
248
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

PAPER Special Section on Foundations of Computer Science

Linear-Time Recognizable Classes of Tree Languages by
Deterministic Linear Pushdown Tree Automata

Akio FUJIYOSHI†a), Member

SUMMARY In this paper, we study deterministic linear pushdown tree
automata (deterministic L-PDTAs) and some variations. Since recognition
of an input tree by a deterministic L-PDTA can be done in linear time, de-
terministic L-PDTAs are applicable to many kinds of applications. A strict
hierarchy will be shown among the classes of tree languages defined by a
variety of deterministic L-PDTAs. It will be also shown that deterministic
L-PDTAs are weakly equivalent to nondeterministic L-PDTAs.
key words: linear pushdown tree automaton, context-free tree grammar,
tree structure, linear-time recognizability

1. Introduction

Recently, the demand for processing extremely large
amount of data has become greater, and thus linear-time
recognizability is requested in many cases. For the pro-
cess of validation of tree-structural data represented by
XML documents [1], XML schema languages (DTD, W3C
XML Schema, RELAX NG, etc.) [12] are commonly used.
Since XML schema languages define tree languages that are
linear-time recognizable, a number of efficient algorithms
have been developed based on them. Though XML schema
languages are very useful for many kinds of applications,
they cannot handle context-free sequences. The class of tree
languages defined by XML schema languages is included
in the class of recognizable tree languages [12], that is, the
class of tree language recognized by deterministic bottom-
up tree automata [2]. If we want to process tree languages
with context-free sequences, we have to think of more pow-
erful formalisms.

In this paper, we study deterministic linear pushdown
tree automata (deterministic L-PDTAs) and some variations.
Since recognition of an input tree by a deterministic L-
PDTA can be done in linear time, deterministic L-PDTAs
are also useful for many kinds of applications. The follow-
ing three types of deterministic L-PDTAs will be studied:
(1) real-time deterministic L-PDTAs, (2) deterministic L-
PDTAs, and (3) deterministic L-PDTAs with regular look-
ahead. As desired, it will be shown that recognition by a
deterministic L-PDTA of all three types can be done in lin-
ear time.

It is necessary to think of adding the function of ‘regu-
lar look-ahead’ to deterministic L-PDTAs. It is known that

Manuscript received March 28, 2008.
Manuscript revised June 20, 2008.
†The author is with the Department of Computer and Informa-

tion Sciences, Ibaraki University, Hitachi-shi, 316–8511 Japan.
a) E-mail: fujiyosi@mx.ibaraki.ac.jp

DOI: 10.1587/transinf.E92.D.248

deterministic top-down tree automata are strictly less pow-
erful than deterministic bottom-up tree automata [2]. Be-
cause an L-PDTA is a generalization of top-down tree au-
tomaton, there exist some basic tree languages that cannot
be recognized by any deterministic L-PDTA. For example,
the tree language { f (a, b), f (b, a)} is neither recognized by
a deterministic top-down tree automaton nor by a determin-
istic L-PDTA. With the function of ‘regular look-ahead’,
deterministic L-PDTAs become strictly more powerful than
deterministic bottom-up tree automata. The idea of ‘regular
look-ahead’ was brought from the study of tree transduc-
ers [3].

To examine the recognition capability of determinis-
tic L-PDTAs, we compare the classes of the three types of
deterministic L-PDTAs and the class of nondeterministic L-
PDTAs with regard to tree languages and yield languages.
Concerning tree languages, it will be shown that a strict
hierarchy holds among the classes of recognized tree lan-
guages. Concerning yield languages, on the other hand, it
will be shown that the classes of their yield languages are the
same, i.e., the classes of deterministic and nondeterministic
L-PDTAs are all weakly equivalent. In the proof of these
statements, the formal properties of linear monadic context-
free tree grammars (LM-CFTGs) were utilized. LM-CFTGs
are the grammar formalism corresponding to L-PDTAs.

This paper is organized as follows. In Sect. 2, terms,
definitions, LM-CFTG and L-PDTA are introduced. In
Sect. 3, three types of deterministic L-PDTAs are defined. In
Sect. 4, the recognition capability of deterministic L-PDTAs
is examined.

2. Preliminaries

In this section, terms, definitions, and former results which
will be used in the rest of this paper are introduced.

Let N be the set of all natural numbers, and let N+ be
the set of all positive integers. The concatenation operator
is denoted by ‘ · ’. For an alphabet Σ, the set of strings over
Σ is denoted by Σ∗, and the empty string is denoted by λ.

2.1 Ranked Alphabets and Trees

A ranked alphabet is a finite set of symbols in which each
symbol is associated with a natural number, called the arity
of a symbol. Let Σ be a ranked alphabet. For a ∈ Σ, the arity
of a is denoted by arity(a). For n ≥ 0, let Σn = {a ∈ Σ |
arity(a) = n}.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

FUJIYOSHI: LINEAR-TIME RECOGNIZABLE CLASSES OF TREE LANGUAGES BY DETERMINISTIC L-PDTA
249

A set D is a tree domain if D is a nonempty finite subset
of (N+)∗ satisfying the following conditions:

• For any d ∈ D, if d′, d′′ ∈ (N+)∗ and d = d′ · d′′, then
d′ ∈ D.

• For any d ∈ D and i, j ∈ N+, if i ≤ j and d · j ∈ D, then
d · i ∈ D.

Let D be a tree domain, and let d ∈ D. Elements in D are
called nodes. A node d′ is a child of d if there exists i ∈ N+
such that d′ = d · i. A node is called a leaf if it has no child.
The node λ is called the root. A node that is neither a leaf
nor the root is called an internal node.

Let Σ be a ranked alphabet. A tree over Σ is a function
α : D → Σ where D is a tree domain and, for all d ∈ D,
arity(α(d)) = max{i ∈ N+ | d · i ∈ D}. The set of trees
over Σ is denoted by TΣ. A subset of TΣ is called a tree
language. The domain of a tree α is denoted by Dα. For
d ∈ Dα, α(d) is called the label of d. The subtree of α at d
is α/d = {(d′, a) ∈ (N+)∗ × Σ | (d · d′, a) ∈ α}.

The expression of a tree over Σ is defined to be a string
over elements of Σ, parentheses and commas. For α ∈ TΣ, if
α(λ) = b ∈ Σn, and, for each 1 ≤ i ≤ n, the expression of α/i
is αi, then the expression of α is b(α1, α2, . . . , αn). Note that
n is the number of the children of the root. For b ∈ Σ0, trees
are written as b instead of b(). When the expression of α
is b(α1, α2, . . . , αn), it is written that α = b(α1, α2, . . . , αn),
i.e., each tree is identified with its expression.

Let Σ be a ranked alphabet, and let I be a set that is
disjoint from Σ. TΣ(I) is defined to be TΣ∪I where Σ ∪ I is
the ranked alphabet obtained from Σ by adding all elements
in I as symbols of arity 0.

Let X = {x1, x2, . . .} be the fixed countable set of vari-
ables. Let X0 = ∅ and for n ≥ 1, let Xn = {x1, x2, . . . , xn}. x1

is situationally denoted by x.
Let α, β ∈ TΣ, and let d ∈ Dα. We define α〈d ←

β〉 = {(d′, a) | (d′, a) ∈ α and d is not a prefix of
d′} ∪ {(d · d′′, b) | (d′′, b) ∈ β}, i.e., the tree α〈d ← β〉 is
the result of replacing α/d by β.

Let α ∈ TΣ(Xn), and let β1, β2, . . . , βn ∈ TΣ(X). The
notion of substitution is defined. The result of substituting
each βi for nodes labeled by variable xi in α, denoted by
α[β1, β2, . . . , βn], is defined as follows:

• If α ∈ Σ0, then α[β1, β2, . . . , βn] = α.
• If α ∈ Xn and α = xi, then α[β1, β2, . . . , βn] = βi.
• If α = b(α1, α2, . . . , αk) and k ≥ 1, then
α[β1, β2, . . . , βn]

= b(α1[β1, β2, . . . , βn], . . . , αk[β1, β2, . . . , βn]).

Let ε be the special symbol that can be contained in Σ0.
The yield of a tree is a function from TΣ into Σ∗0 defined as
follows:

(1) If α ∈ (Σ0 − {ε}), then yield(α) = α, or if α = ε, then
yield(α) = λ.

(2) If α = b(α1, α2, . . . , αn) and n ≥ 1, then yield(α) =
yield(α1) · yield(α2) · · · · · yield(αn).

For L ⊆ TΣ, the yield language of L is the set yield(L) =

{yield(α) | α ∈ L}.
Let Σ and Σ′ be ranked alphabets such that Σ0 = Σ

′
0.

Let L ⊆ TΣ and L′ ⊆ TΣ′ . L and L′ are weakly equivalent if
yield(L) = yield(L′).

2.2 Context-Free Tree Grammars

The context-free tree grammars (CFTGs) were introduced
by W.C. Rounds [13] as tree generating systems. The def-
inition of CFTGs is a direct generalization of context-free
grammars (CFGs) [10].

Definition 1: A context-free tree grammar (CFTG) is a
four-tuple G = (N,Σ, P, S), where: N and Σ are dis-
joint ranked alphabets of nonterminals and terminals,
respectively. P is a finite set of rules of the form
A(x1, x2, . . . , xn) → α with n ≥ 0, A ∈ Nn, and α ∈
TN∪Σ(Xn). For A ∈ N0, rules are written as A → α instead
of A() → α. S , the initial nonterminal, is a distinguished
symbol in N0.

For a CFTG G, the one-step derivation G⇒ is the re-

lation on TN∪Σ × TN∪Σ such that, for a tree α ∈ TN∪Σ and
a node d ∈ Dα, if α/d = A(α1, α2, . . . , αn), A ∈ Nn,
α1, α2, . . . , αn ∈ TN∪Σ and A(x1, x2, . . . , xn) → β is in P,
then α G⇒ α〈d ← β[α1, α2, . . . , αn]〉. See Fig. 1. The re-

flective transitive closure of G⇒ is denoted by G
∗⇒ . The tree

language generated byG is the set L(G) = {α ∈ TΣ | S G
∗⇒ α}.

Linear monadic CFTGs (LM-CFTGs) are CFTGs with
two restrictions. One, it is ‘linear’, which requires the num-
ber of occurrences of every variable in the right-hand side
of a production be no more than 1; and two, it is ‘monadic’,
which requires the arity of nonterminals be either 0 or 1. In
[4], [5], it was shown that LM-CFTGs are weakly equivalent
to tree adjoining grammars (TAGs) [11].

Definition 2: A CFTG G = (N,Σ, P, S) is monadic if the
arity of any nonterminal is either 0 or 1, i.e., N = N0 ∪ N1

and Nn = ∅ for n ≥ 2. G is linear if for any production
A(x1, x2, . . . , xn) → α in P, no variable occurs more than
once in α.

Fig. 1 One-step derivation.

250
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

2.3 Pushdown Tree Automata

Pushdown tree automata (PDTAs) [9] were introduced by
I. Guessarian in order to formalize the class of tree lan-
guages generated by CFTGs. A PDTA can be seen as the
combination of an ordinary pushdown finite automaton [10]
and a top-down tree automaton [2].

Definition 3: A (nondeterministic) pushdown tree automa-
ton (PDTA) is a six-tuple M = (Q,Σ,Γ, q0,Z0,R), where Q
is a finite set of states, Σ is a ranked alphabet, called the in-
put alphabet, Γ is a ranked alphabet such that Γ = Γ0 ∪ Γ1,
called the pushdown alphabet, q0 ∈ Q is the initial state,
Z0 ∈ Γ0 is the start symbol, and R is a finite set of rules of
one of the following forms:

read rule:

(i) q(a, A)→ a with a ∈ Σ0, q ∈ Q and A ∈ Γ0.
(ii) q(a, B)→ a with a ∈ Σ0, q ∈ Q and B ∈ Γ1.

(iii) q(b(x1, x2, . . . , xn), A) →
b(q1(x1, π1), q2(x2, π2), . . . , qn(xn, πn))

with n ≥ 1, b ∈ Σn, q, q1, q2, . . . , qn ∈ Q, A ∈ Γ0 and
π1, π2, . . . , πn ∈ Γ∗1Γ0.

(iv) q(b(x1, x2, . . . , xn), B) →
b(q1(x1, π1), q2(x2, π2), . . . , qn(xn, πn))

with n ≥ 1, b ∈ Σn, q, q1, q2, . . . , qn ∈ Q, B ∈ Γ1 and
π1, π2, . . . , πn ∈ Γ∗1Γ0 ∪ Γ∗1.

ε-rule:

(v) q(x, A)→ q′(x, π)
with q, q′ ∈ Q, A ∈ Γ0 and π ∈ Γ∗1Γ0.

(vi) q(x, B)→ q′(x, π)
with q, q′ ∈ Q, B ∈ Γ1 and π ∈ Γ∗1.

An instantaneous description of M is a triple q(α, π) ∈
Q×TΣ×Γ∗1Γ0. Let ID be the set of all instantaneous descrip-
tions of M. A configuration of M is an element of TΣ(ID).
The move relation �M of M is the relation defined as follows.
For any configurations c, c′ ∈ TΣ(ID), c�M c′ if there exists a
node d ∈ Dc that satisfies one of the following conditions:

• A type (i) rule q(a, A) → a is in R, c/d = q(a, A), and
c′ = c〈d ← a〉.

• A type (ii) rule q(a, B) → a is in R, c/d = q(a, Bρ) for
some ρ ∈ Γ∗1Γ0, and c′ = c〈d ← a〉. (The content of
stack ρ is discarded.)

• A type (iii) rule q(b(x1, . . . , xn), A) → b(q1(x1, π1),
. . . , qn(xn, πn)) is in R, c/d = q(b(α1, . . . , αn), A)
for some α1, . . . , αn ∈ TΣ, and c′ = c〈d ←
b(q1(α1, π1), . . . , qn(αn, πn))〉.

• A type (iv) rule q(b(x1, . . . , xn), B) → b(q1(x1, π1),
. . . , qn(xn, πn)) is in R, c/d = q(b(α1, . . . , αn), Bρ) for
some α1, . . . , αn ∈ TΣ and ρ ∈ Γ∗1Γ0, and c′ = c〈d ←
b(q1(α1, π

′
1), . . . , qn(αn, π

′
n))〉 where for each 1 ≤ i ≤ n,

if πi ∈ Γ∗1Γ0, then π′i = πi, and if πi ∈ Γ∗1, then π′i = πiρ.
(If πi, π j ∈ Γ∗1 for some i � j, then the content of stack
ρ is duplicated.)

• A type (v) rule q(x, A)→ q′(x, π) is in R, c/d = q(α, A)
and α ∈ TΣ, and c′ = c〈d ← q′(α, π)〉.

• A type (vi) rule q(x, B) → q′(x, π) is in R, c/d =
q(α, Bρ) for some α ∈ TΣ and ρ ∈ Γ∗1Γ0, and c′ = c〈d ←
q′(α, πρ)〉.

A computation is a finite sequence of configurations
c1c2 · · · cn such that n ≥ 1, c1, c2, . . . , cn ∈ TΣ(ID)
and c1 �M c2 �M · · · �M cn. When there exists a computation
c1c2 · · · cn, we write c1 �M∗ cn. The tree language recognized
by M is the set T (M) = {α ∈ TΣ | q0(α,Z0)�M∗α}.

Let M and M′ be PDTAs. M and M′ are equiva-
lent if T (M) = T (M′). M and M′ are weakly equiva-
lent if yield(T (M)) = yield(T (M′)). Let M and M′ be
classes of PDTAs. M and M′ are weakly equivalent if
{yield(T (M)) | M ∈ M} = {yield(T (M′)) | M′ ∈ M′}.

We introduce a restriction on PDTAs, called ‘lin-
ear’ [4], [6]. Linear PDTAs (L-PDTAs) don’t have the ca-
pability of duplicating their pushdown stack. The class of
tree languages recognized by L-PDTAs coincides with that
generated by LM-CFTGs [4], [5].

Definition 4: A PDTA M = (Q,Σ,Γ, q0,Z0,R) is lin-
ear if, for each type (iv) rule q(b(x1, x2, . . . , xn), B) →
b(q1(x1, π1), q2(x2, π2), . . . , qn(xn, πn)) in R, |{i | 1 ≤ i ≤ n
and πi ∈ Γ∗1}| = 1.

Example 1: The following M is an L-PDTA that accepts
a tree language whose yield language is Lww = {ww |
w ∈ {a, b}+}. M = (Q,Σ,Γ, q0,Z0,R), where Q =

{q0, q1, q2, qA, qB}, Σ = Σ0 ∪ Σ2, Σ0 = {a, b}, Σ2 = {d},
Γ0 = {Z0}, Γ1 = {N, A, B}, and R consists of the following
rules:

q0(x,Z0)→ q1(x,NZ0),
q1(d(x1, x2),N)→ d(qA(x1,Z0), q1(x2,NA)),
q1(d(x1, x2),N)→ d(qB(x1,Z0), q1(x2,NB)),
q1(x,N)→ q2(x, λ),
q2(d(x1, x2), A)→ d(q2(x1, λ), qA(x2,Z0)),
qA(a,Z0)→ a,
q2(d(x1, x2), B)→ d(q2(x1, λ), qB(x2,Z0)),
qB(b,Z0)→ b,
q2(x, A)→ qA(x, λ), and
q2(x, B)→ qB(x, λ).

In Fig. 2, a tree in T (M) and the movement of M for the tree
are illustrated.

3. Deterministic Linear Pushdown Tree Automata

In this section, we give the definitions of (1) real-time deter-
ministic L-PDTAs, (2) deterministic L-PDTAs, and (3) de-
terministic L-PDTAs with regular look-ahead. These three
classes of L-PDTAs are newly defined in this paper. The
ideas of ‘real-time’ and ‘deterministic’ were brought from
classic automata theory [10], and the idea of ‘regular look-
ahead’ was brought from the study of tree transducers [3]. It
will be shown that recognition by a deterministic L-PDTA

FUJIYOSHI: LINEAR-TIME RECOGNIZABLE CLASSES OF TREE LANGUAGES BY DETERMINISTIC L-PDTA
251

Fig. 2 An example of a tree accepted by M and its movement.

of all three types can be done in linear time.
The definitions of ‘real-time’ and ‘deterministic’ are as

follows:

Definition 5: An L-PDTA M = (Q,Σ,Γ, q0,Z0,R) is real-
time if R doesn’t contain any ε-rules.

Definition 6: An L-PDTA M = (Q,Σ,Γ, q0,Z0,R) is deter-
ministic if it satisfies the following conditions:

• For each q ∈ Q, a ∈ Σ and B ∈ Γ, R contains at most
one read rule with q, a and B on its left-hand side.

• For each q ∈ Q and B ∈ Γ, R contains at most one
ε-rule with q and B on its left-hand side.

• For each q ∈ Q and B ∈ Γ, if R contains a ε-rule with
q and B on its left-hand side, then for any a ∈ Σ, R
doesn’t contain any read rules with q, a and B on its
left-hand side.

An L-PDTA with regular look-ahead is defined as fol-
lows:

Definition 7: An L-PDTA with regular look-ahead is a
eight-tuple M = (P,Q,Σ,Γ, q0,Z0, δ,R), where P is a finite
set of look-ahead states, Q, Σ, Γ, q0 and Z0 are as for an
original L-PDTA, δ is a mapping from TΣ into P realized by
a deterministic bottom-up tree automaton, and R is a finite
set of rules of one of the following forms:

read rule:

(i) (p, q)(a, A)→ a
with a ∈ Σ0, p ∈ P, q ∈ Q and A ∈ Γ0.

(ii) (p, q)(a, B)→ a
with a ∈ Σ0, p ∈ P, q ∈ Q and B ∈ Γ1.

(iii) (p, q)(b(x1, x2, . . . , xn), A) →
b(q1(x1, π1), q2(x2, π2), . . . , qn(xn, πn))

with n ≥ 1, b ∈ Σn, p ∈ P, q, q1, q2, . . . , qn ∈ Q, A ∈ Γ0

and π1, π2, . . . , πn ∈ Γ∗1Γ0.
(iv) (p, q)(b(x1, x2, . . . , xn), B) →

b(q1(x1, π1), q2(x2, π2), . . . , qn(xn, πn))

with n ≥ 1, b ∈ Σn, p ∈ P, q, q1, q2, . . . , qn ∈ Q, B ∈ Γ1

and π1, π2, . . . , πn ∈ Γ∗1Γ0 ∪ Γ∗1 such that |{i | 1 ≤ i ≤ n
and πi ∈ Γ∗1}| = 1.

ε-rule:

(v) (p, q)(x, A)→ q′(x, π)
with p ∈ P, q, q′ ∈ Q, A ∈ Γ0 and π ∈ Γ∗1Γ0.

(vi) (p, q)(x, B)→ q′(x, π)
with p ∈ P, q, q′ ∈ Q, B ∈ Γ1 and π ∈ Γ∗1.

A recognition process of an L-PDTA with regular look-
ahead M is done in two stages: look-ahead stage and recog-
nition stage. In look-ahead stage, M assigns a look-ahead
state to each node of an input tree as a deterministic bottom-
up tree automaton does. For an input tree α and its node d,
the look-ahead state δ(α/d) will be assigned. And then, in
recognition stage, M moves like an original L-PDTA except
that M decides next move according to a look-ahead state in
addition to a state and a pushdown symbol on the top.

The move relation is defined as for an original L-PDTA
except that to process an instantaneous description q(α, π),
the look-ahead state δ(α) must appear in the left-hand side
of a rule. The notion of ‘deterministic’ is also defined as for
an original L-PDTA.

Theorem 1: A real-time deterministic L-PDTA, a deter-
ministic L-PDTA and a deterministic L-PDTA with regular
look-ahead can recognize an input tree in linear time of the
number of nodes of the input tree.

Proof. Because each move of an L-PDTA can be done in
constant time, any input tree can be recognized by a real-
time deterministic L-PDTA in linear time of the number
of nodes. Because the number of consecutive ε-moves can
be limited by a constant, recognition by a deterministic L-
PDTA can be done in linear time. As for a deterministic
bottom-up tree automaton, the process of regular look-ahead
can also be done in linear time. Therefore, recognition by a
deterministic L-PDTA of all three types can be done in lin-
ear time. �

By the way, deterministic recognition of trees recog-
nized by a nondeterministic L-PDTA can be done in O(n3)
time ([8] with some modification).

4. Comparison of Deterministic and Nondeterministic
Linear Pushdown Tree Automata

In this section, we compare the recognition capability of the
three types of deterministic L-PDTAs and nondeterministic
L-PDTAs with regard to tree languages and yield languages.

First, we compare the classes of tree languages. Let
RtDet, Det, DetRla and Nondet represent classes of all tree
languages recognized by real-time deterministic L-PDTAs,
deterministic L-PDTAs, deterministic L-PDTAs with regu-
lar look-ahead and nondeterministic L-PDTAs, respectively.
Then we obtain the following theorem:

Theorem 2: RtDet � Det � DetRla � Nondet.

252
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Proof. The inclusions RtDet ⊆ Det ⊆ DetRla are direct
from the definitions. The inclusion DetRla ⊆ Nondet holds
because a nondeterministic L-PDTA can simulate a deter-
ministic L-PDTA with regular look-ahead by nondetermin-
istically guessing look-ahead states assigned to the nodes of
an input tree in the look-ahead stage.

For the inequality RtDet � Det, we think of the LM-
CFTG G = ({S , A, B},Σ, P, S) where Σ = Σ0 ∪ Σ1, Σ0 = {#},
Σ1 = {a, b, c, d}, and P consists of the following rules: S →
A(#), S → B(#), A(x) → a(A(a(x))), A(x) → b(A(b(x))),
A(x) → a(c(a(x))), A(x) → b(c(b(x))), B(x) → a(B(a(x))),
B(x) → b(B(x)), B(x) → a(d(a(x))) and B(x) → b(d(x)).
Clearly, L(G) ∈ Det but L(G) � RtDet.

The inequality Det � DetRla is because DetRla in-
cludes all recognizable tree languages but Det doesn’t. It is
known that the recognizable tree language { f (a, b), f (b, a)}
is not in Det. DetRla includes all recognizable tree lan-
guages because deterministic L-PDTAs with regular look-
ahead can simulate all bottom-up tree automata.

For the inequality DetRla � Nondet, we think of the
LM-CFTGG = ({S , A},Σ, P, S) where Σ = Σ0∪Σ1, Σ0 = {#},
Σ1 = {a, b}, and P consists of the following rules: S → A(#),
A(x) → a(A(a(x))), A(x) → b(A(b(x))), A(x) → a(a(x))
and A(x) → b(b(x)). Clearly, L(G) ∈ Nondet but L(G) �
DetRla. �

Next, we compare the classes of yield languages. Let
yRtDet, yDet, yDetRla and yNondet represent the classes
of yield languages corresponding to RtDet, Det, DetRla
and Nondet, respectively.

As the main result, it will be shown that the classes of
their yield languages are the same, i.e., the four classes of
L-PDTAs mentioned above are all weakly equivalent:

yRtDet = yDet = yDetRla = yNondet.

To reach the main result, we need to prove the equivalence
of L-PDTAs and real-time L-PDTAs.

In the string case, it is known that any pushdown au-
tomaton can be converted into an equivalent real-time one.
This stems from the fact that any CFG can be converted into
an equivalent one in Greibach normal form [10]. Similarly,
it is also known that any LM-CFTG can be converted into
an equivalent one in Greibach-like normal form [7]. So we
come across the following lemma:

Lemma 1: For any L-PDTA, we can construct an equiva-
lent real-time L-PDTA.

Proof. Let M = (Q,Σ,Γ, q0,Z0,R) be an L-PDTA. We
construct an LM-CFTG G such that L(G) = T (M) [4]. It is
known that any LM-CFTG can be converted into an equiva-
lent LM-CFTG whose productions are of one of the follow-
ing forms [7] (See also Fig. 3):

(1) A→ a
(2) A→ b(C1, . . . ,Ci−1, B1(B2(· · · (Bm(D)) · · ·)),

Ci+1, . . . ,Cn)
(3) A(x)→ b(C1, . . . ,Ci−1, B1(B2(· · · (Bm(x)) · · ·)),

Ci+1, . . . ,Cn)

Fig. 3 Rules of an LM-CFTG in Greibach-like normal form.

Here, uppercase characters are nonterminals, lowercase
characters are terminals, n ≥ 1, and m ≥ 0. Accordingly,
G is converted into G′. Refering to the construction method
presented in the proof of Lemma 6.3 in [4], we construct a
real-time L-PDTA M′ such that T (M′) = L(G′) = T (M).

�

Example 2: The following M′ is a real-time L-PDTA
equivalent to the L-PDTA M introduced in Example 1.
M′ = ({q0},Σ,Γ′, q0, S ,R′), where Σ = Σ0 ∪ Σ2, Σ0 = {a, b},
Σ2 = {d}, Γ′0 = {S , A, B}, Γ′1 = {N,C,D, E}, and R′ consists
of the following rules:

r1: q0(d(x1, x2), S)→ d(q0(x1, A), q0(x2, A)),
r2: q0(d(x1, x2), S)→ d(q0(x1, B), q0(x2, B)),
r3: q0(d(x1, x2), S)→ d(q0(x1, A), q0(x2,CA)),
r4: q0(d(x1, x2), S)→ d(q0(x1, B), q0(x2,CB)),
r5: q0(d(x1, x2),C)→ d(q0(x1, A), q0(x2,D)),
r6: q0(d(x1, x2),C)→ d(q0(x1, B), q0(x2, E)),
r7: q0(d(x1, x2),C)→ d(q0(x1, A), q0(x2,CD)),
r8: q0(d(x1, x2),C)→ d(q0(x1, B), q0(x2,CE)),
r9: q0(d(x1, x2),D)→ d(q0(x1, λ), q0(x2, A)),
r10: q0(d(x1, x2), E)→ d(q0(x1, λ), q0(x2, B)),
r11: q0(a, A)→ a, and

FUJIYOSHI: LINEAR-TIME RECOGNIZABLE CLASSES OF TREE LANGUAGES BY DETERMINISTIC L-PDTA
253

Fig. 4 An example of a tree accepted by M′ and its movement.

r12: q0(b, B)→ b.

Here, r1, r2, . . . , r12 are the labels of rules that will be used
in the next example. In Fig. 4, a tree in T (M′) and the move-
ment of M′ for the tree are illustrated.

Some reader may want to ask whether the similar
equivalence holds between PDTAs and real-time PDTAs.
The answer is negative because the following tree language
Lb(α,α) is recognized by a PDTA but not by any real-time
PDTA. Lb(α,α) = {b(α, α) | α = a(a(· · · (a(ε)) · · ·)) is a tree
in TΣ0∪Σ1 }, where Σ = {ε, a, b}, Σ0 = {ε}, Σ1 = {a}, and
Σ2 = {b}.
Theorem 3: For any L-PDTA, we can construct a weakly
equivalent real-time deterministic L-PDTA.

Proof. Let M = (Q,Σ,Γ, q0,Z0,R) be an L-PDTA. By
Lemma 1, without loss of generality, we may assume that
M is real-time.

For r ∈ R, let us denote the input symbol occur-
ring in r by σ(r). Then we construct an L-PDTA M′ =
(Q,Σ′,Γ, q0,Z0,R′) as follows. Σ′ = Σ0 ∪ {r̂ | r ∈ R and
σ(r) ∈ Σ − Σ0}, where the arity of r̂ ∈ R is arity(σ(r)). R′ is
the smallest set satisfying the following conditions:

• If r ∈ R, and σ(r) ∈ Σ0, then r is in R′.
• If r ∈ R, and σ(r) ∈ Σ−Σ0, then the rule obtained from

r by replacing each occurrence of σ(r) with r̂ is in R′.

For example, if the rule

r : q(b(x1, x2), A)→ b(q1(x1, π1), q2(x2, π2))

is in R, then the following rule is contained in R′:

q(r̂(x1, x2), A)→ r̂(q1(x1, π1), q2(x2, π2)).

It is easy to check that M′ is real-time and determinis-
tic.

By the construction of M′, there is one to one corre-
spondence between the move of M and the move of M′.
Thus, for any α ∈ TΣ, q0(Z0, α)�M∗α if and only if there ex-
ists α′ ∈ TΣ′ such that q0(Z0, α

′)�M′∗ α′, and α is obtained from
α′ by replacing each occurrence of r̂ ∈ Σ′ − Σ0 with σ(r).
Therefore, M′ is weakly equivalent to M. �

Fig. 5 An example of a tree accepted by M′′ and its movement.

Corollary 1: The following classes of L-PDTAs are all
weakly equivalent.

• Real-time deterministic L-PDTAs
• Deterministic L-PDTAs
• Deterministic L-PDTAs with regular look-ahead
• Nondeterministic L-PDTAs

Example 3: The following M′′ is a real-time determinis-
tic L-PDTA weakly equivalent to the L-PDTAs M and M′
introduced in Example 1 and 2. M′′ is obtained from M′
in accordance with the construction method presented in the
proof of Theorem 3. M′′ = ({q0},Σ′,Γ′, q0, S ,R′′), where
Σ = Σ0∪Σ2, Σ0 = {a, b}, Σ2 = {r̂1, r̂2, . . . , r̂10}, Γ′0 = {S , A, B},
Γ′1 = {N,C,D, E}, and R′′ consists of the following rules:

q0(r̂1(x1, x2), S)→ r̂1(q0(x1, A), q0(x2, A)),
q0(r̂2(x1, x2), S)→ r̂2(q0(x1, B), q0(x2, B)),
q0(r̂3(x1, x2), S)→ r̂3(q0(x1, A), q0(x2,CA)),
q0(r̂4(x1, x2), S)→ r̂4(q0(x1, B), q0(x2,CB)),
q0(r̂5(x1, x2),C)→ r̂5(q0(x1, A), q0(x2,D)),
q0(r̂6(x1, x2),C)→ r̂6(q0(x1, B), q0(x2, E)),
q0(r̂7(x1, x2),C)→ r̂7(q0(x1, A), q0(x2,CD)),
q0(r̂8(x1, x2),C)→ r̂8(q0(x1, B), q0(x2,CE)),
q0(r̂9(x1, x2),D)→ r̂9(q0(x1, λ), q0(x2, A)),
q0(r̂10(x1, x2), E)→ r̂10(q0(x1, λ), q0(x2, B)),
q0(a, A)→ a, and
q0(b, B)→ b.

In Fig. 5, a tree in T (M′′) and the movement of M′′ for the
tree are illustrated.

5. Conclusion

We have studied the following three types of deterministic
L-PDTAs: (1) real-time deterministic L-PDTAs, (2) deter-
ministic L-PDTAs, and (3) deterministic L-PDTAs with reg-
ular look-ahead. Concerning tree languages, we have seen
that a strict hierarchy holds among the classes of recognized
tree languages. Concerning yield languages, on the other
hand, we have seen that the classes of their yield languages
are the same.

254
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

It is recommended to use deterministic L-PDTAs with
regular look-ahead for application because they are most
powerful among the three types of deterministic L-PDTAs,
and their recognition process can be done in linear time.

References

[1] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0 (fourth edition) W3C rec-
ommendation,” Available on: http://www.w3.org/TR/2006/
REC-xml-20060816/, 2006.

[2] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C.
Löding, S. Tison, and M. Tommasi, “Tree automata techniques and
applications,” Available on: http://www.grappa.univ-lille3.fr/tata,
2007. release Oct. 12th 2007.

[3] J. Engelfriet, “Top-down tree transducers with regular look-ahead,”
Mathematical Systems Theory, vol.10, no.1, pp.289–303, 1977.

[4] A. Fujiyoshi and T. Kasai, “Spinal-formed context-free tree gram-
mars,” Theory of Computing Systems, vol.33, no.1, pp.59–83, 2000.

[5] A. Fujiyoshi, “Linearity and nondeletion on monadic context-free
tree grammars,” Inf. Process. Lett., vol.93, no.3, pp.103–107, 2005.

[6] A. Fujiyoshi and I. Kawaharada, “Deterministic recognition of trees
accepted by a linear pushdown tree automaton,” Proc. 10th Confer-
ence on Implementation and Application of Automata (CIAA 2005),
LNCS 3845, pp.129–140, 2005.

[7] A. Fujiyoshi, “Analogical conception of Chomsky normal form and
Greibach normal form for linear, monadic context-free tree gram-
mars,” IEICE Trans. Inf. & Syst., vol.E89-D, no.12, pp.2933–2938,
Dec. 2006.

[8] A. Fujiyoshi, “Application of the CKY algorithm to recognition
of tree structures for linear, monadic context-free tree grammars,”
IEICE Trans. Inf. & Syst., vol.E90-D, no.2, pp.388–394, Feb. 2007.

[9] I. Guessarian, “Pushdown tree automata,” Mathematical Systems
Theory, vol.16, no.4, pp.237–263, 1983.

[10] J.E. Hopcroft and J.D. Ullman, Introduction to Automata The-
ory, Languages and Computation, Addison Wesley, Reading, Mas-
sachusetts, 1979.

[11] A.K. Joshi and Y. Schabes, Handbook of Formal Languages,
ch. Tree-adjoining grammars, pp.69–124, Springer-Verlag, Berlin,
1997.

[12] M. Murata, D. Lee, M. Mani, and K. Kawaguchi, “Taxonomy of
XML schema languages using formal language theory,” ACM Trans.
Internet Technology, vol.5, no.4, pp.660–704, 2005.

[13] W.C. Rounds, “Mapping and grammars on trees,” Mathematical
Systems Theory, vol.4, no.3, pp.257–287, 1970.

Akio Fujiyoshi was born in Tokyo, Japan
in 1971. He received the B.E., M.E., and Dr.
Sci. degrees from the University of Electro-
Communications, Tokyo, Japan, in 1995, 1997,
and 2000, respectively. He is presently an assis-
tant professor in the Department of Computer
and Information Sciences, Ibaraki University.
His main interests are formal language theory
and algorithmic learning theory.

