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PAPER

A Multi-Layered Immune System for Graph Planarization Problem

Shangce GAO†, Student Member, Rong-Long WANG††, Hiroki TAMURA†††, and Zheng TANG†a), Members

SUMMARY This paper presents a new multi-layered artificial immune
system architecture using the ideas generated from the biological immune
system for solving combinatorial optimization problems. The proposed
methodology is composed of five layers. After expressing the problem as
a suitable representation in the first layer, the search space and the features
of the problem are estimated and extracted in the second and third layers,
respectively. Through taking advantage of the minimized search space from
estimation and the heuristic information from extraction, the antibodies (or
solutions) are evolved in the fourth layer and finally the fittest antibody is
exported. In order to demonstrate the efficiency of the proposed system, the
graph planarization problem is tested. Simulation results based on several
benchmark instances show that the proposed algorithm performs better than
traditional algorithms.
key words: artificial immune system, multi-layered, graph planarization,
estimation, feature

1. Introduction

Extensive research has been done recently on applying the
remarkable information processing performance of living
organisms to computer systems. In particular, many stud-
ies have explored neural networks, which are related to the
brain and nervous system. Nevertheless, the information
processing performance of biological immune systems is
extremely good, which is very significant in terms of fu-
ture parallel distributed computing [1]. In recent years re-
searchers have realized the potential revelation of biological
immune mechanisms in developing new computational in-
telligence [2]. The computational models and applications
based on artificial immune systems have established a re-
search frontier. These include Immune Networks [3], [4],
Negative Selection Algorithms [5], [6], and Clonal Selection
Algorithms [7]. There have been attempts to apply these im-
mune systems to the autonomous behavior of robots [8], pat-
tern recognition [9], [10], noise removal [11], information
security [12] and optimization problems [13]–[16].

In particular, the evolution-based immune optimiza-
tion is a key area in the study of artificial immune sys-
tems. Motivated by the diversity of antibodies in the im-
mune clonal system, Fukuda proposed multi-modal func-
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tion optimization to overcome the shortcoming of Genetic
Algorithm (GA), where GA easily gets into a local mini-
mum [17]. For solving complex problems such as multi-
peaks function optimization and combinatorial optimiza-
tion, De Castro et al. [18] proposed the clonal selection al-
gorithm. The algorithm tries to imitate the mechanisms in
the clonal selection principle to better understand its natu-
ral processes and simulate its dynamical behavior such as
the immune clone and affinity aberrance in the presence of
antigens. Further developments of the clonal selection al-
gorithm such as the introductions of receptor editing oper-
ator, chaotic dynamics, adaptive population size, expanded
search space, immune memory and lateral interaction of dif-
ferent antibodies have been considered in the literature [19]–
[23]. Based on the immune network theory [24], Yoo et al.
put forward an immune network model to solve constrained
optimization problems in which the objective function and
the constrained function are combined linearly into a new
function [25]. In addition, Coello presented a technique to
deal with the constraints which adopted the binding of anti-
gen and antibody, gene evolution and binary system code
expression and can be used to cope with multi-objective op-
timization [26]. Inspired from the negative selection mech-
anism [27], [28], Cao et al. designed a model having the ad-
vantages of not only the maintenance of the diversity of anti-
bodies but also the removal of poor genes [29]. The present
studies mentioned above deal with the immunity mechanism
behind the immune response (i.e. the adaptive immune re-
sponse) and are focused on information processing based on
various immune reactions caused by the immune response.
In other words, these immune optimization models mainly
make use of the antibody diversity and learning mechanisms
during the immune response.

On the other hand, the immune system is a complex
of cells, molecules and organs that has been proven to be
capable of performing several tasks, like pattern recogni-
tion, learning, memory acquisition, generation of diversity,
noise tolerance, generalization, distributed detection and op-
timization [30]. The powerful computation capability comes
from the immune system’s intrinsical multi-layered archi-
tecture [31]–[33]. Based on this consideration, the only us-
age of the immunity mechanisms behind the immune re-
sponse leads to an incomplete and inefficient system design
to some extent. As a result, new computational techniques
can be developed, aiming not only at a better understanding
of the whole immune system but also at solving engineering
problems more efficiently.
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In this paper, based on the immune system’s intrinsical
multi-layered architecture, we propose a new multi-layered
immune system (MLIS) in which not only the adaptive im-
mune response but also the physical and physiologic barri-
ers, the innate immune response and the antigen presenting
cells are taken into consideration. From an immunological
standpoint, all these immunological components work to-
gether to protect us against various antigens such as bacteria
and pathogens and each component has an unique function
to resist the invaders. From an optimization perspective, all
layers of the immune system lead to algorithms that improve
candidate solutions to a given problem through a process of
estimation of search space, feature extraction, and evolution
of antibodies. In addition, it can be declared that the MLIS
is immune-inspired because of its multi-layered architecture
and uses several immune-related principles, such as the pro-
liferation, clonal selection, and so on. In order to verify the
applicability and efficiency of the proposed system, MLIS is
used to solve the graph planarization problem as an exam-
ple. Experimental results show that the proposed immune
system provides better performance when compared to other
traditional methodologies.

The rest of this paper is organized as follows: the pro-
posed multi-layered immune system is presented in the next
section. In Sect. 3, we validate our model by applying it to
the graph planarization problem. Experimental results and
discussions are presented in Sect. 4. Finally we give some
general remarks to conclude this paper.

2. Multi-Layered Natural and Artificial Immune Sys-
tem

In order to make the paper self-explanatory, before actually
proposing the multi-layered artificial immune system, the
principles and mechanisms of the biological immune system
are briefly explained in the following subsection.

2.1 Multi-Layered Natural Immune System

The immune system is a complex of cells, molecules and
organs with the primary role of limiting damage to the host
organism by pathogens, which elicit an immune response
and thus called antigens (Ag). Immune system constitutes
the defense mechanism of the body by means of physical
barriers, physiologic barriers, innate immune response, and
adaptive immune responses. Among these, adaptive im-
mune response is more important for human being because
it contains metaphors like recognition, memory acquisition,
and etc. The main component of adaptive immune response
is lymphocytes, which divide into two classes as T and B
lymphocytes (cells), each having its own function. B cells
have a great functionality because of their secreted antibod-
ies (Ab) that take very critical roles in adaptive immune re-
sponse. Figure 1 presents a simplified architecture of the
basic immune mechanisms of defense.

(I) The first layer in the immune system is a diverse
army of antigens. An antigen, which can cause diseases, is

Fig. 1 Multi-layered immune system architecture.

Fig. 2 The basic flow diagram of MLIS.

a foreign substance from the environment such as chemicals,
viruses, pollen and so on. The ultimate target of all immune
response is to prevent or eliminate the antigens. (II) The
second layer is composed of three kinds of components in-
volving the physical barriers such as the skin and mucous
membranes, the physiologic barriers such as saliva, sweat
and tears, and the innate immune response. Through the
second layer, a certain portion of antigens are recognized
and destroyed. (III) The remaining antigens are subjected to
the specialized antigen presenting cells (APC) where those
encountered antigens are ingested and fragmented into anti-
genic peptides. The pieces of these peptides are displayed
on the cell surface by major histocompatibility complex
(MHC) molecules existing in the digesting APC. The pre-
sented MHC-peptide combination on the cell surface is rec-
ognized by the T cells causing them to be activated. (IV)
Activated T cells secrete some chemicals as alert signals to
B cells in response to this recognition. Those stimulated
B cells proliferate (divide) and eventually mature into ter-
minal (non-dividing) antibody secreting cells, called plasma
cells. This process is known as the adaptive immune re-
sponse. (V) Finally, antibodies which are secreted on the
surfaces of plasma cells bind the existing antigens and neu-
tralize them signaling other components of immune system
to destruct the antigen-antibody complex.

2.2 Multi-Layered Artificial Immune System (MLIS)

According to the natural immune mechanism (NIM) dis-
cussed in the previous subsection, we propose an multi-
layered artificial immune system as illustrated in Fig. 2.
Similar to NIM, MLIS is also composed of five layers. Ta-
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Table 1 Relationship between the biological immune architecture and the corresponding functions in
the artificial immune system.

Layer Biological Immune Component Corresponding Function

I Antigen Problem
Physical barriers

II Physiologic barriers Estimation of search space
Innate immune response

III Antigen presenting cells Feature extraction
IV Adaptive immune response Evolution of antibodies
V Antibody Solution

Fig. 3 The conceptual graph of the evaluation of search space.

ble 1 depicts the corresponding relationship between the bi-
ological immune system and the functions in the proposed
model.

The first layer in MLIS is the problem input. In this
layer the immune system encounters various antigens AG =
{Ag1, Ag2, . . . , AgN}, i.e., the input optimization problem,
where |AG| = N is the size of search space and each anti-
gen Agi (i = 1, 2, . . . ,N) denotes a state in the search space.
In order to solve the problem efficiently, the problem should
be expressed in a suitable representation. Several compo-
nents of the problem are analyzed, such as the objective of
the problem, the constrain conditions, the search space and
so on.

The key to find a good solution for an optimization
problem lies in the estimation of search space Θ(AG). The
estimation of search space indicates the analysis of topo-
logical structure or statistical state in the search space, for
instance, the characteristics in the neighbourhood of the op-
timal solution. Several works have been done in the lit-
erature [34]. For the Traveling Salesman Problem (TSP),
several techniques addressing this concern have been de-
veloped such as the “don’t look bits” technique [35]. For
the Job Scheduling Problem (JSP), the search space are an-
alyzed and divided into three groups involving semi-actives,
actives and non-delay. Based on this observation, efficient
algorithms have also been proposed [36], [37]. Obviously,
the estimation is problem-oriented.

In this study, inspired from the function of the second
layer in NIM that a certain portion of antigens are recog-
nized and destroyed through this layer, we estimates the
whole search space by using a minimized one to replace it,
that is Θ(AG) = {. . . , Agk, . . . , Agl, . . .} (k, l ∈ {1, 2, . . . ,N})
and |Θ(AG)| = M < N. Figure 3 illustrates the conceptual
graph of the basic idea. A minimized search space (MSS)
indicates that not only fewer iterations of search are needed
but the computational time are also reduced. However, there

is a main disadvantage of MSS that it can’t guarantee the
exitance of the global optimal solution within MSS. As a re-
sult, when solving problems using MLIS, MSS should bal-
ance the speed of solution acquirement with the quality of
solution. In the next section, we will illustrate how to gen-
erate a minimized search space by solving the graph pla-
narization problem as an example. Furthermore, it is worth
pointing out that we use the sentence “Estimation of search
space” rather than “Minimization of search space” in Table 1
is because that the conception of the former is broader, and
this might lead us to divide the three components in the sec-
ond layer more precise to conduct a more layered immune
system. That might be a promising further research field.

The third layer in MLIS is the feature extraction. Be-
fore activating B cells to generate antibodies, the antigen
is subjected to the APC layer in which some elements of
antigen are recognized. Motivated by this, MLIS manages
the optimization problem with extraction of features Γ(AG)
such as the basic and obvious characteristics or knowledge
in the problem. These features assist MLIS with some
heuristic information and therefore enable MLIS to find bet-
ter solutions. For example, the distance between two cities
in TSP and the processing time of each operation in JSP can
be utilized as features [34], [38].

Then MLIS generates a variety of antibodies (solu-
tions) for the problem. Each antibody is regarded as a can-
didate solution. Initially P antibodies {Ab1, Ab2, . . . , AbP}
are generated randomly or based on some heuristic mech-
anisms. Each antibody is evaluated by the antigen with
a certain affinity, mathematically, the affinity function A(.)
is calculated by A(Abi) = E(AG, Abi) where the function
E(.) is related with the objective of the problem. Then Q
(Q ≤ P) antibodies with higher affinity are selected as the
elites and, without loss of generality, {Ab1, Ab2, . . . , AbQ}
are selected and arranged in an ascending order of the affin-
ity. Subsequently, the selected antibodies will be stimu-
lated to proliferate, creating a set of clones identical to the
parent antibody, with a rate proportional to its fitness, i.e.,
the fitter the antibody, the more clones it will have. The
amount of clones generated for these antibodies is given as
si = round((Q − i) ∗ F/Q) where i is the ordinal number of
the selected antibody, F is a multiplying factor which de-
termines the scope of the clone and round(.) is the operator
that rounds its argument towards the closest integer. There-
after all the clones mutate by changing the genes within
themselves. The hypermutation and receptor editing are
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two main operators in the mutation, either of which is car-
ried out on each antibody in 50% probability to realize a
complementary role for improving the affinity of antibod-
ies [13]. After mutation, the mutated antibodies with higher
affinity replace their competitors (i.e. parent antibodies) and
this process is known as the affinity maturation. The above
procedures are iterated until meeting a pre-specified termi-
nation criterion.

Finally, the fittest antibody is exported as the final so-
lution for the problem.

3. Application to the Graph Planarization Problem
(GPP)

3.1 Introduction to GPP

A graph is said to be planar or embeddable in a plane if it can
be drawn in the plane so that no two edges intersect except
at a common endpoint. Given a n-vertex m-edge nonplanar
graph G = (V, E) with vertex set V and edge set E, the ob-
jective of graph planarization is to find a spanning planar
subgraph with a maximum number of edges. The problem
has applications in circuit board layout, facility layout, au-
tomatic graph drawing, VLSI circuit routing, and so on [39].

Since finding a maximum planar subgraph is NP-
hard [40], the planarization problem has been widely stud-
ied for many years. Several graph planarization heuris-
tics, neural network learning methods and genetic algo-
rithms have been proposed in the literature. Based on
the PQ-tree technique [41], a near-maximal planarity test-
ing algorithm with computational complexity O(n2) was
proposed by Jayakumar et al. [42]. Reference [43] pre-
sented a corrected and more generalized version of Jayaku-
mar’s algorithm. Two efficient algorithms [44], [45] with
the same complexity bound of O(m log n) can be derived
from the Hopcroft-Tarjan planarity testing algorithm [46]
and the incremental planarity testing algorithm [45], respec-
tively. Linear-time O(m+n) algorithms can be considered in
[47], [48]. A two-phrase graph planarization heuristic and a
greedy randomized adaptive search procedure are presented
in [49] and [50] respectively. Moreover, a few parallel algo-
rithms have been proposed to solve the GPP. Using the neu-
ral network techniques, Takefuji and Lee presented a par-
allel planarization algorithm for generating a near-maximal
planar subgraph within O(1) time [51], [52]. A Hopfield net-
work learning algorithm with a gradient ascent technique for
the problem is proposed in [53]. Furthermore, the applica-
bility of GAs in solving GPP has been verified in [54]. An
effective genetic algorithm performing crossover and mu-
tation operators conditionally instead of probability can be
also referred to as in [55].

3.2 MLIS for Solving GPP

In this section, MLIS is used for solving GPP. The general
steps and interpretations of the algorithm are illustrated in
the following.

3.2.1 The 1st Layer: Representation of GPP

The objective of GPP is to find a maximum planar subgraph
from a general nonplanar graph. Consider the simple undi-
rected graph composed of four vertices and six edges as
shown in Fig. 4 (a). The graph is planar as long as two edges,
e5 = (v1, v3) and e6 = (v2, v4), do not cross each other. Fig-
ure 4 (b) shows a planar graph. In this study, we adopt the
single-row routing [51] to represent GPP. First, the vertices
in the graph are placed on a line and then the connection is
established by either an upper edge or a lower edge. Fig-
ure 4 (c) shows a possible planar graph based on the single-
row routing representation. The two-edge-crossing viola-
tion condition can be easily determined from the single-
row representation used. The existence of a crossing be-
tween two upper edges (vi, v j) and (vp, vq) (or two lower
edges) is determined by the following conditions as shown
in Fig. 4 (d):

if vi < vp < v j < vq or vp < vi < vq < v j (1)

In this representation, the search space is |G| = n! · 3m.
Here, n! denotes the total number of possible permutations
of the vertex sequence. Each of the edge has three possi-
ble states according to whether, in accordance with a de-
termined vertex sequence the edge is a lower edge, is not
considered or is an upper edge. Therefore, the total number
of possible combinations of the edges is 3m.

3.2.2 The 2nd Layer: MSS for GPP

In order to minimize the search space of GPP, the Hamil-
tonian cycle based vertex sequence is considered. As no-
ticed by Goldschmidt [49], the vertex sequence influences
strongly the size of the planar subgraph which can be drawn
and Hamiltonian cycle based vertex sequence does actually
produce good solutions. As a result, in this study only P
different Hamiltonian cycle based vertex sequences (abbre-
viated as HVS) are generated for solutions and the search

Fig. 4 (a) A graph with four vertices and six edges. (b) A planar graph.
(c) A possible planar graph based on the single-row routing representation.
(d) Violation conditions in the single-row routing representation. (e) The
feature of an input graph for each edge: its crossing-number ϕ. ϕ(e1) =
ϕ(e2) = ϕ(e3) = ϕ(e4) = 0, ϕ(e5) = ϕ(e6) = 1.
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space is therefore reduced to |Θ(G)| = P · 3m (� |G|). It
should be noted that the proposed method is an approximate
algorithm for getting near-optimal solutions. Although it
can’t guarantee to find the optimal solution, near-optimal
solutions can be easily found by using much less compu-
tational times and, on the other hand, it is well-known that
near-optimal but less-cost solutions also have engineering-
importance.

The way of generating the Hamiltonian cycle based
vertex sequence π is shown as follows. The first vertex in the
sequence is π(1) = vβ where vβ is a randomly selected vertex
in the graph G. Different vertex sequence can be generated
by selecting different β. After the first k (k = 1, 2, . . . , n− 1)
vertices of the sequence have been determined, say π(1),
π(2), . . ., π(k), the next vertex π(k + 1) is selected from the
vertices adjacent to π(k) in G having the least adjacencies in
the subgraph Gk of G induced by V \ {π(1), π(2), . . . , π(k)}.
If π(k) has no neighbors in Gk, we select π(k + 1) as a ver-
tex of minimum degree in Gk. Correspondingly, we also
define an inverse function π−1(.), having π−1(vs) = r when
the vertex vs is located on the r-th element of π. Then, we
place the vertices of G on a line in accordance with the de-
termined vertex sequence π. In this condition, the violation
conditions of Eq. (1) in the single-row routing representation
should be expressed as in Eq. (2). Let (vi, v j) and (vp, vq) be
two upper (or lower) edges of the input graph G, and let us
assume without loss of generality that π−1(vi) < π−1(v j) and
π−1(vp) < π−1(vq). Edge (vi, v j) intersects with edge (vp, vq)

if π−1(vi) < π
−1(vp) < π−1(v j) < π

−1(vq)

or π−1(vp) < π−1(vi) < π
−1(vq) < π−1(v j) (2)

3.2.3 The 3rd Layer: Crossing-Number Extraction

In GPP, the crossing-number is an obvious feature of the
edge and it is used as Γ(G) in this paper. The crossing-
number of edge ei (expressed as ϕ(ei)) is calculated by plac-
ing all edges above the vertex’s line and then counting the
number of edges that cross with ei according to Eq. (2). Fig-
ure 4 (e) illustrates an example for the six edges in the graph.

The reason that we choose the crossing-number as the
Γ(G) is based on the fact that the edge with smaller crossing-
number has higher probability of embedding into the planar
graph as a solution component and vice-versa. Hereby the
crossing-number can be utilized as heuristic information or
guided knowledge to construct solutions.

3.2.4 The 4th Layer: Solution Evolution

For solving GPP, a suitable antibody representation is im-
portant. In this paper, we propose a permutation encoding
with greedy decoding mechanism for each antibody. An an-
tibody is expressed as an ordering (a1, a2, . . . , am) of all m
edges in the input graph, for instance, (e2, e4, e6, e1, e5, e3) is
an antibody in Fig. 4. A greedy decoding strategy as shown
in Fig. 5 is utilized to manipulate the antibody. The num-
ber of edges in the output planar subgraph is regarded as the

Fig. 5 The greedy decoding strategy.

affinity of the antibody. The characteristics of the strategy is
that it can maintain the feasibility of the antibody. That is to
say, the constrains of the problem are dealt with during the
encoding-decoding procedure. As a result, some traditional
but efficient operators which can manage the permutation
individuals can be easily and naturally incorporated into the
algorithm. In this paper, we use an improved simple point-
mutation and a single point asexual crossover method [56] to
act as the hypermutation and receptor editing respectively.
The improved simple point-mutation operator which makes
use of the crossing-number of edges is illustrated as follows:

a1 → a2 . . .→ ai → ai+1 . . .→ a j → a j+1 . . .→ am

↓
a1 → a2 . . .→ ai → a j → ai+1 . . .→ a j+1 . . .→ rm

After mutation, the edge a j is inserted behind the edge ai

while the others remains the same. Furthermore, ai is ran-
domly selected while a j ( j > i) is selected based on the
following probability rule:

p j =
ϕmax − ϕ(a j) + c

m∑

k=i+1

(ϕmax − ϕ(ak) + c)

(3)

Here ϕmax = max{ϕ(ak)}, k = i+ 1, . . . ,m indicates the max-
imum crossing-number during all the edges behind ai. c is
a constant in order to avoid producing zero probability and
usually we set c = 1. According to this rule, the edge with
smaller crossing-number has a higher probability to be se-
lected and therefore an earlier appearance in the antibody’s
permutation. After decoding, it will have a better chance of
embedding into the planar graph.

Moreover, the termination criterion is fulfilled until the
iteration number reaches Mk.

4. Experiments and Discussions

In this section, we verified the proposed multi-layered im-
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mune system (MLIS) through applying it to a total of 19
benchmark instances of the graph planarization problem
(GPP). These instances consisted of graphs (G1 ∼G12) aris-
ing from various areas of applications such as coding theory
and geometry as well as random graphs (G13 ∼ G19) whose
existing edge between any pair of vertices were indepen-
dently generated with a certain probability.

Table 2 lists the associated parameters adopted in the
MLIS for GPP. These parameters were determined through
numerical experiments after multiple simulation runs. In ad-
dition, it should be noted that the values of P, Q and F were
set as relative small values (P = 20, Q = 10, and F = 5)
rather than large values (P = 150, Q = 100, and F = 50)
as suggested in the clonal-selection based algorithms [13],
[19]. These parameters strongly influence the computational
cost of the algorithm. To illustrate the trade-off between
performance and computational cost obtained with different
parameter settings (i.e. using small values or large values
for P, Q and F), we used the example studied in this paper,
G1, to make a comparison. The average computational time
was increased from 1.359 to 11.906 seconds, a drastic lost
in computational cost, while the average performance re-
mained the same. On the other hand, too small values (such
as P = 2, Q = 1, and F = 2) for these parameters made the
diversity of population too quickly lost and thus can not find
satisfying solutions. Furthermore, similar phenomena can
be found when larger scale problems are tested, suggesting
that relative small values for P, Q and F are appropriate
for MLIS. As for the parameter Mk, the same value used in
[13], [19] was adopted.

4.1 Effect of the “Estimation of Search Space” Layer

As we declared that the powerful searching ability of MLIS
should come from its intrinsical multi-layered architecture,
we analyzed the effects of the “Estimation of Search Space”
layer and “Feature Extraction” layer respectively.

In order to demonstrate the effect of the “estima-
tion of search space” layer to the proposed algorithm, we
compared MLIS with its variants involving “MLIS/WSS”,

Table 2 Parameters used in the experiments.

Initial population number P=20
Elite population number Q=10
Expectant clone size F=5
Probability rule constant c=1
Maximum iteration number Mk=1000

Table 3 Effect of the minimized search space which was composed of Hamiltonian cycle based vertex
sequences.

G3 G8 G13 G16
Best Ave. Time(s) Best Ave. Time(s) Best Ave. Time(s) Best Ave. Time(s)

MLIS/WSS − − − −
MLIS/RVS 23 21.5 1.675 56 48.8 11.542 103 87.5 138.269 94 86.9 223.541
MLIS/FVS 22 22 1.663 61 58.3 11.513 84 82.5 137.423 101 98.6 222.368

MLIS 24 24 1.688 69 67.5 11.687 131 125.3 138.188 192 183.5 224.437
Note: The symbol “−” means the termination criterion can not be fulfilled within reasonable computational times.

“MLIS/RVS”, and “MLIS/FVS”. The difference during
them was the method of generating candidate vertex se-
quences.

As described in Sect. 3.2.2, MILS used a heuristic
method that was based on the Hamiltonian cycle to gener-
ate P vertex sequences, and these sequences were expected
to be promising candidates. “MLIS/WSS” used an exhaus-
tive method. It generated all n! possible permutations of
the vertex sequence, and then conducted an antibody for
each vertex sequence to optimize the edge order in the affin-
ity evolution process. A point worth emphasizing was that
“MLIS/WSS” used n! rather than P antibodies in the pop-
ulation, thus needing vast computational time even to im-
plement a search iteration. Without a doubt, the termination
criterion of “MLIS/WSS” can not be fulfilled within rea-
sonable times. “MLIS/RVS” used a stochastic method to
generate P vertex sequences, while “MLIS/FVS” only gen-
erated a fixed vertex sequence which was the same as the
sequence of the input vertices [51]. By doing so, we can find
out that whether the minimized search space (MSS) by us-
ing multiple heuristically generated vertex sequences (HVS)
was better than that by using multiple randomly generated
vertex sequence (RVS), that by using single vertex sequence
(FVS), or the whole search space (WSS).

The four algorithms mentioned above were run 20
times to make a statistical comparison. The simulation re-
sults based on four typical instances involving G3, G8, G13

and G16 were shown in Table 3. The results that we recorded
for each graph were the average size of the planar subgraphs
(Ave.), the best size of the planar subgraphs (Best), and the
computational times (Time(s)) produced by each algorithm.
It can be observed from Table 3 that the proposed algorithm
generated the best solutions than the other variants. This can
be attributed to the fact that the MSS generated by HVS en-
abled the system to carry out searching around an attractive
area (i.e., the solutions generated based on HVS were better
than those generated based on RVS and FVS). This also con-
firmed the statement in [49] that the vertex sequence actually
influenced strongly the size of the final planar subgraph that
can be drawn by the algorithm. In Fig. 6, we illustrated an
example based on the nonplanar graph G3. The results also
showed that HVS was a better choice for generating vertex
sequences of a graph. In addition, “MLIS/WSS” can not
acquire any solution within reasonable computational times
since the termination criterion can not be fulfilled. As a re-
sult, it can be concluded that it was necessary and useful to
apply the estimation of search space in the algorithm.
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4.2 Effect of the “Feature Extraction” Layer

On the other hand, we demonstrated the effect of the feature
extraction (FE) in the algorithm. In Table 4, we compared
the simulation results between the algorithms with and with-
out FE. Without utilizing the information of the crossing-
number of each edge in the graph, the algorithm without
FE made use of a simplified version of the hypermutation
operator, that is both of the two mutated edges were ran-
domly selected and then exchanged the positions between
them. From Table 4, it can be found that the algorithm with
FE can produce better solutions than that without FE. That
is to say, by using some basic features of the problem the
search performance of the algorithm can be improved. As
a result, the feature extraction layer was also necessary and
useful for constructing an efficient algorithm.

Furthermore, as the computational time (or computa-
tional complexity) was another important metric for evalu-
ating algorithms, we depicted the comparative results during
the three layers in Fig. 7, where the horizontal axis in a lin-
ear scale denotes the tested instances and the vertical axis
in a logarithmic scale represents the computational times.
From Fig. 7, we can observe that running times for the esti-
mation of search space layer and the feature extraction layer
were negligible compared to the times taken by the evo-
lution of antibodies layer. Therefore, we can say that the
multi-layered architecture of the immune system (incorpo-
rating two layers before the immune response) resulted in a
better searching ability but a non-increasing computational
complexity of the algorithm.

Fig. 6 (a) A nonplanar graph (G3) composed of 10 vertices and 24 edges.
(b) The maximal planar subgraph of G3 found by FVS. The dashed lines
indicated the removal from the original graph. (c) The maximal planar
subgraph of G3 found by HVS.

Table 4 Effect of the feature extraction.

G3 G8 G13 G16
Best Ave. Time(s) Best Ave. Time(s) Best Ave. Time(s) Best Ave. Time(s)

MLIS without FE 24 24 1.265 69 66.6 10.859 125 117.6 125.132 178 164.3 190.874
MLIS with FE 24 24 1.688 69 67.5 11.687 131 125.3 138.188 192 183.5 224.437

4.3 Comparison with Other Algorithms

To assess the search performance of the proposed MLIS, we
used four other traditional algorithms to make a compari-
son. These algorithms included two neural network based
algorithms (T-L [51] and HNL [53]), a meta-heuristic algo-
rithm (UT [49]) and an evolutionary algorithm (IGA [55]).
The algorithm T-L which was proposed by Takefuji/Lee has
been claimed to be one of the most popular parallel algo-
rithm and to have superior performance to that of previously
published algorithms [52]. Aiming at solving T-L’s inherent
local minimum problem, HNL which used a gradient as-
cent learning method was proposed and showed better per-
formance than T-L. UT was a two-phase heuristic for effec-
tively solving GPP and the basic idea of how to generate
a minimized search space for GPP in MLIS was directly
inspired from it. IGA was an efficient generic algorithm,
performing crossover and mutation conditionally instead of
probability.

The comparative results of the five algorithms were
summarized in Table 5. The results recorded for each graph
(from G1 to G19) were the number of vertices, the number of
edges, the upper bound on the optimal solution (i.e., 3n−6),
the size of the planar subgraphs produced by each algorithm
and the corresponding computational times. Here, the re-
sults of all algorithms were based on 20 runs. For all tested
19 graphs with an exception of the instance G12, the best
solutions (even the average solutions) produced by the pro-
posed algorithm were much better than those obtained by

Fig. 7 Average computational time as a function of the input instances
of the graph: estimation of search space, feature extraction, and evolution
of antibodies.
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Table 5 Simulation results during five algorithms.

Graph Vertices Edges Upper T-L HNL UT IGA Proposed
Bound Best Best T(s) Best Ave. Best T(s) Best Ave. T(s)

G1 10 22 20∗ 20 20 0.3 20 19.00 20 18.66 20 20 1.359
G2 45 85 82∗ 80 80 1.09 82 81.45 80 46.54 82 80.8 16.281
G3 10 24 24∗ 21 22 0.24 24 22.95 22 20.52 24 24 1.688
G4 10 25 24∗ 22 22 0.12 24 23.20 22 30.56 24 24 1.813
G5 10 26 24∗ 22 22 0.16 24 22.45 22 23.51 24 24 1.86
G6 10 27 24∗ 22 22 0.26 24 23.00 22 21.33 24 24 2.031
G7 10 34 24∗ 23 23 0.40 24 23.55 23 19.56 24 24 2.215
G8 25 69 69∗ 58 61 0.81 68 65.15 61 36.25 69 67.5 11.687
G9 25 70 69∗ 59 61 1.15 69 65.85 61 29.27 69 67.3 12.016
G10 25 71 69∗ 58 61 0.28 68 64.00 61 38.11 69 66.8 12.156
G11 25 72 69∗ 60 61 0.30 68 62.65 61 42.36 68 65.8 11.875
G12 25 90 69∗ 61 63 0.32 67 60.65 63 35.26 65 63.5 15.75
G13 50 367 144 70 82 82.17 129 124.55 84 261.25 131 125.3 138.188
G14 50 491 144 100 109 47.71 138 135.30 114 325.31 143 137.6 209.797
G15 50 582 144 101 115 107.43 142 140.20 119 445.36 142 138.1 270.281
G16 100 451 294 92 100 122.62 183 178.15 101 398.42 192 183.5 224.437
G17 100 742 294 116 126 246.98 215 209.20 127 452.01 225 218.8 478.01
G18 100 922 294 115 135 504.4 234 227.00 138 556.54 237 229.4 639.25
G19 150 1064 444 127 138 680.07 291 284.45 145 701.36 311 288.5 901.625
∗ Actual known optimal size of the planar subgraph.
The best solution during all algorithms were shown in bold fonts.

the other algorithms. Compared with the neural network
based algorithms (T-L and HNL), MLIS can find better so-
lutions while costing more computational times. Although
the termination conditions of T-L, HNL and MLIS were dif-
ferent, the comparison can be said to be sufficient and fair
since the results of T-L and HNL had trapped into local min-
ima and can not be improved any further. The evident can be
found in [53] that the learning epochs of HNL were always
smaller than the pre-defined maximal number of learning
times. Besides, the extra time of MLIS was clearly compen-
sated by the quality of the solutions produced. Compared
with UT and IGA, MLIS acquired better performances in
terms of the solution quality and computational times. Con-
sequently, we can say that the proposed methodology was
efficient for solving the graph planarization problem within
reasonable computational times.

5. Conclusions

In this paper, we proposed a multi-layered immune system
for solving combinational optimization problems. Inspired
from the intrinsical multi-layered architecture of the biologi-
cal immune system, the proposed methodology is composed
of five layers involving the problem expression, the estima-
tion of search space, the feature extraction, the evolution of
antibodies and the output. All five layers work together to
constitute a powerful computational tool. In order to show
the efficiency of the proposed methodology, the graph pla-
narization problem was tested. Simulation results exposed
the effects of the estimation of search space and the feature
extraction layers and further the effectiveness of the pro-
posed method when compared with four other traditional
algorithms.

Furthermore, the proposed MLIS is similar to
mutation-based evolutionary algorithms (such as GA) and

has good features for optimization and searching. These fea-
tures include: (1) exploitation and exploration of the search
space; (2) capability of allocating multiple optima and main-
taining local optimal solutions, thus especially effective for
highly multimodal problems. However, there are some im-
portant differences between MLIS and the typical evolution-
ary algorithms. The MLIS is capable of incorporating tra-
ditional techniques (such as estimation of search space and
feature extraction) into the algorithm to improve its search
performance. In addition, the MLIS performs not only pro-
portionate proliferation, but also a combination of mutation
operators involving hypermutation and receptor editing, and
there is no crossover operation. As a result, the effective-
ness of MLIS for GPP is due to its characteristics mentioned
above. In order to further verify the effectiveness and robust-
ness of the proposed algorithm, in the future, we plan to ap-
ply the MLIS to solve other optimization problems, such as
the job shop scheduling problems (JSP), the traveling sales-
man problems (TSP) and the quadratic assignment problems
(QAP).
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