
2512
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

LETTER

RPP: Reference Pattern Based Kernel Prefetching Controller∗

Hyo J. LEE†, Nonmember, In Hwan DOH†, Member, Eunsam KIM†a), and Sam H. NOH†, Nonmembers

SUMMARY Conventional kernel prefetching schemes have focused on
taking advantage of sequential access patterns that are easy to detect. How-
ever, it is observed that, on random and even sequential references, they
may cause performance degradation due to inaccurate pattern prediction
and overshooting. To address these problems, we propose a novel approach
to work with existing kernel prefetching schemes, called Reference Pattern
based kernel Prefetching (RPP). The RPP can reduce negative effects of ex-
isting schemes by identifying one more reference pattern, i.e., looping, in
addition to random and sequential patterns and delaying starting prefetch-
ing until patterns are confirmed to be sequential or looping.
key words: kernel prefetching, reference pattern, read-ahead, overshoot-
ing

1. Introduction

Prefetching is a technique to reduce disk access time by
reading blocks contiguously stored together. Many research
results have shown that prefetching can play a vital role in
performance improvement if used properly. However, un-
wise prefetching may degrade the performance significantly.
The blocks that are prefetched but not accessed later incur
two kinds of penalties on the system. One is unnecessary
I/O operations. The penalty for such I/O operations varies
according to several factors such as how busy the disk is or
where in disk requested blocks reside. The other is cache
contamination. When prefetched blocks are uploaded to
cache, they have to evict existing blocks. If the evicted block
is the one to be accessed later, it must be re-fetched soon. If
the prefetched block is never used, the cost will be greater.

To increase the prediction accuracy, previous kernel
prefetching techniques have generally focused on taking ad-
vantage of sequential access patterns that are relatively easy
to detect and quite effective [1]–[3]. However, it is observed
that there are two major problems of these kernel prefetch-
ing techniques. One is that they may cause considerable per-
formance degradation on random access patterns. To reduce
this problem, most of them increase the number of blocks to
be prefetched slowly until they become confident that access
patterns are sequential [4]. Nevertheless, such prefetching
schemes may make the system suffer because they always
start prefetching even a small number of blocks by consid-
ering all access patterns as sequential initially. The other

Manuscript received July 17, 2009.
†The authors are with the Hongik University, Korea.
∗This work was supported by the Korea Science and Engineer-

ing Foundation (KOSEF) grant funded by the Korea government
(MOST) (No.R0A-2007-000-20071-0).

a) E-mail: eskim@hongik.ac.kr
DOI: 10.1587/transinf.E92.D.2512

problem is that conventional schemes prefetch blocks too
aggressively once workloads are recognized as sequential
patterns [1], [4]. If the workloads do not have the sequences
that are not long enough than expected, it may fetch too
many blocks and eventually contaminate the cache space,
which is called overshooting in this paper.

To address these problems, in this paper we adopt
a novel approach to extend existing kernel prefetching
schemes, which is called Reference Pattern based kernel
Prefetching (RPP). The RPP can further improve the sys-
tem performance by reducing negative effects of the con-
ventional schemes. We add two important features to previ-
ous kernel prefetching schemes. First, we identify one more
reference pattern, i.e., looping, to the existing patterns, i.e.,
sequential and random, which is the classification proposed
for the caching scheme in UBM [7]. Thus, RPP can not only
recognizes sequential patterns but also exploits repetitive
occurrences of such sequential patterns. This can prevent re-
peated overshooting caused by aggressive prefetching. Sec-
ond, unlike the conventional schemes, the reference pattern
of each file is initially classified as random in RPP. This
can eliminate the unnecessary prefetching of initial blocks
of each file because we do not start prefetching until the pat-
tern is confirmed to be sequential or looping. By extensive
simulations, we show that RPP can eliminate negative ef-
fects of conventional kernel prefetching schemes on random
and looping access patterns.

The remainder of the paper is organized as follows.
Section 2 describes related work. In Sect. 3, we describe
how RPP works. In Sect. 4, we present the experimental en-
vironment and the results. Finally, we conclude this paper
in Sect. 5.

2. Related Work

To improve prediction accuracy of prefetching, there have
been many attempts to obtain hints directly from applica-
tions [5], [6]. However, this kind of prefetching schemes
have not been widely adopted by kernels due to their
complexity and poor compatibility. Thus, most of ker-
nel prefetching schemes have attempted to detect sequen-
tial reference patterns, which is effective but easy to de-
tect. The linux kernel uses a prefetching scheme called
read-ahead. The read-ahead schemes detect sequential pat-
tern by keeping a read-ahead window. SARC partitions the
cache space for the random and sequential references [2]
and adapts prefetching degree and partition size according

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



LETTER
2513

to the marginal utility. AMP is another kernel prefetching
scheme to exploit sequential references, adapting the depth
of prefetching depending on results of the previous prefetch-
ing effect [1]. Our work extends these existing schemes by
decreasing negative effects of prefetching, rather than de-
signs a new prefetching scheme.

On the other hand, in UBM (Unified Buffer Manage-
ment) cache management scheme, an attempt have been
made to exploit more elaborate access patterns, mimick-
ing the Belady’s optimal cache replacement policy. Ref-
erences are classified into three patterns, namely, sequen-
tial, looping, and random [7]. Even though prefetching tech-
niques are highly related to cache management techniques,
these kinds of patterns have not been exploited for kernel
prefetching techniques. In this paper, we exploit the same
patterns to further improve the performance of prefetching.

3. RPP Controller

In this section, we explain how RPP controller detects refer-
ence patterns and exploits the characteristics of the detected
references.

3.1 Reference Patterns

Most previous kernel prefetching schemes have classified
reference patterns as either sequential or random. In this
paper, we add one more pattern, i.e., looping for effec-
tive prefetching. Note that sequential references are the
sequence of consecutively accessed blocks that occur only
once while looping references are sequential references that
repeat during regular periods. Other references that are nei-
ther sequential nor looping are random.

3.2 Pattern Detection

We explain how references are detected. The pattern detec-
tor classifies the pattern for each file, maintaining a fileID,
start block number, end block number, most recently ac-
cessed block number, last accessed time, and current de-
tected pattern for each file. For a new file, the pattern de-
tector adds an item for that file and marks the block number
currently accessed. Note that the reference pattern of the file
is initially classified as random.

On every access to each block, the pattern detector
checks whether the block belongs to any file that have been
accessed at least once before and is adjacent to the block ac-
cessed last in the file. If so, the pattern detector extends the
corresponding sequence up to this block. When the length
of the sequence exceeds a specific threshold, the pattern is
classified as sequential. On the other hand, if the block turns
out to be the start block of the sequence, the pattern classi-
fied as looping. If the block is neither sequential nor the start
of a loop, the pattern remains random.

3.3 Additional Features

To reduce the negative effects of conventional kernel

Table 1 Portion of patterns in access of various applications.

Trace Sequential Random % of seq % of loop
cscope 733457 385704 66 84

viewperf 300522 2601 99 58
tpc-h 641915 12827080 5 66
tpc-r 642782 8772745 7 67

multi2 1043321 537550 66 75
multi3 2546637 14024592 15 72

prefetching schemes, RPP add two important features to
them. First, RPP delays triggering prefetching until the
reference is determined as sequential or looping. In other
words, it classifies every file as random when the file is ac-
cessed for the first time. Nevertheless, the decline in benefit
from prefetching is not large because the number of blocks
that are not prefetched is small and such small number of
adjacent blocks can be also prefetched on the disk cache.

Second, RPP can avoid the overshooting of prefetching
that are triggered by sequential references. Table 1 shows
portions of references for typical workloads. We have ob-
served from this table that sequential references form the
majority of references and a major portion are looping ref-
erences among sequential references. Thus, it is clear that
we can reduce the overshooting of prefetching by reading
ahead blocks only up until the end of the loop.

4. Experimental Evaluation

To evaluate the effectiveness of RPP, we have performed
trace driven simulations.

4.1 Simulation Setup

The simulator used in our paper is based on Accusim [4] that
faithfully implements the Linux kernel I/O clustering. We
implemented RPP controller that manages kernel prefetch-
ing according to the type of detected references. As Ac-
cusim already supports the linux read-ahead prefetching, we
added one more prefetching policy, i.e., AMP [1] for per-
formance comparison. The Accusim simulator provides the
traces pertaining to buffer cache management and prefetch-
ing [4], [9]. Note that LRU is used as a cache replacement
policy.

RPP is a controller that can complement various kinds
of kernel prefetching schemes. In this paper, we employ the
Linux read-ahead [4] and the AMP scheme [1] as main ker-
nel prefetching schemes, which are two different forms of
kernel prefetching. Read-ahead is an aggressive prefetching
scheme. Once it speculates that references are sequential, it
starts to double up the number of blocks to be prefetched.
On the other hand, AMP is rather a conservative approach
to minimize mis-prefetching, dynamically adapting the the
number of blocks to be prefetched and the trigger time of
prefetching to optimize performance.

4.2 Simulation Results

In this section, five prefetching schemes are compared; no



2514
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

Fig. 1 Random.

Fig. 2 Sequential.

prefetch (denoted as ‘No-prefetch’ in figures), the original
Linux read-ahead scheme (‘readahead’), the AMP scheme
(‘AMP’), RPP employing read-ahead as main scheme
(‘RPP+readahead’), and RPP employing AMP as main
scheme (‘RPP+AMP’).

4.2.1 Effect on Random References

Figure 1 shows that, by reducing negative effects of existing
kernel prefetching schemes, RPP can improve the prefetch-
ing performance in terms of execution time for random
workloads. In this section, we employed tpc-h and tpc-r
traces that comprise mainly of random accesses with only
5-7% sequential patterns.

We can see from Fig. 1 that read-ahead scheme per-
forms worse than ‘No-prefetch’ by 67.3% and 71.7% on
tpc-h and tpc-r, respectively. This implies that aggressive
prefetching on random references degrades prefetching per-
formance significantly. However, ‘RPP+readahead’ per-
forms slightly better than ‘No-prefetch’. This is because
RPP decreases the negative effect of prefetching by post-
poning triggering prefetching until the pattern is confirmed
to be sequential or looping.

It can be seen that RPP also improve the performance
of AMP even though the improvement percentage in AMP
is lower than that in read-ahead because AMP already takes
a conservative approach for prefetching.

4.2.2 Effect on Sequential References

Figure 2 shows that, even on Cscope and viewperf that are
typical sequential workloads, RPP can still performs better
than both read-ahead and AMP even though improvement
percentages become small.

As we can see from Fig. 2, prefetching schemes per-
form best on sequential workloads by taking full advantage
of the sequentiality of patterns. In fact, RPP has a disadvan-
tage on sequential patterns compared to conventional ker-
nel prefetching schemes because it delays prefetching un-
til the reference pattern is clearly recognized. Nevertheless,
Fig. 2 shows that RPP achieved better performance than oth-
ers. The reason for this is that it can avoid the overshooting
of prefetching by exploiting looping patterns in addition to
sequential ones.

4.2.3 Effect on Concurrent References

Figure 3 illustrates the simulation results of five schemes on
concurrent execution of applications with different types of
references. It is essential to examine the impact of concur-
rent execution of applications on overall performance be-
cause this may alter the reference characteristics of individ-
ual applications [3].

We employed the following two concurrent traces:
multi2 and multi3. Multi2 represents the development en-
vironment consisting of concurrent executions of sequential
references including gcc, cscope, and viewperf, while multi3



LETTER
2515

Fig. 3 Concurrent.

represents the server environment with a combination of se-
quential and random references including glimpse and tpc-h.

It can be seen from Fig. 3 that the performance trends
of five schemes on multi2 and multi3 are similar to those of
cscope and tpc-h, respectively, although their overall perfor-
mances are worse due to relatively heavier concurrent work-
loads. This implies that RPP can work well on concurrent
execution of applications with different access patterns.

5. Conclusions

In this paper, we proposed a new kernel prefetching ap-
proach to complement existing schemes, called RPP con-
troller. The goal of RPP was to further improve the system
performance by addressing the problems of existing kernel
prefetching schemes. To do so, we first identified loop-
ing reference patterns additionally to prevent repeated over-
shooting caused by aggressive prefetching. Second, we did
not trigger prefetching until the pattern is determined to be
sequential or looping. Finally, we showed from extensive
simulations that RPP could reduce negative effects of con-
ventional kernel prefetching schemes on both random and
looping access patterns.

References

[1] B.S. Gill and L.A.D. Bathen, “Amp: Adaptive multi-stream prefetch-
ing in a shared cache,” FAST ’07: Proc. 5th USENIX Conference on
File and Storage Technologies, p.26, USENIX Association, Berkeley,

CA, USA, 2007.
[2] B.S. Gill and D.S. Modha, “Sarc: Sequential prefetching in adap-

tive replacement cache,” ATEC ’05: Proc. Annual Conference on
USENIX Annual Technical Conference, p.33, USENIX Association,
Berkeley, CA, USA, 2005.

[3] C. Li, K. Shen, and A.E. Papathanasiou, “Competitive prefetching
for concurrent sequential i/o,” SIGOPS Oper. Syst. Rev., vol.41, no.3,
pp.189–202, 2007.

[4] A.R. Butt, C. Gniady, and Y.C. Hu, “The performance impact of ker-
nel prefetching on buffer cache replacement algorithms,” SIGMET-
RICS Perform. Eval. Rev., vol.33, no.1, pp.157–168, 2005.

[5] P. Cao, E.W. Felten, A.R. Karlin, and K. Li, “A study of integrated
prefetching and caching strategies,” SIGMETRICS ’95/PERFOR-
MANCE ’95: Proc. 1995 ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems,
pp.188–197, ACM, New York, NY, USA, 1995.

[6] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed prefetching and caching,” Tech. Rep., Pittsburgh, PA,
USA, 1995.

[7] J.M. Kim, J. Choi, J. Kim, S.H. Noh, S.L. Min, Y. Cho, and C.S.
Kim, “A low-overhead high-performance unified buffer management
scheme that exploits sequential and looping references,” OSDI’00:
Proc. 4th Conference on Symposium on Operating System Design
& Implementation, p.9, USENIX Association, Berkeley, CA, USA,
2000.

[8] C. Gniady, A.R. Butt, and Y.C. Hu, “Program-counter-based pattern
classification in buffer caching,” OSDI’04: Proc. 6th Conference on
Symposium on Opearting Systems Design & Implementation, p.27,
USENIX Association, Berkeley, CA, USA, 2004.

[9] D. Lee, J. Choi, J.H. Kim, S.H. Noh, S.L. Min, Y. Cho, and C.S.
Kim, “LRFU: A spectrum of policies that subsumes the least recently
used and least frequently used policies,” IEEE Trans. Comput., vol.50,
no.12, pp.1352–1361, IEEE Computer Society, 2001.


