2508

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.12 DECEMBER 2009

[LETTER

An Effective Programmable Memory BIST for Embedded Memory

Youngkyu PARKY, Jaeseok PARK', Taewoo HAN', Nonmembers,

SUMMARY This paper proposes a micro-code based Programmable
Memory BIST (PMBIST) architecture that can support various kinds of
test algorithms. The proposed Non-linear PMBIST (NPMBIST) guarantees
high flexibility and high fault coverage using not only March algorithms but
also non-linear algorithms such as Walking and Galloping. This NPMBIST
has an optimized hardware overhead, since algorithms can be implemented
with the minimum bits by the optimized instructions. Finally, various and
complex algorithms can be run thanks to its support of multi-loop.

key words: Programmable BIST, test algorithm, multi-loop

1. Introduction

Diverse cores are being systemized on chips due to the re-
cent technical development of semiconductor process and
design. As the weight of embedded memory within aggre-
gate Systems-On-Chips (SoC) gradually increases to 80—
90% of the number of total transistors, the importance of
testing embedded memory in SoC increases. The most
prevalent method for testing embedded memory is the Mem-
ory Built-In Self-Test (BIST) [1].

The Memory BIST method has advantages in that the
complexity of testing whole systems decreases remarkably
because self-tests are performed for each module. More-
over, it can conduct tests quickly without utilizing expen-
sive external test equipment. At the same time, however, the
Memory BIST has disadvantages such as low flexibility and
limited fault coverage, because it only supports limited test
algorithms. Flexibility has improved somewhat in the Pro-
grammable Memory BIST (PMBIST) method because PM-
BIST supports numerous March test algorithms to comple-
ment the shortcomings of the Memory BIST method. How-
ever, PMBIST also has the disadvantages of limited fault
coverage and high hardware overhead.

Figure 1 shows the hardware overhead ratio for each of
the PMBIST components. It was found that the instruction
memory and the address generator hold 68% of the entire
hardware overhead of the PMBIST.

This paper proposes a Non-linear PMBIST (NPM-
BIST) architecture applicable to diverse test algorithms for
the efficient testing of various embedded memories. It is
difficult to test the memories embedded in highly integrated

Manuscript received May 25, 2009.
Manuscript revised August 12, 2009.
"The authors are with the Department of Electrical and Elec-
tronic Engineering, Yonsei University, Korea.
a) E-mail: shkang@yonsei.ac.kr
DOI: 10.1587/transinf. E92.D.2508

and Sungho KANG'®, Member

PMBIST Instruction Instruction Address Data Generator
Controller Memory Counter Generator /Comparator etc.
/Decoder

Fig.1 Hardware overhead ratio of the PMBIST components.

system semiconductors using only established March algo-
rithms. Therefore, efficient testing can be implemented only
if pertinent test algorithms are applicable according to the
architecture design and memory usage. The proposed NPM-
BIST architecture can support March test algorithms, which
are widely used, and non-linear test algorithms (Diagonal,
Galloping, etc.). Furthermore, the proposed architecture can
embed numerous test algorithms. Therefore, the flexibility,
fault coverage, and credibility of embedded memories can
be enhanced, because users can choose pertinent test algo-
rithms and perform tests. On top of that, the most optimized
instruction architecture is proposed to minimize the size of
the instruction memory, which occupies 38% of the hard-
ware overhead of the PMBIST. Furthermore, the hardware
overhead is minimized by suggesting the address generator
that enables multi-loop and variable counting.

2. Pattern Instruction Architecture

The proposed NPMBIST retains the BIST architecture of
the micro-code that supports diverse test algorithms. The
NPMBIST supports not only all the March test algorithms
such as MATS+, March C—, March X, March A, March LR,
and March SS, but also non-linear test algorithms such as
Walking, Galloping, Diagonal, and Butterfly. This proposed
NPMBIST suggests an effective architecture of pattern gen-
eration instruction that supports all kinds of algorithms.

The proposed NPMBIST saves test algorithms in the
form of instructions in the internal instruction memory, and
implements algorithms using saved pattern generation in-
structions. To implement algorithms, the size of the pattern
generation instruction is defined as 9bits. Table 1 shows
each bit of the pattern generation instruction.

The pattern generation instruction has an architecture
that effectively supports March and non-linear test algo-

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

LETTER

2509
Table 1 Pattern generation instruction.
Instruction set Inst[8:7] Inst[6] Inst[5] Inst[4] Inst[3] Inst[2] Inst[1:0]
. Hold/ Address Background Memory Counter | Counter
Function . . . Control
Increment up/down true/inv. operation | operation output
00 hold 0 up 0 true 0| read | O A 0 A 00 NOP

Opeode 01 inc. 1 | down | 1 inv. 1| write | 1 B 1 B 01 | B<A+1
10 | branch 10 | A<B+1
11 | terminate

rithms with the minimum number of bits. The pattern gen-
eration instruction supports multi-loop to implement non-
linear algorithms. The brief architecture of the pattern gen-
eration instruction is as follows.

The “Hold/Increment” field of Inst[8:7] directs the op-
eration phase of the pattern generation instruction to imple-
ment algorithms. ‘hold’ lets the current pattern generation
instruction maintain its phase, and ‘increment’ tells it to per-
form the next pattern generation instruction. Next, ‘branch’
tells the current pattern generation instruction to jump to the
assigned pattern generation instruction. The branch opera-
tion of the pattern generation instruction takes the instruc-
tion address of the branch register. The “Address Up/Down”
field of Inst[6] points to the direction of increasing or de-
creasing sequence addresses of March algorithms and non-
linear algorithms. The “Background True/Inv.” field of
Inst[5] decides whether to invert the background data. The
“Memory operation” field of Inst[4] designates read/write
operation commands within sequences of March algorithms
and non-linear algorithms. The “Counter operation” field of
Inst[3] chooses either counter A or counter B as the counter
used by the address generator when generating addresses of
March algorithms and non-linear algorithms. The “Counter
output” field of Inst[2] assigns the appropriate counter to
send out addresses when March algorithms and non-linear
algorithms generate addresses. Inst[3] and Inst[2] support
multi-loop. Finally, the “Control” field of Inst[1:0] desig-
nates options for the pattern generation instruction. For ex-
ample, if Inst[1:0]=01, it assigns the option for the branch
operation. ‘B < A+1’ means to put the value of ‘counter A
plus 1’ into ‘counter B’.

Pattern generation instruction is composed of one in-
struction per each march element of the March algorithm.
For instance, a March operation composed of three march
elements like (rl1,w0,r0) can be materialized as three pat-
tern generation instructions. Therefore, the March C— algo-
rithm can be materialized as ten pattern generation instruc-
tions, and the Galloping algorithm is materialized as twelve
instructions.

3. NPMBIST Architecture

The proposed NPMBIST architecture supports March algo-
rithms as well as non-linear algorithms. The NPMBIST can
contain up to eight desirable algorithms, and its architecture
makes tests with specific algorithms possible. Specifically,
NPMBIST deals with diverse faults thanks to its numerous
algorithms, and therefore has high fault coverage. Further-

oe
st Control signal web
nsics Generator Y
Instruction Instruction
Memory |: Decoder
: | Data data_out
Tosy Generator n D
los
k- T
E E f l
= Address address_out
Instruction Generator k
Counter =
< @] I
B vl g
2 2
& i} 3
Y 8
alg_seJect [—
n BIST Response
MTestH Controller Analyzer read_data_in
n
\ J
ICLK IK:\CI Fault H
Fig.2 NPMBIST architecture.

more, users can minimize the time required for tests because
they can choose the necessary algorithms.

The proposed NPMBIST architecture consists of in-
struction memory, instruction counter, decoder, control sig-
nal generator, data generator, address generator, and re-
sponse analyzer. Figure 2 shows the architecture of the
proposed NPMBIST. To explain each block of the NPM-
BIST, the instruction memory saves the instruction of each
test algorithm materialized as a proposed pattern generation
instruction. The instruction counter directs the instruction
memory to choose a saved pattern generation instruction,
and the decoder decodes the instruction generated by the in-
struction memory. The control signal generator generates
control signals put into the memory, and the data genera-
tor generates test patterns put into the memory. The address
generator generates addresses put into the memory, and the
response analyzer compares the results of tests and evalu-
ates the existence of defects. Finally, the BIST controller
receives test algorithms from users and controls the opera-
tion of the NPMBIST on the whole.

The NPMBIST supports 2-level nested loop to imple-
ment non-linear test algorithms. The address generator is
composed of two counters to support 2-level nested loop.
Since the address generator can generate complex patterns,
it can generate various addresses. Like Butterfly algorithm,
it effectively generates the pattern that tests victim cells, in-
creasing the address by 1 or 2 to the up-down and the left-
right side of the aggressor cell. Figure 3 shows the ad-
dress generator that supports 2-level nested loop. The ad-
dress generator of Fig.3 is composed of two counters and

2510
sel A st ent_val A
(2
entin Af n | £
Counter A
n | cnt out

entin B n 37 Counter B
\. I 72

sel B rst ent_val B sel O

Fig.3 Address generator.

three multiplexers, and counting is implemented by using
the counter outputs of each. Furthermore, various address
values can be generated because the unit of count varies
from one to three. The proposed address generator can sup-
port various algorithms, so complex patterns can be gener-
ated.

The proposed NPMBIST deals with diverse faults
thanks to its numerous algorithms, and therefore has high
fault coverage and high flexibility. Furthermore, users can
minimize the time required for testing because they can
choose the necessary algorithms.

4. NPMBIST Implementation and Results

In this paper, the NPMBIST was designed to embed
MATS+, March C—, March SS, and Galloping algorithms,
in order to verify the architecture of NPMBIST. And this
NPMBIST was fabricated in the form of a chip. The mem-
ory being tested has a 9-bit row address, a 4-bit column
address, a 32-bit data word, and single port synchronous
SRAM. We also performed a functional simulation using
Modelsim by Mentor Graphics, and verified the synthesis of
NPMBIST using Design Complier by Synopsys.

Figure 4 shows the materialization of the Galloping al-
gorithm with the proposed pattern generation instruction.
The operations are explained briefly as follows. Instruction
no.l operates ‘write 0’ on all cells of the memory. Instruc-
tion no.2 writes ‘1’ at the first address of the memory. Each
of the instructions from no.3 to no.5 reads ‘0’, ‘1°, and ‘0’
in sequence, increasing the addresses of the memory in a
specific pattern. Instructions from no.3 to no.5 repeat the
‘read’ operation until the last address of the memory. Then,
the branch operation moving from instruction no.5 to no.3
refers to the branch register value. After that, instruction
no.6 writes ‘0’ on the cell in which ‘1’ is written at the op-
eration of instruction no.2. Then, instruction no.2 operates.
The instructions from no.2 to no.6 are repeated until the last
address of counters A and B is generated. Then the instruc-
tions from no.7 to no.12 repeat the operations in reverse.

Figure 5 shows a die photograph of the NPMBIST
chip. The NPMBIST with the March algorithms and Gal-
loping algorithm inside was fabricated in the form of a chip
through the Samsung 0.35 um process. The service voltage
of NPMBIST ranges from —3.3V to +3.3V, and the maxi-
mum frequency is 300 MHz.

Table 2 is the synthesis results of NPMBIST using

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.12 DECEMBER 2009

nter out(B counter)

£EE|E
- 5E/28 2%
« EEIEE L R
= - < 22|88 B o VvV £
S 2 2l 8| 5|0 0|0 zZ = 2
5 2s5|58|EE 85 58/858|FFF %
g3 £E5 EE 22/22 ez
£ 2Es|E8 s/ EE|SE|EE|EE¢E 8
c 2 s 8T8l 8
E2EES|R2A8|F5|3S8[83|833 S
001 00 11
o160t oo ot ot g g
100 0o 0| 100 00
20 10 0|1 1 1] 0 01
3010 0000 01 1 00
al 1o 01000 00
sP10 00| 01 1 00
Lol Ll 0l o L 13 0 L0 _00_]
70070 T 17770770 00
S 10 0 0 | 1| 1|0 01
o 10 0 1 | 0|1 1 00
o 10 00,0 0/ 0 00
110 o 1|01 | 00
12/ 11 0| 1 1,00 11

Fig.4 Pattern generation instruction of the Galloping algorithm.

Fig.5 Die photograph of NPMBIST.

Table2 Results of synthesis.

Instruction Hardware Max operation
bits overhead speed
1 algorithm 126 bits 6,427 gates
4 algorithms 441 bits 11,462 gates 300 MHz
8 algorithms 891 bits 20,530 gates

a commercial synthesis tool (Design Complier by Synop-
sys). The process technology used for synthesis was the
TSMC 0.13 yum library. The synthesis results of NPMBIST
with four embedded algorithms (MATS+, March C—, March
SS, and Galloping) indicates that the hardware overhead
is 11,462 gates, and the maximum frequency is 300 MHz.
The hardware overhead follows the standard of the 2-input
nand gate. The synthesis result of NPMBIST that embeds
only the March C+(14n) algorithm showed that the hard-
ware overhead is 6,427 gates. The NPMBIST can embed a
maximum of eight test algorithms, and the hardware over-
head depends on the number of algorithms in the instruction
memory.

5. Performance Evaluation

Table 3 shows a comparison between pre-proposed pro-
grammable memory with the BIST architecture and the pro-
posed NPMBIST. The standards of comparison were sup-
porting algorithms, instruction size, and instruction bits re-
quired to implement a traditional March 2(=March C+, 14n)
algorithm. The area of the architecture were also compared.
We have implemented the NPMBIST with the same March
2 algorithm, 16K X 16 memory size and 0.13 um technol-
ogy library for fair comparison with previous PMBISTs in
Table 3.

The PMBIST in [2] and [3] only support March al-

LETTER

Table3 Comparison with previous PMBIST.
[2] [3] [4] [5] NPMBIST
March Y | Y | Y Y Y
algorithms
Galloping
/Walking N N Y Y Y
Butterfly N N Y Y Y
Diagonal N N Y Y Y
Multi-loop N N N Y Y
Instruction
size (bits) 4 32 ? 8 0
Instruction bits
March 2 (bits) 160 | 312 144 216 126
Area (gates) 79K | NA | 7.0K | 124K 6.4K

gorithms and requires many instruction bits when imple-
menting March 2 algorithm. The PMBIST in [4] can sup-
port March algorithms and non-linear algorithms. How-
ever it cannot support multi-loop. It can only use the “spe-
cial multi-cycle instructions” in order to support multi-loop.
And the PMBIST in [5] supports March algorithms, non-
linear algorithms, and multi-loops, but requires lots of in-
struction bits when implementing March 2 algorithm, in-
curring defects of huge hardware overhead. This struc-
ture requires a lot of instruction bits, because it uses sev-
eral instructions to support the multi-loop. The PMBIST
in [4] supports only 2 loops but has small hardware over-
head, while the PMBIST proposed in [5] supports multi-
loops but has huge hardware overhead. The area overhead
of the PMBIST structure in [4] is about 7.0K gates. And
the PMBIST in [5] contain diagnostic logic which is about
1.2K gates. Therefore, Table 3 shows the comparison re-
sult of subtracting 1.2K gates from the area overhead of the
PMBIST structure in [5]. Additionally, the PMBISTS in [4]
and [5] have dynamic loading circuits that load the instruc-
tion to the instruction memory. The proposed NPMBIST
also includes the dynamic loading circuits that load the in-
struction from ATE to the NPMBIST. In these circuits, the
instruction memory occupies the most part of the hardware
overhead, whereas other control circuits contain very small
hardware overhead.

The proposed NPMBIST supports all March algo-
rithms and non-linear algorithms. It retains address in-
structions that can implement all kinds of algorithms with
a minimum number of bits and an address generator that
supports multi-loop. Furthermore, the NPMBIST has an
instruction size of 9bits. The March 2 algorithm can be
implemented with smaller instruction bits than previous

2511

architectures. Moreover, the hardware overhead of NPM-
BIST is 6.4K, which is small in comparison to that of all the
previous PMBIST.

For the area overhead of PMBIST, the instruction mem-
ory and the address generator account for more than 38%
and about 26%, respectively. The proposed NPMBIST min-
imized not only the size of instruction memory by the test al-
gorithms through the optimum instruction structure, but also
the area overhead by the architecture of the optimum address
generator that supports multi-loop. Therefore, NPMBIST
has the advantages of high flexibility, high fault coverage,
and low area overhead.

6. Conclusions

The NPMBIST proposed in this paper supports March algo-
rithms and non-linear algorithms, such as Walking and Gal-
loping, and therefore has high flexibility and high fault cov-
erage. This architecture has an optimum hardware overhead,
since the implementation of algorithms is possible with a
minimum of instruction bits. Also, through multi-loop, the
NPMBIST architecture can support complex algorithms that
contain unfixed data and address patterns.

Acknowledgments

This work was supported by “System IC 2010 project of
Korea Ministry of Knowledge Economy.

References

[1] W.-L. Wang, K.-J. Lee, and J.-F. Wang, “An on-chip march pattern
generator for testing embedded memory cores,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol.9, no.5, pp.730-735, Oct. 2001.

[2] D. Appello, P. Bernardi, A. Fudoli, M. Rebaudengo, M.S. Reorda, V.
Tancorre, and M. Violante, “Exploiting programmable BIST for the
diagnosis of embedded memory cores,” Proc. IEEE International Test
Conference, pp.379-385, Oct. 2003.

[3] S. Boutobza, M. Nicolaidis, K.M. Lamara, and A. Costa, ‘“Pro-
grammable memory BIST,” Proc. IEEE International Test Confer-
ence, Paper 45.2, Nov. 2005.

[4] X. Du, N. Mukherjee, W.-T. Cheng, and S. Reddy, “Full-speed field-
programmable memory BIST architecture,” Proc. IEEE International
Test Conference, Paper 45.3, Nov. 2005.

[5] X. Du, N. Mukherjee, C. Hill, W.-T. Cheng, and S. Reddy, “A field
programmable memory BIST architecture supporting algorithms with
multiple nested loops,” Proc. IEEE Asian Test Symposium, pp.287—
292, Nov. 2006.

