioned later. For example, when a peer holds three files
with vectors as search tags, the representation of the peer is
the sum of the three vectors. In addition, it is possible to
make participants select files for the representation of peers.
A search query made by a peer is represented in the
form of a numerical vector assigned to a file as search
tags, such as (text, music, movie, light, pleasant, beautiful)
= (1,0,-1,1,1,0). A search query is, as explained in the
following section, propagated with high probability to peers
in which the representations give larger values of the dot
product with the query. The number of hops that is allowed
for a query is limited to Ny, and lists of files of peers to
which the query was propagated are given to a peer making
the query. The peer making the query can select and down-
load some of the files in these lists, if the peer desires so.

4.2 Kansei Query Forwarding

The proposed P2P network for file sharing has a mechanism
that varies the probability with which a query is propagated
on network links through file searches. The probability as-
signed to network links is not managed by particular peers,
but varies in a self-organizing manner through a file search
performed by each peer. In the following, we will explain
the Kansei query-forwarding method, which plays a central
role in self-organization as well as in file search.

Here, we let the number of walkers propagating a query
be one, although more than one walker can be used. The
walker considers a numerical vector ¢, such as (1, 0, -1, 1,
1, 0), to be a query. The walker obtains values of the dot
product between ¢ and N, numerical vectors representing
the peers adjacent to the peer at which the walker is currently
located, r; i = 1,2,---,N,). The probability with which
the k-th peer in the N, peers is selected as the peer that the
walker will hop, psi, is denoted by Eq. (1).

dpx — ming, + 1
Ny
> Adp; = mingy + 1)

i=1

DSk = , (1

where dpy = q - i, and ming), is the smallest value among
the N, dot products. Since the dot product can be negative,
all of the dot products are forced to be positive by means
of the term —ming, + 1. In doing so, the peer to which
the walker will hop next is determined with a probability
proportional to the dot product between its numerical vector
and the query. However, if the peers that a walker has visited
once in the present file search are again selected, according
to Eq. (1), the walker selects a peer that has not been visited
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propagation probability
{0-(-1)+1} / {2+1+2+5}=2/10=0.2

(2,0,0,-2,2,0)

dot product 0

N

/
dot product -1
(1,0,1,0,0,-2)

propagation probability
{-1-(-1)+1} / {2+1+42+5}=1/10=0.1

propagation probability
{3-(-1)+1} / {2+1+2+5}=5/10=0.5

(0,3,0,-2-1,0 )

dot product 3

/

query (0,0,1,-1,-1, 1)

dot product 0

(1,1,1,1,1,1)

propagation probability
{0-(-1)+1} / (2+1+2+5}=2/10=0.2

Fig.1 Example of query forwarding. Circles represent peers, and a
query has reached the peer in the center. The representations of the peers
linked to the peer in the center are described near the circles. Calculating
the values of the dot product between the query using a form of a numerical
vector and the numerical vectors representing the peers, the probability of
the query is propagated to each peer, as given by Eq. (1).

by the walker for its next hop. An example in which the
proposed Kansei query-forwarding method decides a peer
as the next hop of a walker is shown in Fig. 1.

Lists of files of peers that a walker visited within a lim-
ited number of hops, N;, are provided for a peer making a
query. Then, if the peer making the query finds files that
it wants in the lists, the peer can download files within a
limited number of downloads, as mentioned in the next sec-
tion. In addition, the peer making the query also obtains the
numerical vectors representing the files that it downloaded.
When a peer making a query downloads several files from
peers that a walker visited in the present file search, files
held by the peer making the query vary. Consequently, the
representation of the peer, which is the sum of all of the nu-
merical vectors attached to its own files, also varies. The
peer making the query can also modify the numerical vec-
tors of the files that it has downloaded. Therefore, the prob-
ability with which a query is propagated on links to the peer
making the query varies.

4.3 P2P File Sharing

The proposed P2P network has a restriction on the number
of downloads to peers in the network, such that peers are
not allowed to download an unlimited number of files from
other peers, but rather are allowed to download files accord-
ing to the number of times that other peers have downloaded
their files. When a peer has had one of its own files down-
loaded by a peer, the peer increases by one the number of
files that it can download from other peers. On the other
hand, when a peer has downloaded one file from another
peer, it decreases by one the number of files that it can down-
load from other peers. Peers that hold popular files are likely
to increase the number of times that they can download files
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from others. However, every peer is given a fixed number
of times that it can download files, Np, when it participates
in the network, because without doing so, the P2P network
does not work as a system for file sharing. After performing
Np complete downloads, peers can only increase the num-
ber of downloads by having their files downloaded by other
peers.

As explained in the previous section, numerical vec-
tors representing both query and file are given by peers,
and changes in the numerical vectors cause changes both
in the probability with which a query is propagated to the
peers and in the search results. Therefore, acts of giving nu-
merical vectors to files are strategic factors for the purpose
of file sharing. However, even if queries have frequently
reached certain peers, the peers can not increase the number
of downloads unless their files are actually downloaded by
other peers.

5. Experimental Evaluation
5.1 Objective

The P2P file search considered in the present paper relies
on Kansei information of participants in the network. Kan-
sei information is generally different for each participant, so
that the search performance for each participant might not
be the same. However, from the viewpoint of P2P file shar-
ing, in which all of the participants (peers) are equal in terms
of function, it is not good for certain participants to take ad-
vantage of P2P file search due to their Kansei information.
Therefore, we experimentally examine whether the Kansei
query-forwarding method can provide equal search perfor-
mance for the situation in which the Kansei information of
participants in the network is diverse. Therefore, we need
to model differences among peers in Kansei information, as
well as differences among peers with respect to query ten-
dencies. We will describe the modeling of these differences
later herein.

The Kansei information of participants which is pro-
duced by the model presented here might not be similar to
that in the real world. However, as explained later, the model
has a parameter to change size of difference among the Kan-
sei information of participants, and we can produce a variety
of the Kansei information of participants by adjusting the
parameter value of the model.

5.2 P2P Simulation Model

With respect to network structure, the number of peers, 7,
present in the network is 200. The network topology used is
full-mesh. The reason for choosing a full-mesh topology is
that in the present paper we intend to have a network topol-
ogy including a set of the propagation probability that is sta-
bilized through repeating file searches, not by having peers
choose their links. However, a full-mesh topology might
be impractical with an increasing number of peers, and, in
practice, it may be necessary to have all peers select a fixed
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number of links. Next, the number of files types distributed
over the network, f, is the same as the number of peers, that
is 200. Initially, each peer has a different file.

All of peers conduct query generation in turn. A peer
whose turn has arisen generates a query only once. How-
ever, if a peer whose turn has arisen dose not have permis-
sion of downloading files, then the peer is just skipped.

5.3 Model of Kansei Information

We use one-dimensional and two-dimensional numerical
vectors as vectorized Kansei information assigned to files,
and in this section, we conduct evaluation experiments for
both cases of one-dimensional and two-dimensional vector-
ized Kansei information. In both cases, an element of vector
takes the value of either “—1” or “+1” and does not take the
value of 0. The Kansei information of each peer (partici-
pant) in the network is represented as the value (-1 or +1)
that each of the n,, peers gives to the f; types of files that are
distributed over the network.

Although peers cannot assign impressions or feelings
to files prior to seeing the files, we define which values
each peer assigns to f; types of files in advance. There-
fore, the Kansei information of each peer for f; types of
files is represented as a numerical vector with f; elements in
the case of one-dimensional vectorized Kansei information,
as (-1,-1,---,+1), in which the i-th element corresponds
to the i-th file type among f; file types, and is represented
as a numerical vector with 2 f; elements in the case of two-
dimensional vectorized Kansei information. We hereinafter
refer to this numerical vector as the Kansei vector.

The Kansei vector of each peer in the simulation pro-
vides impression or feeling not only about files that the peer
actually holds but also about files that the peer has not met
yet. However, this does not mean that the representation of
each peer is produced using the Kansei information for files
that the peer does not have. The representation of each peer
at a certain moment is always produced only from the Kan-
sei information for files that the peer actually holds. There-
fore, the Kansei query forwarding is also executed based on
the representations of peers that are produced from the Kan-
sei information for files that they actually have. In addition,
the Kansei vector of each peer is, as explained in Sect. 5.4,
used for determining query tendency of the peer. We adopt
this as one of methods for determining query tendencies of
peers.

The Kansei vector of each peer is generated by modi-
fying a given numerical vector with f; elements in the case
of one-dimensional vectorized Kansei information and with
2 fr elements in the case of two-dimensional vectorized Kan-
sei information. The given numerical vector without modi-
fication is referred to hereinafter as the prototypical Kansei
vector. The prototypical Kansei vector is modified by flip-
ping a value of each element (-1 to +1 or +1 to —1) with
probability p,. The expected Hamming distance between
two Kansei vectors, Hy, is generated according to following
equation.
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fic*va/2

fic*va/4

Hamming distance

0

0 0.2 0.4 0.6 0.8 1
probability of flipping an element value (pb)

Fig.2  The expected Hamming distance between two generated Kansei
vectors, in which f is the number of file types distributed over the network
and v, is the number of elements of vectorized Kansei information assigned
to each of file type.

Hy = fi X vy X{pp X (1 = pp) + (1 = pp) X pp}
= 2fi Xva X pp(1 = pp), 2

where f; is the number of file types distributed over the net-
work and v, is the number of elements of vectorized Kan-
sei information assigned to each of file type. When the ex-
pected Hamming distance is small, that is when the value of
Py 1s small, vectorized Kansei information works effectively
as search tags for the Kansei query forwarding method. In
fact, we will show in Sect. 6 that when the expected Ham-
ming distance is smal, the Kansei query forwarding method
is better than the one-walker random walk for comparison in
terms of search speed. In addition, the expected Hamming
distance is shown in Fig. 2.

Concretely, we use the three types of prototypical Kan-
sei vectors below to produce the Kansei vector of each peer
for both cases of one-dimensional and two-dimensional vec-
torized Kansei information.

Case of one-dimensional vectorized Kansei information

The three prototypical Kansei vectors below differ from
each other only in the ratio of “—1" to “+1”.
Prototypical Kansei vector (1):

The 1st through 100th elements in the vector take the
value of —1, and the other elements take the value of +1.
Figure 3 shows how to produce the Kansei vector of each
peer in the network from the prototypical Kansei vector (1).
Prototypical Kansei vector (2):

The 1st through 120th elements in the vector take the
value of —1, and the other elements take the value of +1.
Prototypical Kansei vector (3):

The 1st through 160th elements in the vector take the
value of —1, and the other elements take the value of +1.

Figure 4 shows the average numbers of “—1" values in
the Kansei vectors of 200 peers produced using prototypical
Kansei vectors (1), (2), and (3) and different values of pj.
Figure 4 shows that the average number of “—1” values be-
comes approximately 100 at p; = 0.5 independent of which
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Kansei vector of a peer is produced by
flipping each element of prototypical Kansei vector (1)
(-1 to +1 or +1 to -1) with probability pb

Fig.3  Method by which to produce the Kansei vector of each peer in the
network from the prototypical Kansei vector (1).
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Fig.4  Average numbers of “—1” values in the Kansei vectors of 200
peers produced using prototypical Kansei vectors (1), (2), and (3) and dif-
ferent values of py.

prototypical Kansei vector is used.
Case of two-dimensional vectorized Kansei information

The three prototypical Kansei vectors below differ from
each other in the ratio of (-1, —1) to (+1, +1)”, but have the
same ration of (—1, +1) to (+1, +1).

Prototypical Kansei vector (2-1):

The 1st through 50th files take the value of (-1,-1),
the 51st through 100th files take the value of (-1, +1), the
101st through 150th files take the value of (+1, —1), and the
151st through 200th files take the value of (+1, +1). Figure 5
shows how to produce the Kansei vector of each peer in the
network from the prototypical Kansei vector (2-1).
Prototypical Kansei vector (2-2):

The 1st through 80th files take the value of (—1,-1),
the 81st through 120th files take the value of (-1, +1), the
121st through 160th files take the value of (+1, —1), and the
161st through 200th files take the value of (+1, +1).
Prototypical Kansei vector (2-3):

The 1st through 140th files take the value of (—1,-1),
the 141st through 160th files take the value of (-1, +1), the
161st through 180th files take the value of (+1,—1), and the
181st through 200th files take the value of (+1, +1).

Figure 6 shows the average numbers of (-1, —1) in the
Kansei vectors of 200 peers produced using prototypical
Kansei vectors (2-1), (2-2), and (2-3) and different values of
pp- Figure 6 shows that the average number of (-1, —1) be-

Kansei vector of a peer is produced by
flipping each element of prototypical Kansei vector (2-1)
(-1 to +1 or +1 to -1) with probability pb

Fig.5 Method by which to produce the Kansei vector of each peer in the
network from the prototypical Kansei vector (2-1).
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Fig.6  Average numbers of (—1,—1) in the Kansei vectors of 200 peers
produced using prototypical Kansei vectors (2-1), (2-2), and (2-3) and dif-
ferent values of py.

comes approximately 50 at p, = 0.5 independent of which
prototypical Kansei vector is used.

5.4 Model of Tendency of Queries

A search query is of the same form as Kansei information
as search tags, and as a value of either “—1” or “+1” in the
case of one-dimensional vectorized Kansei information and
as either of (-1, -1), (—=1,+1), (+1,-1), and (+1, +1) in the
case of two-dimensional vectorized Kansei information.

In the case of one-dimensional vectorized Kansei in-
formation, the tendency of a peer with respect to queries is
expressed by the probability with which “—1” is chosen as a
query by the peer. This probability is denoted by p € [0, 1],
where the probability with which “+1” is chosen is 1 — p.

In the case of two-dimensional vectorized Kansei in-
formation, the tendency of a peer with respect to queries is
expressed by the probability with which (-1, —1), (-1, +1),
(+1,-1), and (+1,+1) are chosen as a query by the peer.
This probability is denoted by pl € [0,1] for (-1,-1),
p2 € [0,1] for (-1,+1), p3 € [0,1] for (+1,-1), and
p4 €[0,1] for (+1,+1), where pl + p2 + p3 + p4 = 1.

We use two methods to determine the value of p and
the values of pl, p2, p3, p4 for each peer in the network
below.
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Case of One-dimensional Vectorized Kansei Information

Random determination of p

This method literally determines p of each peer by a
uniform random number in [0, 1].
Kansei-correlated determination of p

This method determines p of each peer using the fol-
lowing equation:

p = No/ fi, 3)

where N is the number of —1 values in the Kansei vector of
the peer, f; is the number of file types distributed over the
network, and f; is 200.

Case of Two-dimensional Vectorized Kansei Information
Random determination of (p1, p2, p3, p4)

This method determines (pl, p2, p3, p4) of each peer
using the following equations:

pl=p"1/(p"1 + p"2+ p'3 + p*4), )

p2=p2/(p"1+p2+p3+p'4), Q)

p3=p3/(p" 1+ p2+p'3+pd, (6)

pA=p4/(p"1+p2+p3+p4, (7
where p*1, p*2, p*3, and p*4 are a uniform random number
in 1076, 1].

Kansei-correlated determination of (p1, p2, p3, p4)
This method determines (p1, p2, p3, p4) of each peer
using the following equation:

pl=N/fe ®)
P2 =N/ fe )
p3 = N/ fe, (10)
p4 = Na/ fr, 1)

where Ny, N>, N3, and N, are the number of (—1,-1),
(=1,+1), (+1,-1), and (-1, —1) in the Kansei vector of the
peer, respectively, f; is the number of file types distributed
over the network, and f is 200.

5.5 File Search and Sharing

The number of walkers that propagate a query is just one.
The number of hops that a walker is allowed during one file
search is three, that is, Ej is 3. Each peer is initially given
permission to download five files, that is, Np is 5.

For example, when a peer makes a query of “—1”, and
then some of the peers that a walker visited have files that
belong to the set of “—1” for the peer making the query and
the peer making the query does not have, the peer chooses
one of these files randomly and downloads the file. If the
walker could not find a file that the peer does not have, the
file search is finished.
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5.6 Evaluation Criteria

Query forwarding methods are evaluated according to the
number of file searches that are required so that all of the
peers will hold more than 2n,/5 files, where n, is the total
number of file types distributed over the network and #n, is
200. This number of file searches is referred to as the con-
vergence time and the state in which all of the peers hold
2n,/5 or more files is defined as the convergence. A failure
of convergence indicates that convergence does not occur
within the number of file searches given in advance, E;. We
set the value of E; to 30,000. Quick convergence means
that all of the peers in the network obtain similar and good
search performance.

We count the following three cases as one file search:
(1) a file that a peer making a query desires was found within
three hops (N, = 3) of a walker, (2) a file that a peer making
a query desires was not found within three hops of a walker,
and (3) a peer that did not have permission to download files
from others when its turn arose. We do not count as one file
search the situation in which some peer made a query but
previously held all files belonging to the set represented by
the query.

5.7 Simulation Settings

As mentioned earlier, three types of prototypical Kansei
vectors are used, prototypical Kansei vectors (1), (2), and
(3) in the case of one-dimensional vectorized Kansei infor-
mation, and prototypical Kansei vectors (2-1), (2-2), and (2-
3) in the case of two-dimensional vectorized Kansei infor-
mation. These vectors are modified into the Kansei vec-
tors of peers by flipping the values of each of their ele-
ments with probability p,. In addition, two methods by
which to determine the p values of peers in the case of one-
dimensional vectorized Kansei information and the values
of (pl, p2, p3, p4) of peers in the case of two-dimensional
vectorized Kansei information are used.

We will test all six combinations of three types of pro-
totypical Kansei vectors and the two methods for determin-
ing probability related to query tendencies. For each com-
bination with a value of p; less than 0.5, we will observe
the average convergence time over independent runs that re-
sulted in convergence and the number of convergence fail-
ures during 500 independent runs.

For comparison, as a query forwarding method, we em-
ploy the one-walker random walk. The one-walker random
walk allows a walker that knows a search query to randomly
decide the next peer to visit. However, in one file search, a
walker does not revisit the peers that it has already visited.

5.8 Results

The simulation results for the case of one-dimensional vec-
torized Kansei information are shown in Figs.7 and 9. The
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(c) Average convergence time.  (d) Number of failures to converge.

Simulation results obtained using random determination of p in the case of one-dimensional

vectorized Kansei information. Sub-figures (a) and (b) are for the Kansei query-forwarding method, and
sub-figures (c) and (d) are for a one-walker random walk.
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(c) Average convergence time.  (d) Number of failures to converge.
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dimensional vectorized Kansei information. Sub-figures (a) and (b) are for the Kansei query-forwarding
method, and sub-figures (c) and (d) are for a one-walker random walk.
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(c) Average convergence time.  (d) Number of failures to converge.

Simulation results obtained using the Kansei-correlated determination of p in the case of one-

dimensional vectorized Kansei information. Sub-figures (a) and (b) are for the Kansei query-forwarding
method, and sub-figures (c) and (d) are for a one-walker random walk.

simulation results for the case of two-dimensional vector-
ized Kansei information are shown in Figs. 8 and 10.

Figures 7 shows the average convergence time and
the number of convergence failures for the Kansei query-
forwarding method and the one-walker random walk in the
case of random determination of p, and Fig. 9 shows the av-
erage convergence time and the number of convergence fail-
ures for the Kansei query-forwarding method and the one-
walker random walk in the case of Kansei-correlated deter-
mination of p.

Figures 8 shows the average convergence time and
the number of convergence failures for the Kansei query-
forwarding method and the one-walker random walk in
the case of random determination of (pl, p2, p3, p4), and
Fig. 10 shows the average convergence time and the num-
ber of convergence failures for the Kansei query-forwarding
method and the one-walker random walk in the case of
Kansei-correlated determination of (p1, p2, p3, p4).

The obtained results do not show the success rate in
one file search by the used query forwarding methods, but
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rather indicate the success rate of the convergence defined
in Sect.5.6. The success convergence could result from
smooth circulation of the permission to perform file down-
loads, which initially is given to each peer. Meanwhile, fail-
ure to converge may be a result of the permission to down-
load being biased to specific peers or may be a result of the
query forwarding method used being unable to provide reli-
able search performance for most peers.

Finally, every peer has few files just after the simulation
starts. In this special situation, we might be able to observe
specific behaviors of the Kansei query forwarding method
and the one-walker random walk. However, in this paper,
we focus on long-term observation as the convergence time.

5.9 Discussion
5.9.1 Case of Random Determination of p

This is the case of one-dimensional vectorized Kansei infor-
mation.

According to Fig. 7 (comparing Figs. 7 (a) and 7 (b) for
Kansei query forwarding and Figs.7 (c) and 7 (d) for one-
walker random walk), when using the random determina-
tion of p, the Kansei query forwarding method is superior
to or approximately equal to the one-walker random walk
in terms of the ability to induce quick convergence, that
is, in providing similar search performance for all of the
peers. Specifically, when using small values of p;, the Kan-
sei query forwarding method is superior to the one-walker
random walk, and the ability of these two methods becomes
more similar with increasing values of pj.

When the difference in the ability to induce conver-
gence between the Kansei query forwarding method and the
one-walker random walk was the largest, that is, when us-
ing the prototypical Kansei vector (1) and p;, = 0, vectorized
Kansei information as search tags works efficiently as search
tags, and the randomness in file search provides redundancy.
In addition, since the number of “—1"" and “+1” values in the
Kansei vectors of the peers are the same and the p values of
the peers are randomly determined, the total number of files
corresponding to “—1 and that corresponding to “+1” in the
network are approximately the same at any time during file
search. Therefore, all of the peers with their p values had
approximately equal abilities to obtain and provide files, in-
dependent of p value.

When using Kansei vector (1) and the larger values of
Py, vectorized Kansei information as search tags no longer
works as efficient search tags, and randomness is needed in
the file search. However, unreliable search tags cause file
search by the Kansei query forwarding method to be similar
to random search. As a result, with increasing values of
Db, the abilities of the Kansei query forwarding method and
the one-walker random walk to induce convergence become
increasingly similar.

Next, when using prototypical Kansei vector (2), as in
the case of using prototypical Kansei vector (1), vectorized
Kansei information as search tags is still reliable if the value
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of py, is small. Therefore, the ability of the Kansei query for-
warding method to induce convergence is better than that of
the one-walker random walk. However, the number of “—1"
values in the Kansei vectors of most peers should be larger
than the number of “+1” values. Since the p values of the
peers were randomly determined in this situation, peers that
have a high probability to produce a query of “—1” could
easily obtain and frequently provide files corresponding to
“—1”. Meanwhile, peers that have high probability to pro-
duce a query of “+1” could not easily obtain and frequently
provide files corresponding to “+1”. This should result in
a difference in search performance between the peers, and
consequently, the ability of the Kansei query forwarding
method to induce convergence in the case of using proto-
typical Kansei vector (2) and small values of p, would be
worse than that in the case of using prototypical Kansei vec-
tor (1) and small values of pp.

Furthermore, in the case of using prototypical Kansei
vector (3) and small values of p,, it should be more difficult
for peers that have a high probability to produce a query
of “+1” to easily obtain and frequently provide files corre-
sponding to “+1”, compared to the case of using prototypi-
cal Kansei vector (2) and small values of p,. However, even
when prototypical Kansei vector (2) or (3) is used, if the
value of p, becomes larger, the numbers of “—1” and “+1”
values in the Kansei vectors of the peers become more sim-
ilar and randomness is needed in the file search. Therefore,
the abilities of the Kansei query forwarding method and the
one-walker random walk to induce convergence would be-
come closer with the increasing value of py.

5.9.2 Case of Random Determination of (p1, p2, p3, p4)

This is the case of two-dimensional vectorized Kansei infor-
mation.

We can see from Figs.7 and 8 that the simulation re-
sults for the case of random determination of p and those
for the case of random determination of (p1, p2, p3, p4) are
so similar to each other. In fact, although the dimensions
of vectorized Kansei information are different between the
cases of random determination of p and (p1, p2, p3, p4), the
situations surrounding the peers in both of the cases are sim-
ilar. That is, if we replace the numbers of —1 and +1 ap-
peared in the discussion for the case of random determina-
tion of p by the numbers of (—1,—1) and (+1, +1) respec-
tively, we could have the similar discussion here to that for
the case of random determination of p.

5.9.3 Case of Kansei-Correlated Determination of p

This is the case of one-dimensional vectorized Kansei infor-
mation.

According to Fig.9 (comparing Figs.9 (a) and 9 (b)
for Kansei query forwarding and Figs.9(c) and 9 (d) for
the one-walker random walk), when using the Kansei-
correlated determination of p, the one-walker random walk
is superior to or approximately equivalent to the Kansei
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Simulation results obtained using the Kansei-correlated determination of (p1, p2, p3, p4) in

the case of two-dimensional vectorized Kansei information. Sub-figures (a) and (b) are for the Kansei
query-forwarding method, and sub-figures (c) and (d) are for a one-walker random walk.

query forwarding method in terms of the ability to provide
similar search performance for all of the peers. Specifically,
when using small values of p;, the one-walker random walk
is superior to the Kansei query forwarding method, and the
ability of these two methods becomes closer with increasing
values of pj.

When the difference in the ability to induce conver-
gence between the Kansei query forwarding method and the
one-walker random walk was the largest, that is, when us-
ing prototypical Kansei vector (3) and p, = 0, every peer
has the same tendency during file collection, i.e., the same
value of p. In this case, even if a peer making a query ran-
domly chooses other peers, it is likely that the chosen peers
have files that the peer making the query desires. Therefore,
the one-walker random walk yields good performance with
respect to inducing convergence. Meanwhile, in this situa-
tion, vectorized Kansei information as search tags works ef-
ficiently as search tags. Since the number of “—1" values in
the Kansei vectors of the peers is larger than the number of
“+1” values, and the p value of the peers is proportional to
the number of “—1” values, all of the peers need to have ap-
proximately the same number of files corresponding to “—1”
at any time during the file search in order to achieve quick
convergence. However, specific peers are given more oppor-
tunities for their files to be downloaded by the Kansei query
forwarding method. The reason for this is that these specific
peers happened to increase the number of files correspond-
ing to “—1”. Consequently, this causes positive feedback to
be yielded such that the initial small advantage in the num-
ber of files corresponding to “—1” over other peers grows
larger and larger with time.

Next, when using prototypical Kansei vector (2), as in
the case of using prototypical Kansei vector (3), the Kan-
sei query forwarding method produces the above-mentioned
positive feedback to specific peers if the value of p;, is small,
because the number of “—1" values in the Kansei vectors of
the peers is still larger than the number of “+1” values and
the p value of the peers is equal to the number of “—1” val-
ues. However, when using prototypical Kansei vector (1)
and a small value of pj, since the numbers of “—1” and “+1”
values in the Kansei vectors of the peers are almost the same,

the Kansei query forwarding method does not produce pos-
itive feedback to specific peers.

On the other hand, even when using prototypical Kan-
sei vector (3) or (2), the one-walker random walk is expected
to provide high search performance that is equivalent for all
peers, because each peer has the same tendency with respect
to file collection. Therefore, each peer would basically have
files that other peers desire. Finally, even when prototypical
Kansei vector (3) or (2) is used, if the value of p;, becomes
larger, the numbers of “—1” and “+1” values in the Kansei
vectors of the peers become more similar and randomness
is needed in the file search. Therefore, the abilities of the
Kansei query forwarding method and the one-walker ran-
dom walk to induce convergence would become more simi-
lar with increasing p,.

5.9.4 Case of Kansei-Correlated Determination of (p1, p2,
p3,p4)

This is the case of two-dimensional vectorized Kansei infor-
mation.

We can see from Figs. 9 and 10 that the simulation re-
sults for the case of random determination of p and those
for the case of random determination of (p1, p2, p3, p4) are
so similar to each other. Similar to the discussion for the
cases of random determination of p and (pl, p2, p3, p4), if
we replace the numbers of —1 and +1 appeared in the dis-
cussion for the case of Kansei-correlated determination of
p by the numbers of (—1,—1) and (+1, +1) respectively, we
could herein have the similar discussion to that for the case
of Kansei-correlated determination of p.

5.9.5 Summary of Results

The simulation results are summarized in the following.

e Cases of random determination of p and (pl, p2, p3,
r4)
If the Hamming distance between the Kansei vectors
of participants is small and the difference between the
numbers of “—1” and “+1” values or the numbers of
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(=1,-1) and (+1, +1) in the Kansei vectors of partic-
ipants is small , the Kansei query forwarding method
has a better ability to induce convergence. Otherwise,
there is almost no difference between the Kansei query
forwarding method and the one-walker random walk in
terms of the ability to induce convergence.

e Cases of Kansei-correlated determination of p and
(pl, p2, p3, p4)
If the Hamming distance between the Kansei vectors
of participants is small and the difference between the
numbers of “—1” and “+1” values or the numbers of
(=1,-1) and (+1, +1) in the Kansei vectors of partici-
pants is large , the one-walker random walk has a better
ability to induce convergence. Otherwise, there is al-
most no difference between the Kansei query forward-
ing method and the one-walker random walk in terms
of the ability to induce convergence.

Although the present paper employed just only one-
dimensional and two-dimensional vectorized Kansei infor-
mation, the simulation results suggest somewhat in general
that if the similarity between the Kansei information of the
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participants is high and the bias of impression to distributed
files is small, the Kansei query forwarding method has a
better ability to induce convergence and that if the similar-
ity between the Kansei information of participants is high
and the bias of impression to distributed files is large, the
one-walker random walk has a better ability to induce con-
vergence.

6. Search Speed

In the previous section, we examined through simulations
not search performance for each file search but time required
for all of the peers to hold more than or equal to a given
number of files. The purpose of this examination was to see
how much prepared query forwarding methods can provide
equal search performance for the participants with different
Kansei information and the tendency of queries. Here, we
will compare the query forwarding methods with respect to
time required for each file search.

In the previous section, each peer had limitation on the
number of times of file downloads and the number of hops
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allowed for a file search. We here remove this limitation
and then investigate the average number of hops for all of
searches. The observation period for calculating the average
number of hops is from the 1st to the 16,000th searches,
at which convergence occurs if no fail of file search. The
number of peers is 200 and the network topology is full-
mesh. The other simulation configurations are the same as
in the previous section.

Figures 11 and 12 show the simulation results for the
case of one-dimensional vectorized Kansei information and
those for the case of two-dimensional vectorized Kansei in-
formation, respectively. The results are the average over 500
independent simulation runs.

According to Figs. 11 and 12, the Kansei query for-
warding method is better than or equal to the one-walker
random walk in terms of the number of hops. Especially for
small values of p;, the Kansei query forwarding method is
better. When the value of pj, is small, the Kansei vectors are
similar among all of the peers. That is, what to feel about
each of the files is similar among all of the peers. Mean-
while, the Kansei query forwarding method is likely to for-
ward a query to a peer which holds more files with the vec-
torized Kansei information similar to the query. Since what
to feel about each of the files is similar among all of the peers
when the value of p; is small, we can expect that the peer
to which the Kansei query forwarding method forwarded a
query holds files that a peer making the query wants and also
that the Kansei query forwarding method has better search
ability than the one-walker random walk in this situation.

These simulation results suggest that when there is no
limitation on the number of times of downloads and the
number of hops allowed for a file search, the Kansei query
forwarding method is always a better choice.

7. Conclusions

In the present paper, we proposed the concept of folksonom-
ical P2P file sharing networks that allow participants (peers)
to freely assign structured search tags to their files. We fo-
cused on vectorized Kansei (human sensitivity) information
as a concrete example of such structured search tags, and
then proposed folksonomical P2P file sharing networks us-
ing the vectorized Kansei information and the Kansei query
forwarding method that enables us to share files having vec-
torized Kansei information as search tags among partici-
pants. The simulation results that when we intend to pro-
vide equal search performance for participants with different
Kansei information and the tendency of queries, the Kansei
query forwarding method and a random-walk-based query
forwarding method, for comparison, work effectively in dif-
ferent situations and are complementary. Furthermore, the
Kansei query forwarding method is shown, through simula-
tions, to be superior to or equal to the random-walk based
one in terms of search speed.

The motivation behind the present work was to enable
communication between participants in which information
is intermediate. In the proposed folksonomical P2P file shar-
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ing networks, participants look for other participants who
have a similar sense of file grouping, as well as the files
themselves, through a file search process. The simulation
results presented in this paper suggest the possibility that
participants with similar Kansei information can exchange
files with each other depending on situation, and the above-
mentioned communication would be one step of the file ex-
change process described herein. So, in the future work, we
need to more mathematically reveal and quantify ‘situation’
in which participants with similar Kansei information can
meet each other, and at the same time, to show the practical
usefulness.
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